
Using Graphics Processor Units (GPUs) for Automatic Video Structuring

Peter Kehoe and Alan F. Smeaton
Centre for Digital Video Processing and Adaptive Information Cluster

Dublin City University, Glasnevin, Dublin 9, Ireland.
Alan.Smeaton@dcu.ie

Abstract

The rapid pace of development of Graphic Processor
Units (GPUs) in recent years in terms of performance and
programmability has attracted the attention of those seeking
to leverage alternative architectures for better performance
than that which commodity CPUs can provide. In this pa-
per, the potential of the GPU in automatically structuring
video is examined, specifically in shot boundary detection
and representative keyframe selection techniques. We first
introduce the programming model of the GPU and outline
the implementation of techniques for shot boundary detec-
tion and representative keyframe selection on both the CPU
and GPU, using histogram comparisons. We compare the
approaches and present performance results for both the
CPU and GPU. Overall these results demonstrate the sig-
nificant potential for the GPU in this domain.

1. Introduction

Recently, researchers have increasingly become inter-
ested in the potential of Graphics Processor Units (GPUs)
for a variety of computational tasks beyond graphics ren-
dering. The motivation is the promise of high speedups
compared to commodity desktop CPUs, thanks to the very
high parallelism employed by GPUs and the massive ad-
vantage this gives the GPU in floating point computational
capability. Using the GPU effectively also presents unique
challenges, as they have a distinct programming model.
This work examines the potential of the GPU compared

to the CPU for structuring video – specifically in shot
boundary detection and representative keyframe selection.
Shot boundary detection is the process of segmenting a
video into its component camera shots, which may be delin-
eated by an opening and closing cut. This is commonly used
as the first step in automated video content analysis. Aside
from the shot boundary detection itself, a subsequent tech-
nique called representative keyframe selection may be used
to identify a single frame that will represent a given shot.

Here we examine implementations of both techniques on
the CPU and on the GPU, and compare their performances.

2. Related Work

Our shot boundary detection and keyframe selection
techniques work with decompressed video frames. Thus the
process of taking a compressed video file and decompress-
ing it is a first step in this process which takes a significant
proportion of the overall time required for the entire pro-
cess, and represents a good candidate for acceleration on
the GPU. This has already been undertaken by a number of
graphics processor vendors, such as in nVidia’s PureVideo
technology, and ATi’s Avivo. Both companies’ technologies
offload a number of the most computationally intensive as-
pects of MPEG decoding to the GPU, in order to speed up
the process over the CPU alone so we will concentrate our
wok on the post-decoding phases.
There has been a significant amount of research into shot

boundary techniques and the proceedings of the TRECVid
conferences [3] over the last five years or so present a
good body of knowledge in the field. Many techniques
exist for shot boundary detection, including pixel and his-
togram comparisons and other statistical differences be-
tween frames. Some approaches focus on different types
of shot boundary, from hard cuts to gradual transitions e.g.
fades and dissolves.

3. Graphics Processor Units

GPUs, or Graphics Processor Units, emerged in the PC
space in response to the growing demands placed on ren-
dering capability, driven primarily by the videogames mar-
ket and the breakneck pace in which advances are expected
therein. In recent years there has been a growing interest
in using GPUs for tasks beyond rendering mainly because
of a steady increase in GPU capability and programmabil-
ity. Initially, GPUs were fixed-function pieces of silicon that
simply took input via an API, and produced a picture as out-
put, with little scope for programmer control in the process.

Eight International Workshop on Image Analysis for Multimedia Interactive Services(WIAMIS'07)
0-7695-2818-X/07 $20.00 © 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11308328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2001 saw the introduction of the first programmable GPU
which was quite limited in its capability, and required pro-
grams to be written in an assembly-like language. However,
since then we have the emergence of high level languages,
including nVidia’s Cg (‘C for Graphics’) and Microsoft’s
HLSL (High Level Shading Language). These languages
are quite similar to C in syntax, with support for branching,
loops, and a wide variety of data types.
A modern GPU today boasts a much higher capability

