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Abstract

This thesis presents new methodologies to improve performance of wire-

less cooperative networks using the Golden Code. As a form of space-time

coding, the Golden Code can achieve diversity-multiplexing tradeoff and the

data rate can be twice that of the Alamouti code. In practice, however, asyn-

chronism between relay nodes may reduce performance and channel quality

can be degraded from certain antennas.

Firstly, a simple offset transmission scheme, which employs full inter-

ference cancellation (FIC) and orthogonal frequency division multiplexing

(OFDM), is enhanced through the use of four relay nodes and receiver pro-

cessing to mitigate asynchronism. Then, the potential reduction in diversity

gain due to the dependent channel matrix elements in the distributed Golden

Code transmission, and the rate penalty of multihop transmission, are miti-

gated by relay selection based on two-way transmission. The Golden Code is

also implemented in an asynchronous one-way relay network over frequency

flat and selective channels, and a simple approach to overcome asynchro-

nism is proposed. In one-way communication with computationally efficient

sphere decoding, the maximum of the channel parameter means is shown to

achieve the best performance for the relay selection through bit error rate

simulations.

Secondly, to reduce the cost of hardware when multiple antennas are

available in a cooperative network, multi-antenna selection is exploited. In

this context, maximum-sum transmit antenna selection is proposed. End-to-

end signal-to-noise ratio (SNR) is calculated and outage probability analysis

is performed when the links are modelled as Rayleigh fading frequency flat

channels. The numerical results support the analysis and for a MIMO system



ii

maximum-sum selection is shown to outperform maximum-minimum selec-

tion. Additionally, pairwise error probability (PEP) analysis is performed

for maximum-sum transmit antenna selection with the Golden Code and the

diversity order is obtained.

Finally, with the assumption of fibre-connected multiple antennas with

finite buffers, multiple-antenna selection is implemented on the basis of

maximum-sum antenna selection. Frequency flat Rayleigh fading channels

are assumed together with a decode and forward transmission scheme. Out-

age probability analysis is performed by exploiting the steady-state station-

arity of a Markov Chain model.
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Chapter 1

INTRODUCTION

1.1 Multi-antenna Communications

Conventional single-antenna transmission techniques operate in the time do-

main and/or in the frequency domain. Channel coding is typically employed,

to overcome the detrimental effects of multipath fading. With the growing

number of wireless services and concomitant demands on channel capacity,

the antenna part of a radio system, and associated spatial processing is a

topic of increasing importance. The great potential of using multiple anten-

nas for wireless communications has become apparent during the last two

decades. At the end of the 1990s multiple-antenna techniques were shown

to provide a novel means to achieve both higher bit rates and smaller error

rates. Altogether, multiple-antenna techniques thus constitute a key tech-

nology for modern wireless communications.

The general notion of a multiple-input multiple-output (MIMO) system

or a MIMO network refers to an entire wireless system or network that

contains a single or multiple MIMO links. MIMO wireless communications

increases spectrum efficiency by spatial multiplexing and improves link relia-

bility by antenna diversity [2] and [6]. A MIMO system has M transmit and

N receive antennas. Its simplified block diagram is shown in Fig. 1.1. The

input information bit sequence can be decomposed into block of M symbols

represented by s = [s1, s2, · · ·, sM ]T which are transmitted from M antennas.

At the receiver the detection is over N receive antennas. Because the signals

1
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Figure 1.1. Simplified block diagram of an M×N single stage MIMO
system [1].

go through the matrix channel, by adding the space dimension processing, a

MIMO system can potentially improve the performance of past communica-

tion systems by exploiting the diversity introduced by the multiple spatial

paths. Such point-to-point MIMO technology can provide spatial multiplex-

ing gain, array gain and diversity technology within a system, each of which

is described below.

The benefits of multiple antennas for wireless communication systems

are summarized in Fig. 1.2.
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• Spatial Diversity

Multiple antennas can be used to improve the error rate of a system by

transmitting and/or receiving redundant signals representing the same in-

formation sequence. This is similar to channel coding, and is achieved, by

means of two-dimensional coding in time and space, commonly referred to as

space-time coding, whereby the information sequence is spread out over mul-

tiple transmit antennas. At the receiver, combining of the redundant signals

has to be performed to obtain diversity gain. As such, the diversity coding

gain can be achieved as compared to single-antenna transmission. Exam-

ple spatial diversity techniques for multi-transmit antenna systems are the

Alamouti transmit diversity scheme [2] and the space-time trellis codes [7].

However, in this thesis space-time trellis codes will not be considered due to

their increased complexity.

