51 research outputs found

    Computational Geometry Column 35

    Get PDF
    The subquadratic algorithm of Kapoor for finding shortest paths on a polyhedron is described

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    Efficient motion planning for problems lacking optimal substructure

    Full text link
    We consider the motion-planning problem of planning a collision-free path of a robot in the presence of risk zones. The robot is allowed to travel in these zones but is penalized in a super-linear fashion for consecutive accumulative time spent there. We suggest a natural cost function that balances path length and risk-exposure time. Specifically, we consider the discrete setting where we are given a graph, or a roadmap, and we wish to compute the minimal-cost path under this cost function. Interestingly, paths defined using our cost function do not have an optimal substructure. Namely, subpaths of an optimal path are not necessarily optimal. Thus, the Bellman condition is not satisfied and standard graph-search algorithms such as Dijkstra cannot be used. We present a path-finding algorithm, which can be seen as a natural generalization of Dijkstra's algorithm. Our algorithm runs in O((nBn)log(nBn)+nBm)O\left((n_B\cdot n) \log( n_B\cdot n) + n_B\cdot m\right) time, where~nn and mm are the number of vertices and edges of the graph, respectively, and nBn_B is the number of intersections between edges and the boundary of the risk zone. We present simulations on robotic platforms demonstrating both the natural paths produced by our cost function and the computational efficiency of our algorithm

    An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

    Full text link
    We study a path-planning problem amid a set O\mathcal{O} of obstacles in R2\mathbb{R}^2, in which we wish to compute a short path between two points while also maintaining a high clearance from O\mathcal{O}; the clearance of a point is its distance from a nearest obstacle in O\mathcal{O}. Specifically, the problem asks for a path minimizing the reciprocal of the clearance integrated over the length of the path. We present the first polynomial-time approximation scheme for this problem. Let nn be the total number of obstacle vertices and let ε(0,1]\varepsilon \in (0,1]. Our algorithm computes in time O(n2ε2lognε)O(\frac{n^2}{\varepsilon ^2} \log \frac{n}{\varepsilon}) a path of total cost at most (1+ε)(1+\varepsilon) times the cost of the optimal path.Comment: A preliminary version of this work appear in the Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithm
    corecore