in floating point calculations than commodity CPUs. To
look at an example from a couple of years ago, the nVidia
Geforce FX 5900 Ultra GPU of the time could manage 20
billion floating point multiplies per second compared to a
3Ghz Pentium 4 which peaks at 6 billion floating point
multiples [2]. The GPU also can claim much higher band-
width to its local memory with as much as 512MB of RAM
locally, with up to 50GB/s of bandwidth to that memory.
By comparison, todays high-end CPU has up to 8.5GB/s
of main memory bandwidth. These numbers make a com-
pelling case for using the GPU, however, the GPU is not
suitable for every task and embodies a different program-
ming model than that on the CPU, with the key limitation
being limited output. On the CPU, a programmer can write
to any location in memory at any time, known as a scatter
capability. On the GPU the number of outputs is limited
to at most one RGBA colour value (i.e. a pixel), which is
fixed and pre-determined. Input is read into a GPU from 2D
arrays of data called textures. In graphics rendering applica-
tions, these are used to apply 2D images to 3D surfaces, to
give the appearance of texture, but data can be stored in tex-
tures for the purposes of general computation. The readback
of results from the GPU to the CPU is slow due to the rela-
tively narrow bus between the CPU and GPU, which is one
of the biggest limitations on effective GPU performance.
Similarly, passing input data to the GPU during computa-
tion is slow and ideally only a low amount of traffic on the
bus between the CPU and GPU would be required during
computation.
In the work reported here we used a machine with an

AMD 3800+ CPU, 512 MB RAM, an nVidia 7800 GT
(450Mhz, 24 Pixel Shaders) GPU which had 256MB RAM
and a bandwidth of 32GB/s. The API we used was OpenGL,
and the shader language chosen was nVidias Cg. All other
programming was in C++. For performance tests, timings
were averaged over 10 runs.

4. Shot Boundary Detection: Techniques and
Implementations

In our implementations of shot bound detection we fo-
cussed on a histogram-based approach, popular due to its
performance and accuracy [4]. Our focus was on hard cut
detection rather than gradual shot transitions such as fades

or dissolves. Our technique firstly calculates a colour his-
togram for each decoded frame of video, secondly com-
putes the difference between adjacent frames based on vec-
tor distance and finally identifies candidate shot bounds by
comparing adjacent frame similarities against a threshold.
This straightforward technique has been evaluated by us in
TRECVid in 2001 [1] and performs about average com-
pared to others. Since 2001 there have been many refine-
ments on this technique suggested and evaluated but with
relatively minor improvements in precision and recall.
The implementation of a CPU approach to shot boundary

detection is reasonably straightforward. We use a simple
histogram class with functions for generating a histogram
based on a provided array of frame data, and for calculating
the distance between the frame and a second frame passed
to it. This simplicity of implementation is due to the CPU’s
competencywith both gather and scatter operations. In con-
trast, a GPU shader1 lacks any scatter capability meaning
the location the shader writes to in memory is preset and
cannot be changed within the shader.
After a number of different approaches, we achieved

an efficient GPU implementation using an approach which
leverages the capability to query the GPU based on a shader
that is executing. This querying is exposed by the API, and
can be used in rendering graphics to determine, for exam-
ple, if an object is occluded or not (the application would
execute a shader to draw a proxy object in place of the ac-
tual more complex version, and use a query to determine if
the object was drawn or discarded). This capability can be
applied to histogram computation by addressing each bin of
the histogram in turn. For each bin, the shader takes the
frame as input, and draws it unchanged to another buffer,
but first it checks if the pixel to be drawn is within the
range of the current bin, whose minimum and maximum
values are passed as parameters. If the pixel is within the
given range it is drawn, if not it is discarded. The query
over this shader simply counts the number of pixels drawn,
effectively computing the value for the current bin. Note
that in this approach we are still passing over every frame n
times for n bins. However we can pass the bin’s minimum
and maximum values to the shader directly as parameters
with each pass, obviating the need for computation of the
minimum and maximum values within the shader, without
sacrificing parallel speedups.
We calculate the difference between adjacent frames’

histograms in one shader pass by packing all the histograms
into two textures, one containing all textures from 0 to
m− 1, wherem is the number of histograms, and the other
contains all textures from 1 to m. So in short, the sec-
ond texture is the same as the first, except shifted one his-
togram to the left. This allows the shader to access a frames

1The word shader has a dual meaning here, referring to processors in
the GPU hardware itself, and to software programs that run on them.