• Spatial Multiplexing

This consist of transmitting independent information sequences over multi-

ple antennas. By using M transmit antennas, it boosts transmission rate by

a factor of M , as compared with a single antenna scheme, and the transmit

power per transmit antenna is lowered by a factor of 1/M. Spatial multi-

plexing gain can be realized by simply transmitting data layers from each

of the transmit antennas, thus maximizing the average data rate over the

MIMO system. It is an approach to increase throughput for high rate system

operating at relatively high SNR. The zero-forcing (ZF) or minimum mean

squared error (MMSE) decoding method is typically used at the receiver.

Foschini proposed the Bell-Labs layered space-time architecture (BLAST)

and built a BLAST Multiuser MIMO system [8]. Assuming the same to-

tal transmitted power and the same bandwidth, the most striking advan-

tage is that multiple antennas could offer considerable potential increase of

the transmission rate [9]. This system will transform the transmission rate

according to the number of antennas, and independently code each data
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stream, by modulating and sending data separately from each transmit an-

tennas. This is called spatial multiplexing. Strictly speaking, it is not based

on transmit diversity, as the transmitted data are on the same frequency

band, and signals are mixed. On the basis of the quality of estimated channel

state information, the receiver can estimate the symbols from the different

streams. However, in practice, spatial multiplexing is limited by the number

of transmit and receive antennas in the system.

• Beamforming

In addition to higher bit rates and smaller error rates, multiple-antenna tech-

niques can also be utilized to improve the signal-to-noise ratio (SNR) at the

receiver and to suppress co-channel interference in a multiuser scenario. Us-

ing beamforming techniques, the beam patterns of the transmit and receive

antenna arrays can be steered in certain desired directions [1]. Beamforming

can be interpreted as linear filtering in the spatial domain. The SNR gains

achieved by means of beamforming are often called antenna gains or array

gains. Array gain is a classical feature of multi-antenna systems. It is im-

portant to make a clear distinction between array gain and diversity gains.

Array gain is achieved through the coherent combining of the received sig-

nals from each antenna to improve the SNR of the array output signal. It

can be achieved at the transmiter or receiver. Diversity gain on the other

hand is increased average SNR due to transmission of the same signals over

independently fading channel paths, and will be described in more detail in

the next section.

• Diversity-Multiplexing Trade-off

Multi-antenna arrays have an important role to play in both improving the

robustness of wireless transmission through spatial diversity and increasing

the bit rate through spatial multiplexing. In recent years, there has been fo-

cus upon the trade-off between these two gains in the high SNR regime. The

scaling behaviour of this diversity-multiplexing trade-off takes a particularly
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simple form which will be described in detail in the next section.

In traditional communication networks data transmission directly occurs

between the transmitter and the receiver. No user solicits the assistance of

another one. However, in a general wireless communication network, there

can be many intermediate nodes available to help in transmission.

1.2 Wireless Cooperative Networks

Cooperation relates to any architecture where a user’s communication link is

enhanced in a supportive way by relays or in a cooperative way by other users

[10]. Compared with conventional MIMO systems, a cooperative network

has different nodes which can share antennas, and thereby generate a virtual

multiple antenna array (virtual MIMO) based on cooperation protocols [11]

and [4]. For example in wireless networks, when one node broadcasts its

messages, all nearby nodes overhear this transmission.

Cooperative communications yields several gains. In the following, three

of them are introduced.

• Diversity Gain

Providing additional independent copies of the same information yields di-

versity gain. The gain is from the fact that with the amount of additional

copies increasing, the probability of all of them being illegible decreases.

The provision of such copies can be achieved, for example, by having a relay

provide a copy in addition to the information received already via the direct

link; or by having several relays provide copies in parallel. Diversity gain im-

proves the performance of the system, such as the average error probability

Pe or outage probability Pout. The diversity gain is defined as [10]

d = − lim
SNR→∞

logPout(R,SNR)

logSNR
(1.2.1)

where Pout(R,SNR) is in the Shannon sense at a given average SNR and
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required rate R, and d is the diversity gain.

• Multiplexing Gain

The achievable transmission data rate R is known to be proportional to the

logarithm of the SNR, that is [12]

r = lim
SNR→∞

R(SNR)

logSNR
, (1.2.2)

where r is multiplexing gain and is equal to the degrees of freedom of the

channel. It shows the actual rate changed of the system increases with

SNR. In a system with M transmit and N receive antennas, the maximum

number of independent channels under favorable propagation conditions is

r = min(M,N).

