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Abstract 
 
 

     Special structure linear programming problems have received considerable                      

attention during the last two decades and among them network problems are                      

of particular importance and have found numerous applications in manage-                      

ment science and technology. 

 
       The mathematical models of the shortest route, maximal flow, and pure                 

minimum cost flow problems are presented and various interrelationships                      

among them are investigated. Finally three algorithms due to Dijkstra and                      

Ford and Fulkerson which deal with the solution of the above three network                      

problems are discussed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 
 
 
 

1     Introduction 
 

One of the important techniques of mathematical programming which has                      

been developed and extended during recent years is network optimization. This                     

powerful method of optimization can be applied to numerous real life prob-                      

lems in many areas such as production, distribution, project planning, facility                      

location, resource management, and financial planning. Many classes of net-                      

work problems can be modeled as linear programming problems with a spe-                      

cial structure. By exploiting this structure, a number of special purpose algo-                     

rithms have been proposed which can solve large problems more efficiently                      

than would be the case if the general purpose simplex method is used. In                      

addition a general algorithm is available which deals with the minimum cost                      

flow problem and it provides a framework within which a number of special                      

types of the network problems can be solved. Reseaech into developing effi-                      

algorithms to solve network problems of greater complexity is ongoing.                      

Such problems although they may not be pure network problems either con-                      

tain network sub-structures or are such that a network representation is a                      

potentially useful relaxation. 

 

 
1.1    Definition of a network 
 
A network G = (N,A) comprises two sets N = {1,2,...n} and A = {(i,j);i,j                      

 N}. where N is called the set of nodes, vertices, or points and A is called                      

the set of arcs, edges, or links. In addition if an orientation is specified on each                      

arc of a network then it is called a directed network otherwise it is termed                      

an undirected network. 

∈

 

      A pictorial representation is often used to represent a network in which a                      

circle denotes a node and a line indicates an arc and if the network is directed                      

the orientation is shown by an arrowhead on each arc. An ordered pair 

(i,j) is                        

1 
       



 
used to define the arc emanating at node i and terminating at node j. Figure                                 

11.is a small directed network which consists of 6 nodes and 9 arcs. In this ex- 

ample N = {1,2,3,4,5,6} and A = {(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)}. 

 

 
 
Figure 1.1 
 
1.2   Outline of the structure of the report 
 
In section 2 a number of special cases of network problems are discussed. These                      

cases are known as Transportation problem, Transshipment  problem,  Assignment                         

problem, Shortest route problem, Maximal flow problem, Minimal spanning                      

tree problem, and the General pure minimum cost flow problem . The inter-                     

relationship between these well known standard problems, and the property                     

of unimodularity are presented in section 3. Two special purpose algorithms                      

for the shortest route and maximal flow are presented in section 4.A general                      

algorithm called the Out of Kilter algorithm which deals with the general                      

pure minimum cost flow problem is presented in section 5. 

 
2    Network problems 
 
2.1    Transportation problem 
 

Transportation is an important part of each society in which many decisions                      

must be made. In the search for optimal decisions, mathematical modeling for                    

transport network optimization can be of great help. 
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A common problem within the application area is to find a transportation                      

plan which minimizes the total cost of shipping goods from a specified set of                      

source points(such as plants, warehouses, cities) to a predetermined number of                 

destination points(such as customers, warehouses, cities),subject to the supply                

availabilies and demand requirements. In this special kind of network problem                      

it is assumed that all flows are sent directly from sources to destinations. 

 To formulate the mathematical model of the transportation problem as-                      

sume there are m sources and n destination points. Let si be the amount                      

of commodity supplied at source i (i=l,2,...,m) ,and dj is the amount de-                      

manded at destination j (j=l,2,...n).The per unit cost of transporting the                      

commodity from source i to the destination j is assumed to be cij Let xij be                     

the decision variable indicating the number of units to be supplied from the                      

source i to destination j. It is further assumed that the total amount of com-                      

modity supplied at all source points is equal to the total amount demanded                      

at all destination points, that is ∑∑ ==
=

n

j j
m

i i ds
11

.This condition is known                      

as the balance condition for the transportation problem.If this condition is                      

not satisfied by the problem the mathematical model of the problem must                      

be modified, by introducing a dummy source or a dummy destination. 

 
The mathematical model of the transportation problem can be stated as                      

below: 
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2.2    Transshipment problem 
 
One of the assumptions of the transportation problem is that there are no                  

intermediate points between the set of sources and the set of destination                      

points and that the supply and demand points can not act like intermedi-                      

ate warehouses. If the indirect transportation of goods through intermediate                      

points such as warehouses is permitted, it may be cheaper, rather than di-                      

rectly going from point i to point j to go from i to j via an intermediate point                     

k. This extension of the transportation problem is called the transshipment                      

problem. 

