13,348 research outputs found

    Analytic aspects of the shuffle product

    Get PDF
    There exist very lucid explanations of the combinatorial origins of rational and algebraic functions, in particular with respect to regular and context free languages. In the search to understand how to extend these natural correspondences, we find that the shuffle product models many key aspects of D-finite generating functions, a class which contains algebraic. We consider several different takes on the shuffle product, shuffle closure, and shuffle grammars, and give explicit generating function consequences. In the process, we define a grammar class that models D-finite generating functions

    Partially-commutative context-free languages

    Get PDF
    The paper is about a class of languages that extends context-free languages (CFL) and is stable under shuffle. Specifically, we investigate the class of partially-commutative context-free languages (PCCFL), where non-terminal symbols are commutative according to a binary independence relation, very much like in trace theory. The class has been recently proposed as a robust class subsuming CFL and commutative CFL. This paper surveys properties of PCCFL. We identify a natural corresponding automaton model: stateless multi-pushdown automata. We show stability of the class under natural operations, including homomorphic images and shuffle. Finally, we relate expressiveness of PCCFL to two other relevant classes: CFL extended with shuffle and trace-closures of CFL. Among technical contributions of the paper are pumping lemmas, as an elegant completion of known pumping properties of regular languages, CFL and commutative CFL.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    On shuffle products, acyclic automata and piecewise-testable languages

    Full text link
    We show that the shuffle L \unicode{x29E2} F of a piecewise-testable language LL and a finite language FF is piecewise-testable. The proof relies on a classic but little-used automata-theoretic characterization of piecewise-testable languages. We also discuss some mild generalizations of the main result, and provide bounds on the piecewise complexity of L \unicode{x29E2} F

    Commutative positive varieties of languages

    Full text link
    We study the commutative positive varieties of languages closed under various operations: shuffle, renaming and product over one-letter alphabets

    On the Shuffle Automaton Size for Words

    Full text link
    We investigate the state size of DFAs accepting the shuffle of two words. We provide words u and v, such that the minimal DFA for u shuffled with v requires an exponential number of states. We also show some conditions for the words u and v which ensure a quadratic upper bound on the state size of u shuffled with v. Moreover, switching only two letters within one of u or v is enough to trigger the change from quadratic to exponential

    Partial Derivative Automaton for Regular Expressions with Shuffle

    Get PDF
    We generalize the partial derivative automaton to regular expressions with shuffle and study its size in the worst and in the average case. The number of states of the partial derivative automata is in the worst case at most 2^m, where m is the number of letters in the expression, while asymptotically and on average it is no more than (4/3)^m

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples
    corecore