• Diversity-Multiplexing Trade-off

The diversity-multiplexing trade-off (DMT) was first quantified in [13]. It

describes the speed the probability of outage decreases and the communi-

cation rate increases with an increase in SNR. The DMT is applicable to

any real world system operating over slow or fast fading channels, which

allows one to trade reliability against rate. DMT is established for point-to-

point multiple antenna slow fading channels in [12]. An important notion in

wireless communications is determining whether the channel is slow or fast

fading by related to the symbol duration Ts and the channel is coherence

time Tc [14]. If Ts < Tc, the system undergoes slow fading. In the high

SNR regime, it is equivalent to the gradient of the capacity or rate curves.

Inserting (1.2.2) into equation (1.2.1) yields

d(r) = − lim
SNR→∞

logPout(r log2 SNR)

logSNR
. (1.2.3)

This is the general DMT expression, which implies that increasing the rate

multiplexing capabilities inherently requires the reliability of these rates to

be decreased.
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In this thesis, the Golden Code can achieve the DMT, therefore, in the

next chapters, performance of cooperative multi-antenna system with the

Golden Code will be particularly described.

1.2.1 Relay Selection

In cooperative wireless networks, using all the relays may not obtain the

optimal end-to-end performance of a relay network because all the relays

may compound practical problems such as synchronization between the re-

lays. Improved performance can be potentially achieved by selecting the

cooperating relays to employ. In particular, selection can aim to find the

best relay for solving the problem of multiple relay transmission by request-

ing only a single relay forwards the information from the source [15]. Such

relay selection must be repeated as the channel conditions will generally

change in a wireless system. In [16], an example scheme was proposed for

opportunistic relaying to exploit cooperative diversity. The scheme relies on

distributed path selection considering the instantaneous end-to-end wireless

channel conditions, and employs the maximum-minimum selection strategy.

1.2.2 Antenna Selection

Multiple antenna systems, however, need multiple radio-frequency (RF)

chains associated with each antenna. A MIMO system, with M transmit

and N receive antennas, requires M and N RF chains respectively. Each

RF chain includes an analog-to-digital converter, down converters and low-

noise amplifiers [17]. This leads to a considerable increase in the cost and

complexity of implementing such systems and represents a major practical

drawback. Receive antenna selection, therefore, selects a subset of antennas

to feed to the RF chains. The selection algorithm is based on the SNR of

the received signals. It benefits diversity but not spatial multiplexing. Both

single transmit and single receive antenna selection are examined in [18].
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The work in [19] proposed two joint relay-and-antenna selection schemes

which combine opportunistic relaying and selection cooperation with a DF

transmission policy.

1.3 Aim and Objectives of the Thesis

The overall aim of the study is to enhance the end-to-end performance of a

wireless cooperative network. The particular objectives are:

• Objective 1: to increase the transmission rate when using the Golden

Code

In Chapter 3, the Golden Code is used in two-way transmission over a wire-

less relay network in the fixed and selected relay cases. One of the prop-

erties of the Golden Code is the doubling of data rate as compared with

early space-time coding based on the Alamouti code. Relay selection for the

Golden Code is also presented to improve further the performance.

• Objective 2: to overcome asynchronism in the synchronous relay net-

work when using the Golden Code

In Chapter 4, based on relay selection, orthogonal frequency division mul-

tiplexing is used to overcome a weakness of the Golden Code in losing its

properties because of inter-symbol interference in frequency selective chan-

nel environments. Moreover, a simple approach to overcome asynchronism

is used.

• Objective 3: to exploit multi-antenna selection in a multi-source multi-

destination system using the Golden Code and to derive and verify the

performance of Golden Code transmission when multi-antenna selec-

tion is employed

In Chapter 5, multi-antenna selection with Golden Code transmission is

proposed, and a new max-sum multi-antenna selection policy is designed.
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The PEP and outage probability of this system are derived.

• Objective 4: to propose Golden Code transmission with distributed

multi-antenna selection

In Chapter 6, based on Chapter 5, a distributed multi-antenna system with

the Golden Code is constructed. The max-sum multi-antenna selection is

used on the two sides of the relay station. To enhance performance, buffers

are exploited in each antenna in the relay station.

1.4 Thesis Outline

The outline of this thesis is as follows:

Chapter 1 introduces briefly conventional multi-antenna systems and

wireless cooperative networks. The recent developments of relay selection

and antenna selection are mentioned.

Chapter 2 firstly briefly overviews space-time coding, including the Alam-

outi code and the Golden Code in a conventional MIMO system and MIMO-

OFDM. Based on a point-to-point MIMO system, antenna selection is con-

sidered. To overcome the drawbacks of conventional MIMO, a distributed

MIMO system as a cooperative network with corresponding distributed relay

selection is introduced. Then, the performance analysis of wireless coopera-

tive networks is also briefly introduced.