Eight International Workshop on Image Analysis for Multimedia Interactive Services(WIAMIS'07)
0-7695-2818-X/07 $20.00 © 2007

histogram and its neighbours. Our process for computing
frame distances on the GPU uses multiple shaders in a se-
quence, namely:

• Shader 1 takes the two input textures and subtracts
them resulting in the vector between each histogram
which we subsequently calculate the length of to get
the distance between the histograms. Since it is easy
to do so at this point, we also square the result, which
takes care of part of the Euclidian norm calculation.

• Shader 2: Takes the output texture from Shader 1 and
uses row reduction to sum the values in each row of
the texture (each histogram) and reduce the texture to
one column.

• Shader 3: Takes the output buffer from Shader 2 and
simply calculates the square root of each element.

After these 3 passes, we are left with a column of values
containing the vector distances between adjacent frames.

Frames 500 1000 2000
(20s) (40s) (1m 20s)

CPU 9.679s 18.743s 35.443s
GPU 2.889s 5.303s 10.283s

Table 1. Histogram-based Shot Boundary De-
tection (32 bins)

The two implementations (CPU and GPU) were tested on
video with runs averaged× 10, to measure not the accuracy
of shot boundary detection but its speed of execution. The
results for shot boundary detection, excluding video decod-
ing, are presented in Table 4 and show a clear performance
advantage for the GPU, roughly 3 times faster than the CPU
in each case. Performance scales roughly linearly on both
the CPU and GPU with increasing numbers of frames.

5. Representative Keyframe Selection: Tech-
niques and Implementations

A process often used subsequent to shot boundary detec-
tion is keyframe selection. With a set of video shots, each
delineated by its opening and closing cuts, it is often desir-
able to select a keyframe to represent each shot. The cheap-
est and most common way to do this is to simply select the
frame in the middle of the shot, however, this frame may
not actually be representative. A more desirable approach
is to select the frame that is most like every other frame
in the shot and one way to implement this is to calculate
the difference between each frame and every other frame in
the shot, using histograms, and to average the difference for
each frame. The frame with the lowest average distance be-
tween itself and every other frame can then be selected as

the keyframe. While this has intuitive appeal, the disadvan-
tage of this approach is that it incurs much greater compu-
tational cost, of the order n × n, where n is the number of
frames in the shot, but it yields a keyframe which is truly
representative of the shot. We implemented this computa-
tion on the CPU and the GPU and refer to it as representa-
tive keyframe selection.
Assuming a prior step of shot boundary detection, his-

tograms for every frame in a given shot should already be
computed and available for use in representative keyframe
selection. The selection process itself is simple and can be
coded in a very straightforward manner on the CPU with a
double nested for loop.
The GPU approach is again significantly different from

that taken on the CPU, using some techniques that are simi-
lar to those used in the shot boundary detection GPU imple-
mentation. Again, how input is passed to the GPU is a key
factor in performance, so we look at this first. As with the
first step of shot boundary detection, we calculate the vec-
tor distances between histograms, but in this case we need
to find the distance between a given histogram and every
other histogram, and repeat this process for every frame. A
logical extension of the technique used in the shot bound-
ary detection approach might see input of the form of two
textures, one containing every frame’s histogram (with each
histogram on one ‘row’ of the texture, as before), and one
containing one frame’s histogram copied across a texture
of the same size as the first. This seems sound initially, as
it requires only one texture to be prepared for each frame
being considered, and the texture containing every frame’s
histogram need only be prepared and transferred to the GPU
once and used repeatedly for subsequent frames. However
the cost of preparing and transferring even one texture for
each frame is extremely high relative to the amount of com-
putation to be performed, and scales linearly with the num-
ber of frames in the scene because of the slow bandwidth
in transferring to the GPU. Having tested this approach, it
is significantly slower than even the CPU implementation,
highlighting the need to pay attention to data transfer to and
from the GPU in order to maximise its performance.
To address the shortcomings of the naive approach we

developed an alternative. The texture we were preparing
and transferring to the GPU for each frame is simply one
histogram repeating n times, where n is the number of
frames in the shot. Intuitively this seems wasteful — do
we really need to transfer all of this data to the GPU when
only 1 row in the texture is actually unique ? The answer,
luckily, is no. Packing the histogram into the texturen times
has the benefit of allowing a 1 : 1mapping between the tex-
ture coordinates accessed in each of the two input textures,
making it easy to access the input data without altering the
interpolated texture coordinates automatically passed into
the shader. With some relatively straightforward manipula-

