27,239 research outputs found

    PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    Get PDF
    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5'-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use

    Reference genome and comparative genome analysis for the WHO reference strain for Mycobacterium bovis BCG Danish, the present tuberculosis vaccine

    Get PDF
    Background: Mycobacterium bovis bacillus Calmette-Guerin (M. bovis BCG) is the only vaccine available against tuberculosis (TB). In an effort to standardize the vaccine production, three substrains, i.e. BCG Danish 1331, Tokyo 172-1 and Russia BCG-1 were established as the WHO reference strains. Both for BCG Tokyo 172-1 as Russia BCG-1, reference genomes exist, not for BCG Danish. In this study, we set out to determine the completely assembled genome sequence for BCG Danish and to establish a workflow for genome characterization of engineering-derived vaccine candidate strains.ResultsBy combining second (Illumina) and third (PacBio) generation sequencing in an integrated genome analysis workflow for BCG, we could construct the completely assembled genome sequence of BCG Danish 1331 (07/270) (and an engineered derivative that is studied as an improved vaccine candidate, a SapM KO), including the resolution of the analytically challenging long duplication regions. We report the presence of a DU1-like duplication in BCG Danish 1331, while this tandem duplication was previously thought to be exclusively restricted to BCG Pasteur. Furthermore, comparative genome analyses of publicly available data for BCG substrains showed the absence of a DU1 in certain BCG Pasteur substrains and the presence of a DU1-like duplication in some BCG China substrains. By integrating publicly available data, we provide an update to the genome features of the commonly used BCG strains. Conclusions: We demonstrate how this analysis workflow enables the resolution of genome duplications and of the genome of engineered derivatives of the BCG Danish vaccine strain. The BCG Danish WHO reference genome will serve as a reference for future engineered strains and the established workflow can be used to enhance BCG vaccine standardization

    Mass spectrometry and ribosome profiling, a perfect combination towards a more comprehensive identification strategy of true in vivo protein forms

    Get PDF
    An increasing number of studies involve integrative analysis of gene and protein expression data, taking advantage of new technologies such as next-generation transcriptome sequencing (RNA-Seq) and highly sensitive mass spectrometry (MS). Recently, a strategy, termed ribosome profiling, based on deep sequencing of ribosome-protected mRNA fragments, indirectly monitoring protein synthesis, has been described. In contrast to routinely employed protein databases in proteomics searches, RIBO-seq derived data gives a more representative expression state and accounts for sequence variation information and alternative translation initiation. To verify the potential of ribosome profiling in providing us with a true snapshot of the translational landscape, we devised a proteogenomic approach generating a database of translation products based on ribosome profiling experiments. The raw and untreated RIBO-seq data is analyzed for both splice isoforms and single nucleotide polymorphisms, as such taking into account transcriptional variation. Next to that, RIBO-seq data for translation start site discovery (treated with harringtonine, lactomidomycin or puromycin) is used to obtain a genome wide blueprint of all possible translation initiation sites and as such taking into account translation variation. By adding protein-DB annotation to the genomic RIBO-seq derived data and after in silico translation a protein database is constructed reflecting the full complexity of the proteome. Using a first version of our proteogenomic approach on an undifferentiated mouse embryonic stem cell line (E14) we could demonstrate an increase of the overall protein identification rate with 2.5% as compared to only searching UniProtKB-SwissProt. Furthermore, identification of N-terminal COFRADIC data resulted in detection of 16 alternative start sites giving rise to N-terminally extended protein variants besides the identification of four translated uORFs
    • 

    corecore