Chapter 3 proposes a simple offset transmission with FIC and OFDM

scheme for a four path asynchronous cooperative relay system. In order

to achieve asymptotically full data rate the source and one group of relays

transmits on even transmission steps, whilst on odd transmission steps, a

different group of relays transmit and the first group receive. In order to

mitigate the potential reduction in diversity gain due to dependent channel

matrix elements in the distributed Golden Code transmission, and the rate

penalty of multihop transmission, relay selection based on two-way trans-
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mission is proposed.

In Chapter 4, distributed transmission by using the Golden Code in

wireless relay networks, and a new multiple relay selection strategy, are

proposed. The maximum of the channel parameter means selection is shown

to achieve the best performance. On the other hand, the Golden Code is

also implemented in an asynchronous wireless relay network over frequency

flat and selective channels, and a simple approach to overcome asynchronism

is proposed.

Chapter 5 examines the best two transmit antenna selection for the

Golden Code in a MIMO system with instantaneous channel conditions by

using maximum-minimum and maximum-sum selection. The outage proba-

bility, based on the different participating transmit antennas, and the outage

events of antenna selection for a MIMO system using maximum-sum selec-

tion is shown to outperform the maximum-minimum selection. The PEP

analysis is performed for maximum-sum transmit antenna selection within

the Golden Code and the diversity order is obtained.

Chapter 6 realises fibre-connected distributed multi-antenna selection

with finite buffers for cooperative wireless networks. Max-sum antenna se-

lection was used with a DF scheme over Rayleigh fading channels. The

state stationary property of a Markov Chain is to used analyse the outage

probability performance of the system.

In Chapter 7, conclusions are drawn, and ideas for future work are given.



Chapter 2

BACKGROUND

2.1 Introduction

When developing new wireless systems, researchers are facing several chal-

lenges. Since the radio frequency spectrum is a limited resource, reducing

the effect of multipath fading and multi-user interference, and improving the

spectrum efficiency and link reliability are extremely important. In recent

years, MIMO wireless communications techniques have emerged to increase

the spectrum efficiency by spatial multiplexing and ensure link reliability

by antenna diversity. Weakness is in this sort of system are inevitable.

In practice, traditional point-to-point MIMO needs increased space at the

transmitter or receiver to achieve uncorrelated spatial channels. Therefore,

a new technology, distributed MIMO has been proposed. This approach is

better for transmitting signals over long distances than distributed MIMO

since path loss is reduced. As such, in cooperative wireless networks exploit-

ing distributed MIMO improves link quality and increases coverage area.

When increasing the number of users, co-channel interference will affect the

quality of links. Mitigating such interference with interference cancellation

is a subject of on-going research.

In recent years there has been considerable effort in the development

of cooperative diversity schemes. The most important cooperative diver-

sity schemes are amplify-and-forward (AF) and decode-and-forward (DF)

approaches. For AF schemes, every relay cooperates and just retransmits its

12
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received signal scaled by its own transmitted power. For most DF schemes,

every relay decodes the transmitted information before retransmitting it us-

ing its transmit power [20]. However, using all the relays may not obtain

the optimal performance of the relay network, and presents practical prob-

lems such as asynchronism between the relays. Improved performance can

be potentially achieved by selecting the cooperating relays to employ. In

particular, selection can aim to find the best relay for solving the problem

of multiple relay transmission by requesting only a single relay or a subset

of relays to forward the information from the source [21]. Best relay selec-

tion must be repeated as the channel conditions can change for each symbol

block.

Multiple antenna systems, however, need multiple radio-frequency (RF)

chains associated with each antenna. Each RF chain includes an analog-to-

digital converter, down converter and a low-noise amplifier [3]. This leads

to a considerable increase in the cost and complexity of implementing such

systems and represents a major practical drawback. Antenna selection se-

lects a subset of antennas to feed to the RF chains. The selection algorithm

is typically based on the SNR of the received signals.

In this chapter, a brief overview of traditional MIMO and MIMO-OFDM

with space-time coding will be given. To overcome the drawback of tradi-

tional MIMO, distributed MIMO with distributed space-time coding will be

introduced. Relay selection and antenna selection will be presented as the

methodologies to improve the performance of distributed MIMO. Finally,

the Golden Code, which achieves the diversity-multiplexing tradeoff, and is

the focus of this thesis will be introduced in this chapter.
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Figure 2.1. A 2×2 MIMO system showing the implementation of the
Alamouti Code and maximum likelihood decoding [2].

