2,450 research outputs found

    Event detection in field sports video using audio-visual features and a support vector machine

    Get PDF
    In this paper, we propose a novel audio-visual feature-based framework for event detection in broadcast video of multiple different field sports. Features indicating significant events are selected and robust detectors built. These features are rooted in characteristics common to all genres of field sports. The evidence gathered by the feature detectors is combined by means of a support vector machine, which infers the occurrence of an event based on a model generated during a training phase. The system is tested generically across multiple genres of field sports including soccer, rugby, hockey, and Gaelic football and the results suggest that high event retrieval and content rejection statistics are achievable

    A framework for event detection in field-sports video broadcasts based on SVM generated audio-visual feature model. Case-study: soccer video

    Get PDF
    In this paper we propose a novel audio-visual feature-based framework, for event detection in field sports broadcast video. The system is evaluated via a case-study involving MPEG encoded soccer video. Specifically, the evidence gathered by various feature detectors is combined by means of a learning algorithm (a support vector machine), which infers the occurrence of an event, based on a model generated during a training phase, utilizing a corpus of 25 hours of content. The system is evaluated using 25 hours of separate test content. Following an evaluation of results obtained, it is shown for this case, that both high precision and recall statistics are achievable

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    An audio-visual approach to web video categorization

    Get PDF
    International audienceIn this paper we address the issue of automatic video genre categorization of web media using an audio-visual approach. To this end, we propose content descriptors which exploit audio, temporal structure and color information. The potential of our descriptors is experimentally validated both from the perspective of a classification system and as an information retrieval approach. Validation is carried out on a real scenario, namely on more than 288 hours of video footage and 26 video genres specific to blip.tv media platform. Additionally, to reduce semantic gap, we propose a new relevance feedback technique which is based on hierarchical clustering. Experimental tests prove that retrieval performance can be significantly increased in this case, becoming comparable to the one obtained with high level semantic textual descriptors

    Video Categorization Using Semantics and Semiotics

    Get PDF
    There is a great need to automatically segment, categorize, and annotate video data, and to develop efficient tools for browsing and searching. We believe that the categorization of videos can be achieved by exploring the concepts and meanings of the videos. This task requires bridging the gap between low-level content and high-level concepts (or semantics). Once a relationship is established between the low-level computable features of the video and its semantics, the user would be able to navigate through videos through the use of concepts and ideas (for example, a user could extract only those scenes in an action film that actually contain fights) rat her than sequentially browsing the whole video. However, this relationship must follow the norms of human perception and abide by the rules that are most often followed by the creators (directors) of these videos. These rules are called film grammar in video production literature. Like any natural language, this grammar has several dialects, but it has been acknowledged to be universal. Therefore, the knowledge of film grammar can be exploited effectively for the understanding of films. To interpret an idea using the grammar, we need to first understand the symbols, as in natural languages, and second, understand the rules of combination of these symbols to represent concepts. In order to develop algorithms that exploit this film grammar, it is necessary to relate the symbols of the grammar to computable video features. In this dissertation, we have identified a set of computable features of videos and have developed methods to estimate them. A computable feature of audio-visual data is defined as any statistic of available data that can be automatically extracted using image/signal processing and computer vision techniques. These features are global in nature and are extracted using whole images, therefore, they do not require any object detection, tracking and classification. These features include video shots, shot length, shot motion content, color distribution, key-lighting, and audio energy. We use these features and exploit the knowledge of ubiquitous film grammar to solve three related problems: segmentation and categorization of talk and game shows; classification of movie genres based on the previews; and segmentation and representation of full-length Hollywood movies and sitcoms. We have developed a method for organizing videos of talk and game shows by automatically separating the program segments from the commercials and then classifying each shot as the host\u27s or guest\u27s shot. In our approach, we rely primarily on information contained in shot transitions and utilize the inherent difference in the scene structure (grammar) of commercials and talk shows. A data structure called a shot connectivity graph is constructed, which links shots over time using temporal proximity and color similarity constraints. Analysis of the shot connectivity graph helps us to separate commercials from program segments. This is done by first detecting stories, and then assigning a weight to each story based on its likelihood of being a commercial or a program segment. We further analyze stories to distinguish shots of the hosts from those of the guests. We have performed extensive experiments on eight full-length talk shows (e.g. Larry King Live, Meet the Press, News Night) and game shows (Who Wants To Be A Millionaire), and have obtained excellent classification with 96% recall and 99% precision. http://www.cs.ucf.edu/~vision/projects/LarryKing/LarryKing.html Secondly, we have developed a novel method for genre classification of films using film previews. In our approach, we classify previews into four broad categories: comedies, action, dramas or horror films. Computable video features are combined in a framework with cinematic principles to provide a mapping to these four high-level semantic classes. We have developed two methods for genre classification; (a) a hierarchical method and (b) an unsupervised classification met hod. In the hierarchical method, we first classify movies into action and non-action categories based on the average shot length and motion content in the previews. Next, non-action movies are sub-classified into comedy, horror or drama categories by examining their lighting key. Finally, action movies are ranked on the basis of number of explosions/gunfire events. In the unsupervised method for classifying movies, a mean shift classifier is used to discover the structure of the mapping between the computable features and each film genre. We have conducted extensive experiments on over a hundred film previews and demonstrated that low-level features can be efficiently utilized for movie classification. We achieved about 87% successful classification. http://www.cs.ucf.edu/-vision/projects/movieClassification/movieClmsification.html Finally, we have addressed the problem of detecting scene boundaries in full-length feature movies. We have developed two novel approaches to automatically find scenes in the videos. Our first approach is a two-pass algorithm. In the first pass, shots are clustered by computing backward shot coherence; a shot color similarity measure that detects potential scene boundaries (PSBs) in the videos. In the second pass we compute scene dynamics for each scene as a function of shot length and the motion content in the potential scenes. In this pass, a scene-merging criterion is used to remove weak PSBs in order to reduce over-segmentation. In our second approach, we cluster shots into scenes by transforming this task into a graph-partitioning problem. This is achieved by constructing a weighted undirected graph called a shot similarity graph (SSG), where each node represents a shot and the edges between the shots are weighted by their similarities (color and motion). The SSG is then split into sub-graphs by applying the normalized cut technique for graph partitioning. The partitions obtained represent individual scenes in the video. We further extend the framework to automatically detect the best representative key frames of identified scenes. With this approach, we are able to obtain a compact representation of huge videos in a small number of key frames. We have performed experiments on five Hollywood films (Terminator II, Top Gun, Gone In 60 Seconds, Golden Eye, and A Beautiful Mind) and one TV sitcom (Seinfeld) that demonstrate the effectiveness of our approach. We achieved about 80% recall and 63% precision in our experiments. http://www.cs.ucf.edu/~vision/projects/sceneSeg/sceneSeg.htm

