127 research outputs found

    Distributed Linear Convolutional Space-Time Coding for Two-Relay Full-Duplex Asynchronous Cooperative Networks

    Full text link
    In this paper, a two-relay full-duplex asynchronous cooperative network with the amplify-and-forward (AF) protocol is considered. We propose two distributed space-time coding schemes for the cases with and without cross-talks, respectively. In the first case, each relay can receive the signal sent by the other through the cross-talk link. We first study the feasibility of cross-talk cancellation in this network and show that the cross-talk interference cannot be removed well. For this reason, we design space-time codes by utilizing the cross-talk signals instead of removing them. In the other case, the self-coding is realized individually through the loop channel at each relay node and the signals from the two relay nodes form a space-time code. The achievable cooperative diversity of both cases is investigated and the conditions to achieve full cooperative diversity are presented. Simulation results verify the theoretical analysis.Comment: 11 pages, 7 figures, accepted by IEEE transactions on wireless communication

    Distributed space-time block codes for two-hop wireless relay networks

    Get PDF
    Recently, the idea of space-time coding has been applied to wireless relay networks wherein a set of geographically separated relay nodes cooperate to process the received signal from the source and forward them to the destination such that the signal received at the destination appears like a Space-Time Block Code (STBC). Such STBCs (referred to as Distributed Space-Time Block Codes (DSTBCs)) when appropriately designed are known to offer spatial diversity. It is known that different classes of DSTBCs can be designed primarily depending on (i) whether the Amplify and Forward (AF) protocol or the Decode and Forward (DF) protocol is employed at the relays and (ii) whether the relay nodes are synchronized or not. In this paper, we present a survey on the problems and results associated with the design of DSTBCs for the following classes of two-hop wireless relay networks: (i) synchronous relay networks with AF protocols, (ii) asynchronous relay networks with AF protocols (iii) synchronous relay networks with DF protocols and (iv) asynchronous relay Fig. 1. Co-located MIMO channel model networks with DF protocols

    Delay-Tolerant Decode-and-Forward Based Cooperative Communication over Ricean Channels

    No full text
    International audienceIn this paper, we propose a TDMA based simple transmission scheme, which overcomes the effect of the delays caused by the poor synchronization of the relaying nodes over Ricean channels. The proposed scheme is able to provide an optimized coding gain in unsynchronized cooperative networks as compared to the existing delay tolerant distributed space-time block codes

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    CHANNEL ESTIMATION AND EQUALIZATION FOR ASYNCHRONOUS MULTIPLE FREQUENCY OFFSET NETWORKS

    Get PDF
    A single frequency network transmission is assumed, and we study the impact of distinct carrier frequency offset (CFO) between the local oscillator at each transmitter and the local oscillator at the receiver. Due to the nature of cooperative communications, multiple frequency offsets may occur and the traditional frequency offset compensations may not apply. For this problem, equalization for the time varying channel has been used in the literature, where the equalization matrix inverse needs to be retaken every symbol. In this paper, we propose computationally efficient minimum mean square error (MMSE) and MMSE decision feedback equalizers (MMSE-DFE) when multiple frequency offsets are present, where the equalization matrix inverses do not need to be retaken every symbol. Our proposed equalization methods apply to linear convolutively coded cooperative systems, where linear convolutive space-time coding is used to achieve the full cooperative diversity when there are timing errors from the cooperative users or relay nodes, i.e., asynchronous cooperative communication systems

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model
    corecore