 

        Consider a given network with n nodes with at least one source and at                      

least one demand node. Let fij be the flow or goods sent along arc (i,j) and                      

Cij be the per unit cost of this flow. Let si the amount of flow or commodity                      

supplied at the souce node i and di be the amount of flow demanded at the                      

destination i. Provided that the summations are taken only over the existing                      

arcs, the mathematical model of the problem can be stated as follows: 

 

     ∑∑
= =

n

i

n

j
ijij fcMinimize

1 1

  s.t.                (model 2.2) 
 
   si  if i is a source node 

  -d=−∑∑
==

n

k
ki

n

j
ij ff

11
i  if i is a destination node         i=1,2…n. 

   0 otherwise 
    fij  ≥∀ i,j 
 
2.3    The assignment problem 
 
The assignment problem deals with the allocation of resources(e.g. employ-                      

ees, machines) to activities (e.g. jobs, locations)on the basis of a one to one 
cor-                                            
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respondence between resources and activities. The number of resources (assignees)                     

and activities (assignments) are assumed to be equal. If this balance equation                      

does not hold for the assignment problem it can be restored by adding suit-                      

able dummy assignees or assignments. Let xij (i=l,2,...,n),(j=l,2,...,n) be                      

a decision variable such that if xij =1 resource i is assigned to activity j                      

and xij=0 otherwise. Let cij denote the cost of this assignment. Then the                      

mathematical model stated as follows: 
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                xij ≥ 0 for all i and j 
      
     xij is binary for all i and j    
 
It can be seen that this model is a special case of the transportation problem                      

in which the number of sources equals the number of destinations and with                     

unit supplies and demands. Although the problem can be solved as in trans-                      

portation problem, more specialized algorithms which take advantage of the                      

special structure of the assignment problem have been developed. 

 

2.4    Minimal spanning tree problem 
To provide for stating the definition of the spanning tree some network ter-                      

minology is necessary. 

A Path between two nodes is a sequence of arcs which connects these two                      

nodes. A path can be directed or undirected. 
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A cycle  is a path which emanates from a node and ends at the same node.                      

Two nodes are said to be connected if the network contains at least one                      

undirected path which joins them. A network is called a connected network                      

if each pair of nodes is connected.  

A Tree is a network which contains no cycle. 
 
       A spanning tree is a tree which includes all nodes of the network. In a                      

network with n nodes a spanning tree must contain exactly n-1 arcs. 

 
       Let each arc of a network have a parameter such as time, cost, or length                      

associated with it. The weight of a tree is defined to be the sum of the                      

parameters associated with all arcs in the tree. Therefore a minimal spanning                      

tree is one which has the minimum weight. 

         The concept of minimal spanning tree is very useful and has numerous                 

applications in transportation, electrical engineering, communication systems                      

and as a subproblem within more complex problems. This problem can be                      

solved efficiently by a special purpose algorithm of low complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

6 



 

2.5     The shortest route problem 
This problem deals with finding the shortest path from a source node to                      

any other node including the sink of a network. Many important Indus-                      

trial problems can be formulated as the shortest route problem including                      

equipment replacement, capital investment, project scheduling, inventory and             

planning. The shortest route problem often occurs as a subproblem in more                      

complex problems. Let cij be the distance, time, or cost between nodes i and                      

j and let xij, be a binary decision variable indicating the selection of the arc                      

i-j in the shortest route then the mathematical model of the problem is as                      

follow: 

 
∑∑=

i j
ijij xczMinimize  

s.t                          (model 2.4) 
 
               1  if node i is the source node 
∑ ∑ =−

j k
kiij xx       -1 if node i is the sink node     (i=1,2,...n) 

                                 0  for all nodes other than source and sink 
     
    xij≥0∀ i,j      
   
Note that the above summations are over the arcs such that (i,j) is an                      

arc in the network. Although the problem is one of finding a path it can be                 

interpreted as of finding a flow of one unit from source to sink. The first                      

constraint guarrantees that one unit of flow is sent from the origin and the                      

second constraint makes sure that this unit of flow is received at the sink. 

 

2.6     The maximal flow problem 
 

Assume that there is a positive number attached with each arc of a given                      

network to indicate the maximum amount of flow which is allowed to 

be     
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passed through it. It is further assumed that the network is oriented from a                      

single source toward a single sink. This problem is subject to the conservation                      

of flow property. This property requires all nodes other than source or sink                      

to pass all the flow leading into that node to be equal to the amount of                      

flow leaving from it. The objective of the maximal flow problem is to find a                     

schedule which sends the maximum possible amount of flow from source to                      

the sink of a network and not to violate the upper bounds on the capacity                      

of all arcs. 

     A useful concept which could help to find out when optimality is achieved                      

is the definition of a cut. A cut is a set of arcs whose removal from a network                      

will disconnect flow from source to the sink. 

 
     In order to describe the mathematical model of the maximal flow prob-                      

lem assume that there is no limit on the amount of flow supplied at the                      

source. Let i=l, and i=n denote the corresponding indices of the source and                      

sink, fij represents the amount of flow sent along the arc (i,j).The maximal                      

flow problem formulation is as below: 

 
             ∑

=ni
infMaximize  

     st      (model 2.5) 
    
     niandiff

j j
jiij ≠≠=−∑ ∑ ,1,0

            0≤  fij ≤ uij    if (i,j) is an arc in the network    

The above summations are taken only over those arcs which exist in the                      

network. 

