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Computational Geometry Column 33

Joseph O’Rourke∗

Abstract

Several recent SIGGRAPH papers on surface simplification are described.

The stringent demands of real-time graphics have engendered a need for simplification of
object models. Here several papers on aspects of the problem for 3D polygonal models are
described at a high level.

Levels of Detail

A consensus may be emerging in favor of the representation of complex models as a single,
hierarchical data structure that represents many levels of detail simultaneously, from the
simplified root to the fully detailed leaves. The hierarchy is known under various names:
vertex tree [LE97], merge tree [XV96], vertex hierarchy [Hop97], progressive mesh [Hop96],
progressive simplicial complex [PH97]. We will use vertex tree here to refer to the generic
concept. Typically the tree is binary, with each node represting a vertex of some simplification
of the original model. The two children vertices v1 and v2 of their parent v are merged (or
identified, or unified, or contracted), moving up the tree to produce v, which inherits all the
triangles incident to its children. Viewing the same process in reverse, the parent v splits
to generate its children at an increased level of detail. How the coordinates of v relate to
those of its children depends on the particular hierarchy implementation: e.g., whichever of
{v1, v2,

1

2
(v1+v2)} is “best” [PH97], or a position that minimizes some geometric error [GH97].

Some schemes [Hop96, XV96, Hop97] restrict v1 and v2 to be connected by an edge at their
model level, in which case the upward tree movement is an edge contraction. This has the
advantage of preserving the abstract topology1 of the model, an advantage that becomes
an impediment to massive simplification of complex models. Thus much recent work [GH97,
LE97, PH97] countenances arbitrary vertex pair identification, which may, for example, merge
separate topological components. Before addressing which pairs of vertices should be unified,
we turn to how a model vertex tree can be utilized by a graphics system.

∗Department of Computer Science, Smith College, Northampton, MA 01063, USA.
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1The reason for the qualification is that guaranteeing preservation of geometric simplicity requires careful
placement of v, care not usually exercised for pragmatic reasons. An exception is [CMO97].

http://arxiv.org/abs/cs/9810020v1


View-dependent Simplification

The vertex tree is constructed from the fully detailed original model in a preprocessing phase
that can take anywhere from a few seconds to (in one cited instance [PH97]) over 22 hours. In
any one frame, the model is rendered from a list of active vertices [Hop97] which represent a
variable-detail frontier within the vertex tree [LE97]. Each vertex node points to relevant inci-
dent faces (triangles) with enough information for rendering. Before a new frame is rendered,
the list of active vertices is traversed, and a decision made whether to split a node to increase
detail, merge two nodes to simplify, or leave as is. This decision is based on a screen-space

error criterion. The idea is that what matters is what the user sees—object-space geometric
errors are less relevant. Projected surface deviation [Hop97] and silhouette preservation [LE97]
among other heuristics have been used. It is of course crucial that these computations be fast,
and indeed impressive real-time behavior on graphics workstations has been achieved.

Construction of Hierarchy

In contrast to reliance on screen-space error to decide which nodes to display, geometric
and topological considerations dominate the initial tree construction. One method, explored
in [CVM+96], computes inner and outer simplification envelopes for an object, both within ǫ

of the original surface, and threads a simplification between. An algorithm for this difficult
subproblem approximates a global optimum by greedily accumulating threading triangles that
“cover” (in projection) many vertices. Successively larger values of ǫ lead to vertex clustering
that could be represented in a vertex tree.2

Other methods more directly follow the vertex tree structure, choosing to unify the pair
of vertices that minimize error [GH97, PH97]. Because it is prohibitive to consider all
pairs of vertices, a crude winnowing is performed, based on topology (vertices connected
by an edge) and geometric proximity (Euclidean distance between vertices [GH97]; “tight”
octree clustering [LE97]; Delaunay edges between components [PH97]). Some schemes as-
sume manifold objects [CVM+96, Hop96, XV96]; others permit arbitrary simplicial com-
plexes [GH97, LE97, PH97]. In the surviving list of candidate pairs, a merging “cost” is
computed for each pair, based on various geometric-based heuristics: estimation of the de-
viation of v from neighboring face planes by an “error quadric” in [GH97], and a mixture
of distance, area-stretching, and folding penalties in [PH97]. For each merge, between-level
dependencies must be carefully arranged to permit subsequent swift navigation through the
hierarchy.

There are considerable tradeoffs between speed of construction and the “quality” of the
resulting hierarchy, and much of the research focus has been on the details glossed here, which
determine these tradeoffs. We now sketch the error quadrics of [GH97] to give a sense of some
of these details.

Error Quadrics

Define the distance d(v, P ) of a point v = [x y z 1]T to a set P of planes to be the sum of
the squares of the distances from v to the planes in P . For a single plane p = [a b c d]T ∈ P ,

2The work in [CVM+96] is not, however, geared toward constructing a hierarchy.



the square distance is (vTp)(pT v) = vT (ppT )v. Summing this expression over all p ∈ P yields
d(v, P ) = vTQv, where Q is a 4 × 4 matrix.

Note that the distance between v and all the planes containing faces incident to v is zero,
because v lies on each of these planes. Now consider v to be the parent of two vertices v1

and v2, whose unification somehow yielded v. We define the cost of the merge, or the error
associated with v, to be d(v, P1)+d(v, P2) = vT (Q1 +Q2)v, where Pi are the planes containing
faces incident to vi, and Qi the corresponding matrices, i = 1, 2. Note that if a face is incident
to both v1 and v2, its plane will be in both P1 and P2, and will be doubly weighted by the
matrix sum Q1 + Q2.

This leaves how to chose v. For Q fixed, vT Qv = vT (Q1 + Q2)v is a quadric surface.
Its level surface vTQv = ǫ is a (potentially degenerate) ellipsoid specifying a region of space
within which any v has an error of at most ǫ. The v used in [GH97] is the center of this
ellipsoid.

Evaluation

Currently the efficacy of a proposed simplification algorithm is evaluated by a mixture of run-
time data, intuition, and visual appeal. In some sense the ultimate arbiter is the (inevitable)
SIGGRAPH video. It would seem useful to place evaluation on a more firm theoretical
footing. With much of the code in the public domain, experimental comparisons are now
appearing [CMS].

Acknowledgements. I thank Michael Garland, Paul Heckbert, Hugues Hoppe, David Luebke, and Dinesh
Manocha for comments.
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