975 research outputs found

    The Físchlár digital video recording, analysis, and browsing system

    Get PDF
    In digital video indexing research area an important technique is called shot boundary detection which automatically segments long video material into camera shots using content-based analysis of video. We have been working on developing various shot boundary detection and representative frame selection techniques to automatically index encoded video stream and provide the end users with video browsing/navigation feature. In this paper we describe a demonstrator digital video system that allows the user to record a TV broadcast programme to MPEG-1 file format and to easily browse and playback the file content online. The system incorporates the shot boundary detection and representative frame selection techniques we have developed and has become a full-featured digital video system that not only demonstrates any further techniques we will develop, but also obtains users’ video browsing behaviour. At the moment the system has a real-user base of about a hundred people and we are closely monitoring how they use the video browsing/navigation feature which the system provides

    Using Graphics Processor Units (GPUs) for automatic video structuring

    Get PDF
    The rapid pace of development of Graphic Processor Units (GPUs) in recent years in terms of performance and programmability has attracted the attention of those seeking to leverage alternative architectures for better performance than that which commodity CPUs can provide. In this paper, the potential of the GPU in automatically structuring video is examined, specifically in shot boundary detection and representative keyframe selection techniques. We first introduce the programming model of the GPU and outline the implementation of techniques for shot boundary detection and representative keyframe selection on both the CPU and GPU, using histogram comparisons. We compare the approaches and present performance results for both the CPU and GPU. Overall these results demonstrate the significant potential for the GPU in this domain

    Shot Boundary Detection

    Get PDF
    Detekce přechodů ve videu je proces automatického nalezení hranic mezi jednotlivými scénami. Tato práce se zabývá převážně detekcí střihů, postupné přechody jsou ale rovněž uvažovány. Vysvětleny jsou základní pojmy z této oblasti a stručně představeny doposud používané metody. Stěžejní částí je návrh a implementace detektoru přechodů. Ten je založen na kombinaci dvou přístupů. Prvním je porovnávání barevných histogramů sousedních snímků. Druhý, méně tradiční, je založen na sledování výrazných bodů ve videu. Analýza průběhu těchto příznaků probíhá pomocí odhadu jeho derivace. Systém byl otestován na vlastní sadě ručně anotovaných dat. Ukázalo se, že oba příznaky jsou pro detekci přechodů vhodné. Detektor byl schopný nalézt většinu střihů při zachování dobré přesnosti. Prokázala se schopnost detekovat i některé postupné přechody.Shot boundary detection is a process of automatically finding the boundaries between shots in a video. This work primarily deals with detection of hard-cuts, but gradual transitions are also considered. At first, fundamental terms of this field are explained, commonly used methods are shortly described. The main part of this work is design and implementation of system for shot boundary detection based on combination of two methods. The first one is comparison of color histograms for adjacent frames. Second approach is based on visual feature tracking. The analysis of behavior of those features is done by estimating their first derivatives. Proposed system was tested on small, manually annotated set of test data, which showed that both features are suitable for this task. Detector proved its ability to find hard-cuts with good precision. It was also able to detect some gradual transitions.

    Video shot boundary detection: seven years of TRECVid activity

    Get PDF
    Shot boundary detection (SBD) is the process of automatically detecting the boundaries between shots in video. It is a problem which has attracted much attention since video became available in digital form as it is an essential pre-processing step to almost all video analysis, indexing, summarisation, search, and other content-based operations. Automatic SBD was one of the tracks of activity within the annual TRECVid benchmarking exercise, each year from 2001 to 2007 inclusive. Over those seven years we have seen 57 different research groups from across the world work to determine the best approaches to SBD while using a common dataset and common scoring metrics. In this paper we present an overview of the TRECVid shot boundary detection task, a high-level overview of the most significant of the approaches taken, and a comparison of performances, focussing on one year (2005) as an example