 
2.7    General pure minimum cost flow problem 
 
 
The minimum cost flow problem plays a central role among all network prob-                      

lems ranging from the special cases like the assignment problem to the 

general           
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one such as the pure minimum cost flow problem with gains and losses. 

      To define the mathematical model of the problem, let the following pa-                      

rameters be associated with each arc (i,j): 

1.  A linear cost coefficient  cij. 

 
2. A real valued function fij which represents the amount of flow sent along                      
  
the arc (i,j) 
 
3.  A lower bound  lij on  fij. 
 
4.  An upper bound  uij  on  fij  
 
    

Let a known flow si- be sent from each source node i and a known flow

dj be received by each sink node j. Besides the conservation of flow at each                

intermediary node it is assumed that ∑ ∑=i j ji ds .  

Minimize     ∑∑
=

=

=

=

nj

j
ijij

mi

i
fc

11

                                   st                         (model 2.6)  
 
                             si    if i is a source 
                ∑ ∑ =−

j k
kiij ff   -di   if i is a sink  (i= 1,2,…n)   

                           0   otherwise 
 
    jiufl ijijij ,∀≤≤

2.8 Generalized network problem (Network with gains 
       and losses) 
 
In all the previously described network problems conservation of flow is                      

assumed, i. e. the amount of flow entering an arc is equal to the amount                      

leaving it. In a number of applications it is required to modify the flow val-                      

ues during its passage along an arc. These applications include water 
reser-           
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voir models (evaporation,rainfall),investment models(gains and losses of cap-                       

ital),production and distribution models(quality control rejects, order cancel-                        

lation) crew scheduling problems(absenteeism) and many more. A network                        

that provides for gains and losses of flow across its arcs is called a general-                        

ized network. The flow modification is made by gain/loss factors. Note that                        

the conservation of flow in intermediate nodes are still maintained. 

      The generalized network problem can be viewed as a minimum cost flow problem with 

gains and losses. The objective is 

(1)  to supply F units of flow to the sink ,t, at a minimum cost or 

(2) to dispatch a flow of F  units from the source,s,to the sink,t,at a minimum 
 cost. 
 

      In order to formulate the mathematical model of the problem as a linear                  

programming problem the following conventions are necessary:                                   

Let uij, lij, and  have the same definitions as in the minimum cost flow                      

problem. Let ijα , be the arc multiplier or gain/loss factor for arc (i,j). Note                      

that if ijα > 1, the flow is increased (gains),if ijα < 1 the flow is                      

reduced(losses),and if ijα = 1 ,a pure minimum cost flow problem is ob-                      

tained. It is apparent that the flow values for this problem are not necessarily                      

integer and can be any positive real number. The mathematical model of the                      

network problem with gains and losses using the first objective function                      

is summarized as below: 

Minimize ∑∑
j

ijij
i

fc  

        st      (model 2.7) 
     
    ∑ ∑ ≤−

j
js

j
ijsj Fff α  

 
    ∑ ∑ ≠=−

j j
jiijij tsiff ,0α   
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Fff
j

jtjt
j

tj −=−∑∑ α  

 
   for all (i,j) ijijij ufl ≤≤

 
      The above formulation assumes that jiij ,0∀≥α and that all sources                      

are combined into one source s and all sinks are combined into one sink t. It                      

is also evident that FF = may not be true as in pure minimum cost flow                      

problem. The input flows are not known until the final solution is found but                      

it can be assumed to be less than or equal to F in which case it is possible                      

that no feasible solution to the problem exist. However if F  is sufficiently

large, no feasible solution will erase. 

 

3 Interrelationship among network problems 

 
The pure minimum cost flow problem ,although not the most general prob-                      

lem, can be interpreted as a general meeting point for a number of network                     

problems. By suitable modifications in the minimum cost flow problem it can                      

be converted into other network problems. For example if the flow capac-                      

ity restrictions of model 2.6 are removed, the transshipment model (2.2) is                      

obtained. The transportation model 2.1 can be obtained by restricting all                      

nodes in the transshipment model 2.3 to be either source or destination. The                  

assignment model 2.3 is obviously a special case of the model 2.1 in which                      

all supplies and demands are equal to one. 

      Let the number of sources and destinations in model 2.6 be equal to 1                      

and  and excluding the source and sink the conservation of                      

flow holds at intermediary points. Let the capacity restrictions of the arcs be                    

maintained, then the modified model is a maximal flow problem. Now let the                     

number of sources and sinks in model 2.6 be 1 and then the                      

shortest route model 2.4 is obtained. 

jicij ,1∀−=

111 ==ds
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   We can find some more interrelationships among models other than the                     

pure minimum cost model 2.6.By letting the number of sources and sinks                      

and the total flow equal to one in the transshipment model 2.2 the shortest                      

route model 2.4 will be obtained. The maximal flow model 2.5 is proved                      

to be a special case of the transshipment problem. By incorporating the                      

gain/loss factor in model 2.6 and relaxing the condition that the amount of                      

flow supplied at all sources should be equal to the total flow demanded by                      

all sinks, the generalized network problem model 2.7 is obtained. 