2.2 Point-to-point MIMO Wireless Networks

2.2.1 Alamouti Code in MIMO Systems

Space-time block coding is a simple and smart coding scheme designed for

transmit diversity in MIMO technology. The Alamouti space-time coding

scheme is classical and important for understanding the principle of space-

time block coding. It can be implemented with two transmit antennas and

M receive antennas to provide a diversity order of 2M [2]. The core technique

of the Alamouti scheme is providing full transmit diversity for the system.
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The Alamouti transmit diversity scheme is next elaborated.

• The encoding and transmission process

In Fig.2.1, assuming that s0 and s1 are the generally complex modulated

transmitted information symbols at the first time slot. Then −s∗1 and s∗0

denote the complex signals transmitted at the second time slot. The matrix

denoting the encoding is

S =

 s0 s1

−s∗1 s∗0

 , (2.2.1)

where the rows denote the time slots and the columns the antennas. The

channel parameters are denoted h0, h1, h2 and h3. Therefore, the received

signals at two different antennas over two time periods are given by



r0 = h0s0 + h1s1 + n0

r1 = −h0s∗1 + h1s
∗
0 + n1

r2 = h2s0 + h3s1 + n2

r3 = −h2s∗1 + h3s
∗
0 + n3

(2.2.2)

where n0, n1, n2 and n3 represent the additive white Gaussian noise (AWGN)

and are independent and identically distributed (i.i.d.) complex Gaussian

random variables with zero mean and power spectral density N0/2 per di-

mension receiver noise. In practice, interference may be also included in n0,

n1, n2 and n3. Equation (2.2.2) is rewritten in a matrix form as

y = Hs + n. (2.2.3)

where n is a complex Gaussian random vector with zero mean and covari-
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ance matrix N0 · I4. The symbol vector s = [s0 s1]
T and H =



h0 h1

h∗1 −h∗0

h2 h3

h∗3 −h∗2


.

• The combining scheme and maximum likelihood detector

Because the channels h0, h1, h2 and h3 are assumed known, the received

signals can be combined into two signals as ŝ0 and ŝ1 to be sent to the

maximum likelihood detector:

ŝ0 = h∗0r0 + h1r
∗
1 + h∗2r2 + h3r

∗
3

ŝ1 = h∗1r0 − h0r∗1 + h∗3r2 − h2r∗3.
(2.2.4)

To estimate the transmitted signals, the Alamouti scheme then uses the

following maximum likelihood decision rule:

ŝ = arg min
s∈Sc

‖y−Hs‖2 (2.2.5)

where ‖ · ‖2 denotes the Euclidean norm and Sc is the set of all possible

transmitted signal vectors from the source. The ML detection is therefore

based on linear processing at the receiver. However, for space-time trellis

coding, once the number of antennas is fixed, the decoding complexity (mea-

sured by the number of trellis states at the decoder) increases exponentially

as a function of the diversity level and transmission rate [22]. The reduced

computational cost of the Alamouti scheme explains why the scheme is so

widely used, and why space time trellis coding is not considered further in

the thesis.



Section 2.2. Point-to-point MIMO Wireless Networks 17

2.2.2 The Golden Code in MIMO Systems

The Golden Code was proposed in 2004 [23], which is a full rate and full

diversity 2 × 2 linear dispersion algebraic space-time block code that has

a maximal coding gain for a two transmit antenna and two or more re-

ceive antenna MIMO system [23]. Due to the performance of the algebraic

construction, the Golden Code outperforms the Alamouti code in flat fad-

ing channels. However, in frequency selective channels environment, the

Golden Code loses its properties because of the inter-symbol interference

(ISI) [24]. To overcome this weakness, orthogonal frequency division mul-

tiplexing (OFDM) modulation can be used and channel coding can also be

adopted to improve the performance of the Golden Code in a MIMO system

in the later Chapter 4.

The essence of the code is the Golden Number θ = 1+
√
5

2 which is used

to generate the best performance [23]. The codeword is of the form

C =
1√
5

 α(a+ bθ) α(c+ dθ)

γα(c+ dθ) α(a+ bθ)

 =
1√
5

 s1 s2

s3 s4

 , (2.2.6)

where a, b, c, d are drawn from the information symbol constellation from

quadrature amplitude modulation (M-QAM); θ = 1+
√
5

2 , θ = 1−
√
5

2 , α =

1 + i(1 − θ) and α = 1 + i(1 − θ), where i ,
√
−1. To avoid vanishing

determinants, the factor |γ| is set as unity, which guarantees that the same

average power is transmitted from each antenna at each channel use [23].