    Shot boundary detection in MPEG videos using local and global indicators

    Get PDF
    Shot boundary detection (SBD) plays important roles in many video applications. In this letter, we describe a novel method on SBD operating directly in the compressed domain. First, several local indicators are extracted from MPEG macroblocks, and AdaBoost is employed for feature selection and fusion. The selected features are then used in classifying candidate cuts into five sub-spaces via pre-filtering and rule-based decision making. Following that, global indicators of frame similarity between boundary frames of cut candidates are examined using phase correlation of dc images. Gradual transitions like fade, dissolve, and combined shot cuts are also identified. Experimental results on the test data from TRECVID'07 have demonstrated the effectiveness and robustness of our proposed methodology. * INSPEC o Controlled Indexing decision making , image segmentation , knowledge based systems , video coding o Non Controlled Indexing AdaBoost , MPEG videos , feature selection , global indicator , local indicator , rule-based decision making , shot boundary detection , video segmentation * Author Keywords Decision making , TRECVID , shot boundary detection (SBD) , video segmentation , video signal processing References 1. J. Yuan , H. Wang , L. Xiao , W. Zheng , J. L. F. Lin and B. Zhang "A formal study of shot boundary detection", IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 168 2007. Abstract |Full Text: PDF (2789KB) 2. C. Grana and R. Cucchiara "Linear transition detection as a unified shot detection approach", IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 483 2007. Abstract |Full Text: PDF (505KB) 3. Q. Urhan , M. K. Gullu and S. Erturk "Modified phase-correlation based robust hard-cut detection with application to archive film", IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 753 2006. Abstract |Full Text: PDF (3808KB) 4. C. Cotsaces , N. Nikolaidis and I. Pitas "Video shot detection and condensed representation: A review", Proc. IEEE Signal Mag., vol. 23, pp. 28 2006. 5. National Institute of Standards and Technology (NIST), pp. [online] Available: http://www-nlpir.nist.gov/projects/trecvid/ 6. J. Bescos "Real-time shot change detection over online MPEG-2 video", IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 475 2004. Abstract |Full Text: PDF (1056KB) 7. H. Lu and Y. P. Tan "An effective post-refinement method for shot boundary detection", IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 1407 2005. Abstract |Full Text: PDF (3128KB) 8. G. Boccignone , A. Chianese , V. Moscato and A. Picariello "Foveated shot detection for video segmentation", IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 365 2005. Abstract |Full Text: PDF (2152KB) 9. Z. Cernekova , I. Pitas and C. Nikou "Information theory-based shot cut/fade detection and video summarization", IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 82 2006. Abstract |Full Text: PDF (1184KB) 10. L.-Y. Duan , M. Xu , Q. Tian , C.-S. Xu and J. S. Jin "A unified framework for semantic shot classification in sports video", IEEE Trans. Multimedia, vol. 7, pp. 1066 2005. Abstract |Full Text: PDF (2872KB) 11. H. Fang , J. M. Jiang and Y. Feng "A fuzzy logic approach for detection of video shot boundaries", Pattern Recogn., vol. 39, pp. 2092 2006. [CrossRef] 12. R. A. Joyce and B. Liu "Temporal segmentation of video using frame and histogram space", IEEE Trans. Multimedia, vol. 8, pp. 130 2006. Abstract |Full Text: PDF (864KB) 13. A. Hanjalic "Shot boundary detection: Unraveled and resolved", IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 90 2002. Abstract |Full Text: PDF (289KB) 14. S.-C. Pei and Y.-Z. Chou "Efficient MPEG compressed video analysis using macroblock type information", IEEE Trans. Multimedia, vol. 1, pp. 321 1999. Abstract |Full Text: PDF (612KB) 15. C.-L. Huang and B.-Y. Liao "A robust scene-change detection method for video segmentation", IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 1281 2001. Abstract |Full Text: PDF (241KB) 16. Y. Freund and R. E. Schapire "A decision-theoretic generalization of online learning and an application to boosting", J. Comput. Syst. Sci., vol. 55, pp. 119 1997. [CrossRef] On this page * Abstract * Index Terms * References Brought to you by STRATHCLYDE UNIVERSITY LIBRARY * Your institute subscribes to: * IEEE-Wiley eBooks Library , IEEE/IET Electronic Library (IEL) * What can I access? Terms of Us

    Evaluating and combining digital video shot boundary detection algorithms

    Get PDF
    The development of standards for video encoding coupled with the increased power of computing mean that content-based manipulation of digital video information is now feasible. Shots are a basic structural building block of digital video and the boundaries between shots need to be determined automatically to allow for content-based manipulation. A shot can be thought of as continuous images from one camera at a time. In this paper we examine a variety of automatic techniques for shot boundary detection that we have implemented and evaluated on a baseline of 720,000 frames (8 hours) of broadcast television. This extends our previous work on evaluating a single technique based on comparing colour histograms. A description of each of our three methods currently working is given along with how they are evaluated. It is found that although the different methods have about the same order of magnitude in terms of effectiveness, different shot boundaries are detected by the different methods. We then look at combining the three shot boundary detection methods to produce one output result and the benefits in accuracy and performance that this brought to our system. Each of the methods were changed from using a static threshold value for three unconnected methods to one using three dynamic threshold values for one connected method. In a final summing up we look at the future directions for this work

    DCU at MMM 2013 video browser showdown

    Get PDF
    This paper describes a handheld video browser that in corporates shot boundary detection, key frame extraction, semantic content analysis, key frame browsing, and similarity search

    Design of Video Retrieval System Using MPEG-7 Descriptors

    Get PDF
    AbstractThe paper proposes a content-based video retrieval system designed using MPEG-7 (multimedia content description interface), which provides a standard description for a video. The system consists of three parts: shot boundary detection, feature extraction and similarity measurement. In shot boundary detection, cut and dissolve can be detected using the histogram difference and skipping image difference, respectively. In feature extraction part, two MPEG-7 visual descriptors, Color Structure Descriptor (CSD) and Edge Histogram Descriptor (EHD), are used to represent the color feature and edge feature of the key frames. Lastly, the similarity between key frames is calculated using dynamic-weighted feature similarity calculation. The proposed system is tested on three kinds of videos. Promising results are obtained in terms of both effectiveness and efficiency
    corecore