        Figure 3.1 might be helpful to understand the above mentioned interre-                  

lationships among network problems. 

 
Pure Minimum Cost Flow problem 

 
                Transshipment problem 

Transportation problem Maximal Flow problem 

Shortest Roote problem 
Assignment problem 

 
 
 
 
 
 
 
 
 

 
Fiqure 3.1 
 
 
      In the previous section a linear programming model was stated for each                      

network problem. These LP models have special structure that can be ex-                      

ploited in developing highly efficient algorithms which deal with these mod-                      

els. 

 
         When formulating a network problem as a linear programming model the                

following correspondence holds between the elements of the network and it’s                      

linear programming formulation. 

l. Each variable corresponds to an arc. 
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2. Each constraint corresponds to a node. 
Figure 3.2 shows an example of a minimum cost flow problem with five nodes                      

and seven arcs (for simplicity the arc capacities are ignored). 

    

Figure 3.2 
 
    The LP formulation of the above problem has five constraints and seven
variables 

 
Table 3.1 is the initial tableau of the example. 
 

 ABx  ACx  ADx BCx CEx DEx EDx RHS
Node A 1 1 1     50 
Node B -1   1    40 
Node C  -1  -1 1   0 
Node D   -1   1 -1 -30 
Node E     -1 -1 1 -60 
O.B.F 2 4 9 3 1 3 2  

 
     The special structure of the network problems is even reflected in the                      

tableau for this small example. The decision variables have the coefficient of                      

0,l, or -1 in all rows. Further each variable appears in exactly two equations                      

one with coefficient 1 for a node from which the arc emanates and -1 for a                     

node that the arc is leading into it. 
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The corresponding LP formulation of the problem is as below: 
 
 
Maximize = EDDECEBCADACAB xxxxxxx 233942 ++++++  
 

s.t. 
 
 

ADACAB xxx ++                                                 = 50 
 
                                                     = 40 ABx− BCx+
 
                                                  = 0 CEBCAC xxx +−−
 

                                       = -30 EDDEAD xxx −+−
 
                                        EDDECE xxx +−− =            -60 
 
 
3.1 Unimodularity 
 
If B is a basis for a LP with constraints A X=b, X ≥ 0 where A is partitioned                      

into (B,N) then a basic solution is XB = B-1 .Provided that all coefficients                      

of the LP model are integer then a sufficient condition for this solution to                     

be integer is that B-1 is an integer matrix. The above discussion leads                      

to the concept of unimodularity.A square matrix B is called unimodular if                      

| det B |=1. An integer m by n matrix A is totally unimodular if every square                  

nonsingular submatrix of A is unimodular. The following theorems concern                      

the relationships between ILP and unimodularity. 

Theorem 1.If A is totally unimodular then every basic solution of the fol-                      

lowing LP is integer:                        

Max cx 

st Ax ≤ b where b is integer 

x  ≥  0 

Total unimodularity is not a necessary condition for the solution to be inte-                      

ger. 
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Theorem 2.Let A be an integer matrix. The following three statements are                      

equivalent: 

1. A is totally unimodular. 

2.The extreme points of S(b)={x | Ax ≤ b,x ≥ 0 } are integer for arbitrary                      

integer b. 

3.Every square nonsingular submatrix of A has an integer inverse.                                      

Theorem 3.An integer matrix A with aij = 0   1,-1 for all i and j, is totally                      

unimodular if 

l. No more than two nonzero elements appear in each column. 

2. The rows can be partitioned into two subsets  Q1, Q2 s.t. 

(a) If a column contains two nonzero elements with the same sign, one ele-                      

ment is in each of the subsets. 

(b) If a column contains two nonzero elements of opposite sign, both elements                      

are in the same subset. 

 

 

       The general minimum cost flow problem has an A matrix which is totally                 

unimodular and if capacities are integer then an integer solution the LP                      

formulation of the network problem is guaranteed. 

4  Special purpose algorithms for network prob-   

lems 
4.1    The shortest route algorithm 
A wellknown specia rpose algorithm which ls th  problem is due                      

to Dijkstra[4].The special structure of the shortest route problem is exploited                      

and it is efficient in solving large scale problems. 

l pu dea wi this

       To provide for describing the algorithm let us assume that the 
distance 
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between nodes i and j is cij. Each node is assigned a label which either tem-                      

porary or permanent. Initially a temporary label indicates the direct distance                 

between the source and any other node including the sink. Those nodes which                      

are not directly connected to the source are assigned a temporary label of                      

.Those nodes which are determined to be in a shortest path are considered                      

to be permanent. The source node is always labeled permanent. This algorithm                   

operates on a simple logic that if a shortest path from source to another node                      

is found then all other nodes located on it are labeled permanent. This means                      

that the shortest path for all of them are found. Dijkstra’s algorithm is an                      

iterative one and it is described as below: 

