64 research outputs found

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop

    A study of mobile robot motion planning

    Get PDF
    This thesis studies motion planning for mobile robots in various environments. The basic tools for the research are the configuration space and the visibility graph. A new approach is developed which generates a smoothed minimum time path. The difference between this and the Minimum Time Path at Visibility Node (MTPVN) is that there is more clearance between the robot and the obstacles, and so it is safer. The accessibility graph plays an important role in motion planning for a massless mobile robot in dynamic environments. It can generate a minimum time motion in 0(n2»log(n)) computation time, where n is the number of vertices of all the polygonal obstacles. If the robot is not considered to be massless (that is, it requires time to accelerate), the space time approach becomes a 3D problem which requires exponential time and memory. A new approach is presented here based on the improved accessibility polygon and improved accessibility graph, which generates a minimum time motion for a mobile robot with mass in O((n+k)2»log(n+k)) time, where n is the number of vertices of the obstacles and k is the number of obstacles. Since k is much less than n, so the computation time for this approach is almost the same as the accessibility graph approach. The accessibility graph approach is extended to solve motion planning for robots in three dimensional environments. The three dimensional accessibility graph is constructed based on the concept of the accessibility polyhedron. Based on the properties of minimum time motion, an approach is proposed to search the three dimensional accessibility graph to generate the minimum time motion. Motion planning in binary image representation environment is also studied. Fuzzy logic based digital image processing has been studied. The concept of Fuzzy Principal Index Of Area Coverage (PIOAC) is proposed to recognise and match objects in consecutive images. Experiments show that PIOAC is useful in recognising objects. The visibility graph of a binary image representation environment is very inefficient, so the approach usually used to plan the motion for such an environment is the quadtree approach. In this research, polygonizing an obstacle is proposed. The approaches developed for various environments can be used to solve the motion planning problem without any modification. A simulation system is designed to simulate the approaches

    Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron

    Get PDF
    The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the Blum medial axis, a well known skeletal representation. Voronoi diagrams and medial axes have been shown useful for many 3D computations and operations, including proximity queries, motion planning, mesh generation, finite element analysis, and shape analysis. However, their application to complex 3D polyhedral and deformable models has been limited. This is due to the difficulty of computing exact Voronoi diagrams in an efficient and reliable manner. In this dissertation, we bridge this gap by presenting efficient algorithms to compute discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geometric and topological guarantees. We apply these algorithms to complex 3D models and use them to perform interactive proximity queries, motion planning and skeletal computations. We present three new results. First, we describe an algorithm to compute 3D distance fields of geometric models by using a linear factorization of Euclidean distance vectors. This formulation maps directly to the linearly interpolating graphics rasterization hardware and enables us to compute distance fields of complex 3D models at interactive rates. We also use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate this computation. We introduce surface distance maps, which are a compact distance vector field representation based on a mesh parameterization of triangulated two-manifolds, and use them to perform proximity computations. Our second main result is an adaptive sampling algorithm to compute an approximate Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves topological features. We use this algorithm to compute a homotopy-preserving simplified medial axis of complex 3D models. Our third result is a unified approach to perform different proximity queries among multiple deformable models using second order discrete Voronoi diagrams. We introduce a new query called N-body distance query and show that different proximity queries, including collision detection, separation distance and penetration depth can be performed based on Nbody distance query. We compute the second order discrete Voronoi diagram using graphics hardware and use distance bounds to overcome the sampling errors and perform conservative computations. We have applied these queries to various deformable simulations and observed up to an order of magnitude improvement over prior algorithms

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Point based graphics rendering with unified scalability solutions.

    Get PDF
    Standard real-time 3D graphics rendering algorithms use brute force polygon rendering, with complexity linear in the number of polygons and little regard for limiting processing to data that contributes to the image. Modern hardware can now render smaller scenes to pixel levels of detail, relaxing surface connectivity requirements. Sub-linear scalability optimizations are typically self-contained, requiring specific data structures, without shared functions and data. A new point based rendering algorithm 'Canopy' is investigated that combines multiple typically sub-linear scalability solutions, using a small core of data structures. Specifically, locale management, hierarchical view volume culling, backface culling, occlusion culling, level of detail and depth ordering are addressed. To demonstrate versatility further, shadows and collision detection are examined. Polygon models are voxelized with interpolated attributes to provide points. A scene tree is constructed, based on a BSP tree of points, with compressed attributes. The scene tree is embedded in a compressed, partitioned, procedurally based scene graph architecture that mimics conventional systems with groups, instancing, inlines and basic read on demand rendering from backing store. Hierarchical scene tree refinement constructs an image tree image space equivalent, with object space scene node points projected, forming image node equivalents. An image graph of image nodes is maintained, describing image and object space occlusion relationships, hierarchically refined with front to back ordering to a specified threshold whilst occlusion culling with occluder fusion. Visible nodes at medium levels of detail are refined further to rasterization scales. Occlusion culling defines a set of visible nodes that can support caching for temporal coherence. Occlusion culling is approximate, possibly not suiting critical applications. Qualities and performance are tested against standard rendering. Although the algorithm has a 0(f) upper bound in the scene sizef, it is shown to practically scale sub-linearly. Scenes with several hundred billion polygons conventionally, are rendered at interactive frame rates with minimal graphics hardware support

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore