6 research outputs found

    Random Information Spread in Networks

    Full text link
    Let G=(V,E) be an undirected loopless graph with possible parallel edges and s and t be two vertices of G. Assume that vertex s is labelled at the initial time step and that every labelled vertex copies its labelling to neighbouring vertices along edges with one labelled endpoint independently with probability p in one time step. In this paper, we establish the equivalence between the expected s-t first arrival time of the above spread process and the notion of the stochastic shortest s-t path. Moreover, we give a short discussion of analytical results on special graphs including the complete graph and s-t series-parallel graphs. Finally, we propose some lower bounds for the expected s-t first arrival time.Comment: 17 pages, 1 figur

    Hazardous Materials Transportation: a Literature Review and an Annotated Bibliography

    Get PDF
    The hazardous materials transportation poses risks to life, health, property, and the environment due to the possibility of an unintentional release. We present a bibliographic survey on this argument paying particular attention to the road transportation. We attempt to encompass both theoretical and application oriented works. Research on this topic is spread over the broad spectrum of computer science and the literature has an operations research and quantitative risk assessment focus. The models present in the literature vary from simple risk equations to set of differential equations. In discussing the literature, we present and compare the underlying assumptions, the model specifications and the derived results. We use the previous perspectives to critically cluster the papers in the literature into a classification scheme

    Algebraic Approaches to Stochastic Optimization

    Get PDF
    The dissertation presents algebraic approaches to the shortest path and maximum flow problems in stochastic networks. The goal of the stochastic shortest path problem is to find the distribution of the shortest path length, while the goal of the stochastic maximum flow problem is to find the distribution of the maximum flow value. In stochastic networks it is common to model arc values (lengths, capacities) as random variables. In this dissertation, we model arc values with discrete non-negative random variables and shows how each arc value can be represented as a polynomial. We then define two algebraic operations and use these operations to develop both exact and approximating algorithms for each problem in acyclic networks. Using majorization concepts, we show that the approximating algorithms produce bounds on the distribution of interest; we obtain both lower and upper bounding distributions. We also obtain bounds on the expected shortest path length and expected maximum flow value. In addition, we used fixed-point iteration techniques to extend these approaches to general networks. Finally, we present a modified version of the Quine-McCluskey method for simplification of Boolean expressions in order to simplify polynomials used in our work

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Algorithms for routing problems in stochastic time-dependent networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and, (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center , 2002.Includes bibliographical references (p. 185-187).by Seong-Cheol Kang.S.M
    corecore