The non-vanishing determinant can increase the rate. In this code matrix

(2.2.6), the four degrees of freedom of the system are used, which allows

four information symbols to be sent. The minimum determinant of the

Golden Code is 1/5. The spectral efficiency is 2 log2(M)bits/s/Hz. For

the Golden Code, the elements of the codeword matrix are from the in-

formation symbol constellation. The constellation of the Golden Code is
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Figure 2.2. Alamouti Code v.s. Golden Code.

a rotated regular quadrature amplitude modulation (QAM) constellation.

The diversity-multiplexing tradeoff is an essential tradeoff between the error

probability and the data rate of a system. The Golden Code can achieve

optimal diversity-multiplexing tradeoff for a 2×2 MIMO system [23]. Due to

obtaining simultaneously both diversity and multiplexing gain, the Golden

Code scheme is “Perfect”. Several decoding strategies for Golden Codes have

been studied, such as full maximum-likelihood and sphere decoding [25]. Fig.

2.2 shows the performances comparison of 2 × 2 Alamouti and the Golden

Code with the maximum-likelihood detection. Although the bit error rate

performance of the Golden Code is worse than Alamouti code, the transmit

rate of the Golden Code is two times faster than Alamouti code. In Chapter

4, the sphere decoding will be introduced.
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2.2.3 Space-Time Coding in MIMO-OFDM Systems

The orthogonal frequency-division multiplexing (OFDM) transmission scheme

is another type of multichannel system and employs multiple subcarriers [26].

In OFDM, the entire channel is divided into many narrow parallel subchan-

nels, thereby increasing the symbol duration in each sub-channel and elim-

inating inter-symbol interference (ISI) caused by the multipath. Therefore,

OFDM has been used in digital audio and video broadcasting in Europe [27],

and is a promising choice for future high-data-rate wireless systems. The

multiple orthogonal subcarrier signals are overlapped in spectrum and can be

produced by generalizing the single-carrier Nyquist criterion into the multi-

carrier criterion [26]. The discrete Fourier transform (DFT) and inverse

DFT (IDFT) operations are useful for implementing these orthogonal sig-

nals. Combining with the characteristics of the MIMO channel, multiple

transmit and receive antennas can be used with OFDM to further improve

system performance, carrier frequency synchronization between the trans-

mitter and receiver is very important. The main advantage of OFDM is that

it converts a frequency-selective channel into a set of parallel flat fading sub-

channels, therefore, reducing the equalization and demodulation complexity

at the receiver [28]. Consider an OFDM communication system using M

transmit antennas and N receive antennas. Such a system could be im-

plemented using a single space-time encoder employing a code for transmit

antennas. In this case, the space-time encoder takes a single stream of binary

input data and transforms it into parallel streams of baseband constellation

symbols.

Fig.2.3 shows the block of 2 × 2 MIMO-OFDM transceiver. The fre-

quency selective fading channel between the µ-th transmit antenna and the

υ-th receive antenna is represented by the vector of impulse response coeffi-

cients hν,µ = [hν,µ0 · · ·h
ν,µ
L ]T with L denoting the channel order. The symbol

transmitted on the p-th subcarrier from the µ-th transmit antenna during
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the n-th OFDM symbol interval is represented as xµn(p). These symbols are

transmitted in parallel through the Nc subcarriers by Nt transmit antenna,

where p is the frequency index of each transmitted symbol. Note that DFT

and IDFT can be implemented efficiently by using fast Fourier transform

(FFT) and inverse FFT (IFFT). The OFDM system inserts a guard interval

cyclic prefix (CP) in the time domain to mitigate the inter-symbol interfer-

ence (ISI) between adjacent OFDM symbols [26].

The received signal after CP removal and FFT processing at the v-th

receive antenna can be expressed as

yνn(p) =

Nt∑
µ=1

H(ν,µ)(p)xµn(p) + ωνn(p), (2.2.7)

where H(ν,µ) is the subchannel transfer function from the µth transmit an-

tenna to the vth receive antenna, and ωvn(p) is the AWGN which is assumed

to be statistically independent across time, space and subcarriers.



Section 2.2. Point-to-point MIMO Wireless Networks 21

F
ig
u
re

2
.3
.

T
h
e

b
as

ic
b
as

eb
an

d
b
lo

ck
d
ia

gr
am

of
a

2
×

2
M

IM
O

-O
F

D
M

tr
an

sc
ei

ve
r.



Section 2.2. Point-to-point MIMO Wireless Networks 22

The MIMO-OFDM system operation in the frequency-domain can be

expressed in vector form as:

yνn =

Nt∑
µ=1

D(ν,µ)xµn + wν
n, (2.2.8)

where D(ν,µ) = diag[H(ν,µ)(1) · · · H(ν,µ)(Nc)]. According to (2.2.8), the

received MIMO-OFDM blocks are expressed as the superposition of single

antenna OFDM blocks.