∞

      The shortest path from the source to node j is initially estimated as                      

Nj and the algorithm tries to improve upon this solution. When it is found                     

that no more improvement is possible, node j is labeled permanent and it                      

can be represented by a symbol such as    The source node receives the                      

permanent label of   while all other nodes receive the temporary label of    

          .  The next permanent node is determined by finding the minimum of

all  temporary labels. After these initial preparations the algorithm iterates

between the following steps and it stops when the sink is labeled permanent: 

  N j

0 

∞

       l. The sum of the last permanent label and it’s direct distance to any                      

temporary node is found and compared with the temporary label of that                      

node. The minimum of the two quantities is defined as the new temporary                      

label of that node. 

      2. The new permanent label is determined by finding the minimum of all                    

temporary labels. If this new permanent label applies to the sink then the                      

algorithm will terminate, otherwise it will return to step l. 
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4.2    The maximum flow algorithm 
 
 
 
 
 
The maximal flow algorithm due to Ford and Fulkerson [5] is one which                      

repeatedly finds paths of positive flow capacity between source and sink. The                      

flow allocated to each path is accumulated and the maximal flow is obtained                      

if no further paths of positive flow capacity can be found. To implement the                      

above logic two concepts of labeling and flow augmenting are used. 

       The purpose of labeling is to specify both the origin of a shipment and                      

whether this shipment causes the current flow to be increased or decreased. A                      

label is an ordered pair of a node and a value. The value is the amount by                      

which the current flow is to be changed and the node is the predecessor node                      

of the arc along which the flow is sent to the labeled node. Let qj be the                      

amount of flow sent to node j from node i, then node j is labeled [+qj,i]                      

which means an increase in the flow value. If the flow is to be decreased by                      

qj then node j is labeled [-qj, i] In both cases we say that node j is labeled                      

from i. 

        Figure 4.1 further explains this procedure by two examples (a) and (b).In                  

example (a) node j is labeled [+3,i] which means the current flow from i to                      

j is incre by 3 and in example (b) no  receives the label [-3,i] which                     

reflects a reduction of 3 in the flow value. 

ased de j

        When node j is labeled from node i, the current amount of flow and the                  

remaining unused capacity which is called the residual capacity of arc (i,j)                     

should be updated. This algorithm only considers arcs with strictly 

positive                                              
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residual capacity. 
 

 
 
Figure 4.1 
 
       A flow-augmenting path is one that connects source and sink such that a                      

positive amount of flow could be sent along it. The purpose of flow-augmentation                   

is to find a new path which can increase the total amount of flow leading into                      

the sink. If a path is found then the residual capacity of all arcs in the path                      

should be modified. The mathematical details of flow-augmentation is as de-                      

scribed below. 

       Let (i,j) be a directed arc from i to j and j is labeled from i with [+qj, i]then                      

it is possible to increase the flow of the arc by qj. Assume that the current                      

flow in arc (i,j) is fij and the upper bound of the flow is uij then qj is less                      

than or equal to the residual capacity of uij –fij Increasing the flow by this                      

amount is not always possible, because the amount of flow supplied at node                      

i may be less than the residual capacity, therefore qj is determined by the                      

equation qj = min[qi, uij – fij,]. If the flow in the arc (i,j) is to be reduced                      

the reduction is determined by  qj = min[qi,  fij]. 

        The algorithm proceeds as follows. The source node is initially labeled                      

[∞, −] to show that the amount of flow supplied at the source is not lim-                      

ited, and all other nodes are unlabeled. We now move towards the sink while                     

labeling nodes and seek a flow augmenting path through labeled nodes. To                      

avoid being trapped in a local maximum the algorithm has the 

ability to 
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remove previously assigned flows to provide for a new flow augmenting path.                      

From now on one of the following events will take place: 

1.  Once the flow augmenting path from source to sink is found, the sink node                      

t is labeled [qt, k] where k is the predecessor node of the sink on the path                      

which deliver qt units of flow and each arc flow on the path will be increased                      

or decreased by the amount qt Then the residual capacities are updated as                      

well and the current labels are erased and the procedure will be repeated. 

2.  If the sink node t cannot be labeled, that is, no more flow augmenting paths                      

can be found, the current total flow is optimal and algorithm is terminated. 

 

 

 

5    The minimum cost flow algorithm 
An algorithm which deals with the pure general min cost flow problem is                      

the Out-of-Kilter algorithm. Linear programming, dualty theory, and comple-                     

mentary slackness conditions are simulaneously used in the development of                      

this algorithm. The arcs of the network are assumed to be directed and ca-                      

pacitated. A circulation is an assignment of flow to the arcs of the network                      

such that the conservation of flow property is held at all nodes. In order to                     

provide for circulations it is sometimes necessary to add an arc and modify                      

the original network. For example a circulation might be made by adding an                      

arc which establishes a direct connection between source and sink .This arc                      

is called a return arc. The out-of-kilter algorithm is an iterative procedure                      

which finds a circulation that minimizes the total cost of passing a feasible                      

flow through the network. 