Eight International Workshop on Image Analysis for Multimedia Interactive Services(WIAMIS'07)
0-7695-2818-X/07 $20.00 © 2007

Table 2. Histogram-based Representative Keyframe Selection (32 bins)
Shot length 500 1000 2000 3000 4000

in frames (& duration) (20s) (40s) (1m 20s) (2min) (2m 40s)
CPU 0.077s 1.089s 4.515s 9.729s 17.472s
GPU 0.648s 0.559s 1.234s 1.584s 1.926s

tion of texture coordinates within the shader, we can access
the same histogram repeatedly as if it were a circular buffer.
This means we only need to transfer the histogram once, in
a 1 × n texture (where n is the number of bins), which is
vastly cheaper than transferring a 1×m texture (wherem is
the number of frames). This has the added bonus of being a
constant cost regardless of the number of frames in the shot.
For the computation itself, as before we split it into a

number of passes with different shaders. A breakdown of
the shaders and what they do follows:

• Shader 1 subtracts each histogram in the first texture
from the single histogram in the second texture, pro-
ducing a buffer of the same size as the first texture. It
also squares the result.

• Shader 2 takes the output of shader 1 and uses row
reduction to sum the values in each row of the texture
i.e. in each histogram, reducing the buffer to a column
vector.

• Shader 3 takes the output of shader 2 and takes the
square root of each element giving the vector distance
between the current histogram and every other one.

• Shader 4 uses column reduction to sum every distance,
reducing our column vector to simply one value.

The single output value of the final pass is then read back
to the CPU, and subsequent processing is performed there.
The value is divided by the number of frames to get the av-
erage vector distance between the current frame and every
other frame. The average difference is stored in an array,
and once every frame has been processed, we find the min-
imum of these values exactly as on the CPU, and mark its
associated frame as the representative keyframe for the shot.
The results for keyframe selection on a variety of dif-

ferent shot lengths are presented in Table 2 showing per-
formance for increasing numbers of frames in the shot be-
ing analysed (results averaged over 10 runs). As we can
see, the results bear some interesting characteristics. For
shorter shots, like 500 frames, the GPU is significantly out-
performedby the CPU because there is a constant amount of
once-off setup work that needs to be performed before any
computation can take place on the GPU, including loading
shader programs, and any initial texture input, etc.

However, as the shot length increases we see some dra-
matic improvements for the GPU. With 1000 frames and
beyond, the GPU is easily faster, with a speedup of ×9
for shots of 2 min 40 sec. This is because the keyframe
selection algorithm is O(n × n) where n is the number
of frames and the amount of computation required scales
quadratically with more frames. This means that a GPU
implementation of true representative keyframe selection is
well-suited to rushes or raw video content, characterised by
long shots with not much happening.

6. Conclusions

In this paper we have presented execution time perfor-
mance figures for two video analysis and video structur-
ing applications, shot boundary detection and representative
keyframe selection, implemented on a conventional CPU
and on a Graphics Processing Unit. Our findings show that
for shot bound detection the GPU offers clear performance
advantages while for keyframe selection the technique we
use is well-suited for log shots such as found in rushes
or stock footage. Indeed our GPU implementation yields
keyframe selection in 1/80 of real time for shots just under
3 minutes in length.
Our future work will involve testing the GPU implemen-

tation of these operations using even more recent GPUs
compared against faster CPUs.

Acknowledgement: Part of this work was supported by
Science Foundation Ireland under grant 03/IN.3/I361.

References

[1] P. Browne, C. Gurrin, H. Lee, K. M. Donald, S. Sav, A. F.
Smeaton, and J. Ye. Dublin City University Video Track Ex-
periments for TREC 2001. In TREC 2001 - Text REtrieval
Conference, MD, USA, 2001. National Institute of Standards
and Technology.

[2] I. Buck. A Toolkit for Computation on GPUs. Addison-
Wesley, 2004.

[3] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation Campaigns
and TRECVid. InMIR 2006 - 8th ACM SIGMM International
Workshop on Multimedia Information Retrieval, 2006.

[4] H. Zhang, A. Kankanhalli, and S. Smoliar. Automatic parti-
tioning of full-motion video. Multimedia Systems, 1(1):10–
28, 1993.

Eight International Workshop on Image Analysis for Multimedia Interactive Services(WIAMIS'07)
0-7695-2818-X/07 $20.00 © 2007