At the receiver, the corresponding decoders developed for flat-fading

channels are implemented again on a per subcarrier basis. Thus, the main

advantage of the space-time OFDM transceiver with block-orthogonal ST

codes per subcarrier is its low complexity and it can operate even for chan-

nels with large order L [28] although the transmission efficiency will be af-

fected by the increased length of the CP. However, if there is no coding

across subcarriers, the full diversity is not exploited [28]. In the following,

the performance of MIMO-OFDM with the Alamouti code will be presented.

In Fig. 2.4, it shows the simulated performances of SISO-OFDM and

2 × 2MIMO-OFDM. The transmitter sends quadrature phase-shift keying

(QPSK) symbols to the destination. The OFDM block length is N = 64,

and the length of the cyclic prefix is 16. Moreover, the channel length is

4, and channel state information (CSI) is assumed to be perfectly known

at the destination node. Full maximum-likelihood detection is used at the

receiver. Obviously, the diversity gain is increasing and the slope of bit error

rate (BER) curve is increasing. For the signal-noise ratio (SNR) region from

0 dB to 30 dB, each value of BER using MIMO-OFDM is smaller than using

SISO-OFDM. i.e. when SNR equals to 15dB, the BER of SISO-OFDM is

just at the value of 10−1.8. Comparing with MIMO-OFDM in the same case,

the BER value approximately reach is 10−3. Thus, at the same SNR, the

performance of MIMO-OFDM outperforms SISO-OFDM. Therefore, diver-
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Figure 2.4. Bit error rate versus SNR of SISO-OFDM and MIMO-
OFDM systems.

sity gain can mitigate the channel fading and increase the total resistance to

co-channel interference, and thereby improve the effectiveness of the link.

Then, the same approach and same assumptions are applied to simulate

the frame error rate (FER) of SISO-OFDM and MIMO-OFDM, results of

which are shown in Fig. 2.5. The total frame number for both systems is

1500. It is easy to see the FER of SISO-OFDM is worse than for MIMO-

OFDM with increasing SNR. Once there is one bit error in a frame, the

frame is incorrect. The per frame error trend can be decided from the trend

of BER in these two systems. Moreover, the number of error frames in

SISO-OFDM is more than for MIMO-OFDM. For example, for the range

5 dB to approximately 14 dB SNR, the frame error rates of SISO-OFDM

always equal to 1 and the curve decreases after 14 dB. From about 12 dB,
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Figure 2.5. Frame error rate versus SNR of SISO-OFDM and MIMO-
OFDM systems.

the curve of MIMO-OFDM starts to decrease and the slope is larger than

for SISO-OFDM. Note, SNR could easily be replaced by Es/N0, and there

would be a simple shift of 3 dB for QPSK.

2.2.4 Antenna Selection

Multiple-antenna systems, such as MIMO, can improve the capacity and re-

liability of radio communication. Although many benefits of multi-antenna

systems have been verified, the deployment of multiple antennas requires

multiple RF chains. These RF chains include multiple analog-digital convert-

ers, low noise amplifiers, and downconverters, whose high cost is undesirable

especially for mobile handsets. Antenna sub-set selection where transmis-

sion is performed through a sub-set of the available antenna elements is a

cost-effective solution [17], [29]. Thus employing a reduced number of RF
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chains at the receiver and attempting to allocate optimally each chain to one

of a larger number of receive antennas was proposed. In this case only the

best set of antennas is used, while the remaining antennas are not employed,

thus reducing the number of required RF chains. Thus, antenna selection

is a low-cost low-complexity alternative to capture many of the advantages

of MIMO systems. In antenna selection, a subset of the available antenna

elements is adaptively chosen by a switch, and only signals from the chosen

subset are processed further by the available RF chains [30]. Antenna selec-

tion has received considerable attention recently. It has been considered at

the transmitter called transmit antenna selection (TAS), at the receiver it

is called receive antenna selection (RAS), and at both the transmitter and

the receiver is transmit and receive antenna selection (T-RAS). Its perfor-

mance has been explored in terms of capacity and outage for spatial mul-

tiplexing systems, and diversity order and array gain for space-time coded

systems [31]. The selection criteria of receive antenna selection or transmit

antenna selection have been presented to minimise the error probability or

maximise the capacity bounds based on the instantaneous CSI at the trans-

mitter [32].

• Receive Antenna Selection

Diversity of multiple receive antennas is a direct extension of traditional

receive diversity ideas. Selection diversity chooses the path with the high-

est SNR, and performs detection based on the signal from the selected path.