 

        Given a network (N, A) let assume that the per unit cost of shipping a                      

flow along arc (i, j) is   cij .The mathematical model of the problem can 
be                        
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stated as the following LP problem: 
 
 

Minimize
( )
∑

∈Aji
ijij fc

,
 

 
s.t. 

 
         Ajiuf ijij ∈∀≤ ),(  

       Ajilf ijij ∈∀≥ ),(  
 

jitsNiff
Nj

ji
Nj

ij ≠∈∀=−∑∑
∈∈

..0  

 
In order to write the dual of this LP problem, we will rewrite it in the                      

following form: 

 
         Maximize ∑

∈

−
Aji

ijij fc
),(

 

 
s.t. 

        
jitsNiff

Nj
ji

Nj
ij ≠∈∀=−∑∑

∈∈

..0  

 
Ajiuf ijij ∈∀≤ ),(  

 
Ajilf ijij ∈∀−≤− ),(  

 
0≥ijf  

 
The corresponding dual problem is 

 
           Minimize ( )∑ − ijijijij lu δα  

 
s.t. 

 
( ) Ajicijijijji ∈∀−≥−+− ,δαππ  

 
iπ unrestricted i∀  

 
( ) Ajiij ∈∀≥ ,0α  

 
( ) Ajiij ∈∀≥ ,0δ  
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The π  variables are associated with the conservation of flow property con-                      

straints, the a variables correspond to the upper bound constraints, and the                      

δ variables correspond to the lower bound constraints. The optimality con-                      

ditions can be derived from the dual problem. The necessary and sufficient                   

conditions for the optimality are as follow: 

 
     Primal feasibility 
 

:1P      (conservation of flow) ∑∑ =− 0jijijj ff Ni∈∀  
:2P      (capacity constraints) =≤≤ ijijij ufl ( ) Aji ∈∀ ,  

 
     Dual feasibility  
 

:1D       ( ) Ajicijijijji ∈∀−≥−≥+− ,δαππ  
:2D       0≥ijα   ( ) Aji ∈∀ ,  
:3D      0≥ijδ   ( ) Aji ∈∀ ,  

 
     Complementary slackness  
 

:1C                   ijijijji cif −>−+− δαππ         then 0=ijf  
:2C                   0>ijif α                      then ijij uf =  
:3C                   0>ijif δ                      then ijij lf =   

 
         If we assume the following conventions: 
 
1.        { }ijijij cmax −−= ππα ;0  
 
2.   { }ijijij cmax ++= ππδ ;0   
                 
An equivalent formulation of the optimality conditions can be stated as be-                     

low: 

3.     If   ijijijijji ufandthenc =>>− 0αππ  
4.     If   ijijijijji lfandthenc =>>− 0δππ  
5.     If   ijijijijji lfuthenc ≥≥>−ππ  
and 
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6.   ∑ ∑ ∀=− iff jijijj 0

 

        Provided that the conditions 1 and 2 are satisfied and jiijij cc ππ −+=                      

the optimality conditions can be summarized as below:  

:1k  If ijijij ufthenc =< 0  

:2k   ijijij lfthencfi =>
−

0

:3k   ijijijij uflthencfi ≤≤=
−

0
 

:3k  Conservation of flow is satisfied 
 
If an arc (i, j) satisfies conditions the arc is said to be 321 kkk in-kilter and if                      

any one of these conditions does not hold the arc is said to be out-of kilter. An                     

optimal solution is one for which all arcs are in-kilter and the conservation                      

of flow constraints are satisfied. 

     The out-of-kilter algorithm tries to find the values of 
i

π  and                      

such that the above optimality conditions are met. The algorithm initializes                      

f

ij
f

ij with values such that the conservation of flow constraints are satisfied                     

and it assigns arbitrary values to jπ .In terms of the optimality conditions                      

,nine mutually exclusive combinations can be recognized for each arc. Table                     

4.2 lists these combinations. The values of ijc uniquely determine whether                      

an arc is in-kilter or out-of-kilter. 

 
 
 
 

 
 
 
 

22 



 
     
 
 
POSSIBLE STATES OF AN ARC. 