    Audiovisual processing for sports-video summarisation technology

    Get PDF
    In this thesis a novel audiovisual feature-based scheme is proposed for the automatic summarization of sports-video content The scope of operability of the scheme is designed to encompass the wide variety o f sports genres that come under the description ‘field-sports’. Given the assumption that, in terms of conveying the narrative of a field-sports-video, score-update events constitute the most significant moments, it is proposed that their detection should thus yield a favourable summarisation solution. To this end, a generic methodology is proposed for the automatic identification of score-update events in field-sports-video content. The scheme is based on the development of robust extractors for a set of critical features, which are shown to reliably indicate their locations. The evidence gathered by the feature extractors is combined and analysed using a Support Vector Machine (SVM), which performs the event detection process. An SVM is chosen on the basis that its underlying technology represents an implementation of the latest generation of machine learning algorithms, based on the recent advances in statistical learning. Effectively, an SVM offers a solution to optimising the classification performance of a decision hypothesis, inferred from a given set of training data. Via a learning phase that utilizes a 90-hour field-sports-video trainmg-corpus, the SVM infers a score-update event model by observing patterns in the extracted feature evidence. Using a similar but distinct 90-hour evaluation corpus, the effectiveness of this model is then tested genencally across multiple genres of fieldsports- video including soccer, rugby, field hockey, hurling, and Gaelic football. The results suggest that in terms o f the summarization task, both high event retrieval and content rejection statistics are achievable

    Towards automatic extraction of expressive elements from motion pictures : tempo

    Full text link
    This paper proposes a unique computational approach to extraction of expressive elements of motion pictures for deriving high level semantics of stories portrayed, thus enabling better video annotation and interpretation systems. This approach, motivated and directed by the existing cinematic conventions known as film grammar, as a first step towards demonstrating its effectiveness, uses the attributes of motion and shot length to define and compute a novel measure of tempo of a movie. Tempo flow plots are defined and derived for four full-length movies and edge analysis is performed leading to the extraction of dramatic story sections and events signaled by their unique tempo. The results confirm tempo as a useful attribute in its own right and a promising component of semantic constructs such as tone or mood of a film

    Extensible Detection and Indexing of Highlight Events in Broadcasted Sports Video

    Get PDF
    Content-based indexing is fundamental to support and sustain the ongoing growth of broadcasted sports video. The main challenge is to design extensible frameworks to detect and index highlight events. This paper presents: 1) A statistical-driven event detection approach that utilizes a minimum amount of manual knowledge and is based on a universal scope-of-detection and audio-visual features; 2) A semi-schema-based indexing that combines the benefits of schema-based modeling to ensure that the video indexes are valid at all time without manual checking, and schema-less modeling to allow several passes of instantiation in which additional elements can be declared. To demonstrate the performance of the events detection, a large dataset of sport videos with a total of around 15 hours including soccer, basketball and Australian football is used

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework
    corecore