70,815 research outputs found

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source sVs\in V to a destination tVt\in V that includes all vertices specified by a set WV\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    An Algebra of Synchronous Scheduling Interfaces

    Full text link
    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    Get PDF
    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.Comment: submitted to IEEE Trans. on Circuits and Systems I (submission date 27 may 2009
    corecore