 
State ijc  ijf  In kilter

α 0>c  f=1 Yes 

β 0=c  l ≤ f ≤u Yes 
δ 0<c  f = u Yes 
α1 0>c  f < l No 
β1 0=c  f < L No 
δ1 0<c  f < u No 
α2 0>c  f > l No 
β2 0=c  f > u No 
δ2 0<c  f > u No 

 
 

      This value also indicates whether an increase or a decrease in the arc flow                      

will bring that arc in-kilter or not. This change in the amount of flow in arc                      

(i,j) may violate the conservation of flow property at the connecting nodes. In                      

order to restore this property another path from j to i is necessary. The arc                      

(i,j) and the path from j to i form a cycle. Changing the flow along this cycle                      

must be made in such a way that (i) no in-kilter arc is thrown out-of-kilter                      

and (ii) no out-of-kilter arc is thrown further out-of-kilter. Assuming that a                     

path from j to i is found there should be a functional notation which tells us                      

how to change the flow of the arcs involved and which path to choose. This                      

is called the labeling procedure which is discussed below: 

 

5.1    The labeling procedure 
l. If an arc is found in which the flow is to be increased to bring it in-kilter, the                      

arc must be in either ,,, 111 αδβ .Label node j with [qj , i+] which means that                      

node j may receive qj additional units from node i. If the arc is in state 1α                      

then define qj to be min [ ]ijiji flq −,  and if the arc is in state 1β or 

1δ then 
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define  qj to be  min [ ]ijiji fuq −,  

       2.1f the flow along arc (i,j) is to be decreased the arc must be in state                     

,, 22 δβ or ,2α  label node i as [ ]., 1−jqi This indicates that the flow leaving node i                      

and entering node j can be reduced by qi. If the arc is in state ,2α  or ,2β  define                     

qi as min [ ]ijijj lfq −, and if the arc is in state ,2δ   then define qi as min [qj ,fij-                      

uij] 

     3. If an arc (i,j) is found to be in state ,,βα or δ it is in kilter and it’s                      

flow should not be altered. The only exception is state β  in which the flow                      

might be increased or decreased without violating any in kilter condition.  
    

     The above modifications will bring the arc in kilter. In order to preserve                      

the conservation of flow an alternative path from node i to j (or from j to                      

i) must be found. To keep track of all changes made for the arcs along the                      

alternative path, each intermediate node should also be labeled. 

 

Consider an arbitrary arc (x,y) on an alternative path. This intermediate                     

arc will fall in one of the nine mutually exclusive states. Now suppose that                      

an observer is standing on an arbitrary labeled node x and wants to tra-                      

verse the arc from x(labeled) to node y(unlabeled). From the labeled node                      

,the observer seeks to traverse all forward and reverse arcs incident to that                      

node. If an arc is in the proper state, the node at the other end can be la-                      

beled. Several nodes might be labeled, although only one label is necessary to proceed. 

Once the labeling has been completed from a given node, that node                      

is marked scanned. The question that must be answered as unscanned nodes                      

on incident arcs are labeled is: "should we increase or decrease the flow along                      

this particular node"?. At this point we may proceed from a scanned node to                      

an unscanned but labeled node. The amount by which the flow in arc (x,y)                      

can be changed is determined from the unique state of the arc, and the deci-

sion rule by which the change is made is given in the following table. 
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LABELING PROCESS THROUGH A FORWARD ARC 

 
( ) Syx ∈, xπ  xyc  yπ  
 x xyf  y 
 

yxxyxy cc ππ −+=  

Label y,  [ ] ;0, xyxyxyy lfandcifxq <>+   
                                                                                  [ ]xyxyxy flqminq −= ,  

                                        ;0 xyxyxy ufandc <≤  
                                                                                  [ ]xyxyxy fuqminq −= ,  

                                                                            
 

       To preserve conservation of flow ,an alternative path from node j to node                      

i(or from i to j) is sought ,and once found ,the flow along the path is adjusted                     

according to final label of  qi(or qj).Consider a wandering walker that starts

a journey from node j through scanned nodes toward node i.  

LABELING PROCESS THROUGH A REVERSE ARC 

( ) Syx ∈, xπ  xyc  yπ  
 x yxf  y 
 

xyyxyx cc ππ −+=  
 
 
 
 
 
 
 
 

     

label y,  [ ] ;0, 1
yxyxyxy lfandcifxq >≥−      

      [ ]yxyxxy lfqminq −= ,   

   ;0 yxyxyx ufandc ><  
      [ ]yxyxxy ufqminq −= ,  

         Recall that no change is allowed in the flow across an arc if that change             

either(l)forces an in-kilter arc out of kilter or (2)drives an out-of-kilter arc                      

further out-of-kilter. Therefore it is possible that the walker reaches a node at                      

which he cannot continue. It seems that the walk is over and no path from j                     

to i is available. Such an event is called non-breakthrough. Fortunately, if non- 
breakthrough occurs there is one more alternative available in the search for                      

an optimal network flow. Recall that the state of an arc is uniquely 
deter-        
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mined by jiijij cc ππ −+= so that a change in the π value affects the nine                      

possible states of an arc. Each node has a π value associated with it, therefore                      

there are exactly n dual variables for a network with n nodes. Assuming that                      

non-breakthrough has occurred; which π variables should we change to pro-                      

vide a possible path from node j to node i(or from i to j if the flow is re-                      

duced)?There are two mutually exclusive sets of nodes:(l)scanned labeled                      

nodes and (2)unlabeled nodes. The only nodes of interest with respect to                      

non-breakthrough are nodes that will enables us to complete a walk between                      

nodes j and i. Logically speaking ,to continue we must walk from a scanned                      

labeled node to an unlabeled node. Therefore, the only π values that need to                      

be considered are those associated with the arcs connecting labeled nodes to                     

unlabeled nodes. Define the set of all labeled nodes to be A, and the set of all                

unlabeled nodes to be  .A   

       If we are standing on an arbitrary scanned node x and looking toward an                      

unlabeled node y;we will either be looking at a forward arc or a reverse arc. If                     

the arc is forward ,flow can pass from A to A ,and if the arc is reverse flow                      

can pass from  A  into A. 

