7 research outputs found

    Reliable low latency I/O in torus-based interconnection networks

    Get PDF
    In today's high performance computing environment I/O remains the main bottleneck in achieving the optimal performance expected of the ever improving processor and memory technologies. Interconnection networks therefore combines processing units, system I/O and high speed switch network fabric into a new paradigm of I/O based network. It decouples the system into computational and I/O interconnections each allowing "any-to-any" communications among processors and I/O devices unlike the shared model in bus architecture. The computational interconnection, a network of processing units (compute-nodes), is used for inter-processor communication in carrying out computation tasks, while the I/O interconnection manages the transfer of I/O requests between the compute-nodes and the I/O or storage media through some dedicated I/O processing units (I /O-nodes). Considering the special functions performed by the I/O nodes, their placement and reliability become important issues in improving the overall performance of the interconnection system. This thesis focuses on design and topological placement of I/O-nodes in torus based interconnection networks, with the aim of reducing I/O communication latency between compute-nodes and I/O-nodes even in the presence of faulty I/O-nodes. We propose an efficient and scalable relaxed quasi-perfect placement scheme using Lee distance error correction code such that compute-nodes are at distance-t or at most distance-t+1 from an I/O-node for a given t. This scheme provides a better and optimal alternative placement than quasi perfect placement when perfect placement cannot be found for a particular torus. Furthermore, in the occurrence of faulty I/O-nodes, the placement scheme is also used in determining other alternative I/O-nodes for rerouting I/O traffic from affected compute-nodes with minimal slowdown. In order to guarantee the quality of service required of inter-processor communication, a scheduling algorithm was developed at the router level to prioritize message forwarding according to inter-process and I/O messages with the former given higher priority. Our simulation results show that relaxed quasi-perfect outperforms quasi-perfect and the conventional I/O placement (where I/O nodes are concentrated at the base of the torus interconnection) with little degradation in inter-process communication performance. Also the fault tolerant redirection scheme provides a minimal slowdown, especially when the number of faulty I/O nodes is less than half of the initial available I/O nodes

    The structure and dynamics of multilayer networks

    Get PDF
    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.Comment: In Press, Accepted Manuscript, Physics Reports 201

    Shortest-path routing algorithm and topological properties for two-level hypernet networks

    No full text
    corecore