CASE1: Let B be the set of all arcs originating at a node in A and terminating                      

at a node in A  with  0>c and flow less than or equal to the upper bound                      

CASE2: Let B be the set of all arcs originating at a node in A and                      

terminating at a node in A with 0>c and flow greater than or equal to                      

the lower bound. 

Since c  can be calculated for every arc in sets B and B , we should proceed                      

as follow: 

1. Case 1: For any 0c  Define > [ ] ∞=≠= 11 ; ξφξ otherwiseBifcBmin xy                      

2. Case 2: For any  0<c  Define [ ] =≠= 22 ; ξφξ otherwiseBifBmin

]

− cxy

[ 2,

 

∞  

3. Let 1 ξξξ m= in

4. Change all node numbers (π values) in the set 

  

A by adding ξ  to 
,kπ where                       
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k is a member of the set   A . 

5. Do not erase any previous labels. 

The process then continues by returning to the labeling procedure. 

      If the preceding steps change the state of at least one arc leading from                      

the set of all labeled nodes to the set of all unlabeled nodes, the labeling                      

procedure is continued until (l)breakthrough occurs (2) non-breakthrough                      

occurs again. If the preceding steps do not change the state of at least one                      

arc leading from A to A , a feasible solution can not be found. When a                      

breakthrough occurs, an alternative path from j to i (or from i to j) has been                      

found, and the necessary action is to retrace this path and change the flow of                      

all arcs along the path. At this point all labels are erased, another out-of-kilter                      

arc is chosen and the procedure begins again. An optimal solution is found                     

when all arcs are in-kilter. 

         In the event that breakthrough does not occur, sets B and B  ,are reestab-                      

lished and the node numbers are once again changed according to the pre-                     

vious rule. The labeling procedure is repeated until either arc (i j) is in-kilter                      

or until a non-breakthrough occurs at which ∞=ξ In the case where                      

∞=ξ , there is no optimal solution to the problem and the algorithm ter-                      

minate. Note that if 0=c  for each arc ,all forward arc flows are at uij ,and                      

all reverse arc flows are at lij then no path can be found. 

       The out-of-kilter algorithm can now be summaraized as follows: An ini-                      

tial circulation is chosen which satisfies the conservation of flow equations. A               

circulation of zero will always satisfy this condition. Next an arbitrary set of                      

π values is assigned to the nodes. By using the labeling procedure, flow arcs                      

are adjusted when breakthrough occurs, otherwise new node numbers are                      

found and the procedure is repeated. 
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5.2    Algorithmic Steps 
Step 1: Find an out-of-kilter arc (i,j).If none exists, stop. 

Step 2: Determine if the flow in the arc should be increased or decreased to                      

bring the arc in kilter. If it should be increased, go to step 3.1f it should be                    

decreased, go to step 4. 

Step 3: Using the labeling algorithm, find a path in the network from j to i                      

along which the flow can be passed without causing any arcs on the path to                      

become further out of kilter. If a path is found, adjust the flow in the path                      

and increase the flow in (i,j).If (i,j) is in kilter, go to step l. If it is still out of 

kilter, repeat step 3. If no path can be found, go to step 5. 

Step 4: Find a path from i to j along which the flow can be passed without                     

causing any arc to become further out of kilter. If a path is found, adjust the                      

flow in the path and decrease the flow in (i,j).If (i,j) is in kilter, go to step l. If                      

(i,j) is still out of kilter, repeat step 4.1f no path is found, go to step 5. 

Step 5: Change the π values and repeat step 2 for arc (i,j) keeping the same                      

labels on all arcs already labeled. If the node numbers become ∞ ,stop since                      

no feasible flow exists. 

 

 

6    Summary 

The purpose of this short report is to give the reader a general idea of                      

networks and four wellknown problems in this area .Network optimization                      

has found many applications in industry and management. The mathematic-                      

cal formulation of these problems is of great help in discovering a number                      

of interrelationships among them. Some network problems can be interpreted                     

as special cases of more general ones. All network problems listed in this                      

report can be formulated as linear programming problems. Highly efficient                      

algorithms which take advantage of the special structure of network 
prob- 
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lems were presented. There are other algorithms which deal with the general                      

pure minimum cost flow problem but the out-of-kilter algorithm is the most                      

general and widely used one. A labeling procedure is utilized in all these al-                      

gorithms to store information regarding the status of a node. Other network                      

problems such as covering, and matching will be discussed in a forthcoming                      

report. 
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