Maximal ratio combining (MRC) makes decisions based on an optimal linear

combination of the path signals. The application of the selection to receive

antenna selection is shown in Fig. 2.6, in which a single receive antenna is

chosen from among all available antennas. To know all SNRs simultaneously

for optimal selection is based on the quasi-stationarity assumption for the

channel gains. For example, one may use a training signal in a preamble to

the information data. During this preamble, the receiver scans the antennas,
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Figure 2.6. Receive antenna selection [3].

finds the antenna with the highest channel gain, and selects it for receiving

the next data burst.

• Transmit Antenna Selection

Transmit antenna selection, unlike receive selection, requires a feedback

Figure 2.7. Transmit antenna selection [3].

path from the receiver to the transmitter as shown in Fig. 2.7. This feed-

back rate is rather small, especially for single antenna selection. It gives the

transmitter some information about the state of the channel. Aside from

that difference, however, transmit antenna selection is very similar to re-

ceive antenna selection; the antenna is selected that provides the highest

equivalent receive SNR. In [33], the implementation of TAS is for secure

transmission in the MIMO wiretap channel with low feedback which only

selects only one antenna at the transmitter. In the thesis, the later Chapter
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5 and Chapter 6 will consider multi-transmit antenna selection in distributed

MIMO systems.

2.3 Distributed MIMO systems in Cooperative Networks

Figure 2.8. Distributed MIMO system concept with mobile nodes
cooperating to provide the link to the base station.

MIMO wireless communications technologies can increase the spectrum

efficiency by spatial multiplexing and ensure the reliability of the link by

exploiting antenna diversity. Using diversity techniques for mitigating, even

exploiting, multipath fading is central to improving the performance of wire-

less communication systems and networks [34]. The approach of distributed

antennas can facilitate the applicability of MIMO techniques to a small ter-

minal. In wireless telecommunication systems, large distances and obstacles

in the practical environment cause path loss, and moving in a multipath

environment can produce serious signal fading. There may be no direct link

between the transmitter and receiver due to shadowing. The channels are

typically modelled as Rayleigh flat fading and the channel parameters are
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assumed not to change during transmitting one symbol, i.e. a quasi-static

assumption. That is the transmitting method may be block-by-block. The

channel parameters can therefore be changed after transmitting every block.

A distributed MIMO scheme is therefore both useful and applicable. Coop-

eration is referred to as any architecture that deviates from the traditional

point-to-point approach, that is a user’s communication link is enhanced

in a supportive way by relays or in a cooperative way by other users. For

overcoming the space limitation of point-to-point MIMO, distributed MIMO

systems have been proposed to realize point-to-point MIMO like performance

in fading channels. The distributed MIMO system concept is represented in

Fig.2.8. A mobile user is represented by a mobile node. The single antenna

terminals act cooperatively to transmit data.

In recent years there has been considerable effort in the development

of cooperative diversity schemes [4]. A variety of cooperative schemes has

been proposed. Among these strategies, perhaps the most important are the

amplify-and-forward (AF) and decode-and-forward (DF) approaches. For

AF schemes, every relay cooperates and just retransmits its received signal

scaled by its own transmitted power. For most DF schemes, every relay de-

codes the transmitted information before retransmitting it using its transmit

power [20], and therefore provide increased complexity.

In previously proposed cooperative diversity schemes, it has been as-

sumed that coordination among the relays allows for accurate symbol-level

timing synchronization at the destination and orthogonal channel alloca-

tion, which can be quite costly in terms of signaling overhead in mobile ad

hoc networks, which are often defined by their lack of a fixed infrastructure

and the difficulty of centralized control [35]. While all full diversity achiev-

ing space-time codes for MIMO systems achieve full spatial diversity for

synchronous cooperative systems, few of them do so for asynchronous coop-

erative systems [36]. There have been some studies on space-time coding to
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achieve asynchronous cooperative diversity, for example, [35] and [37]. Most

of them use the decode-and-forward approach. Distributed space-time cod-

ing in synchronous wireless networks is therefore extended to asynchronous

wireless networks using an amplify-and-forward approach in this thesis.

The topic of the thesis on cooperative networks has also attracted a large

amount of attention in industry. Cooperative relaying has been proposed

in the IEEE 802.16j mobile multihop relay standard [38]. Meanwhile, many

coordinated multicell space-frequency codes have been suggested in the third

generation partnership project long term evolution (3GPP LTE) [38].

2.3.1 Cooperative Strategies in Relay Networks

Relay protocols affect the system performance in cooperative wireless net-

works. In this section, an overview of traditional relay protocols, decode-

and-forward (DF) and amplify-and-forward (AF) is presented.

• Decode-and-Forward Relay Protocol (DF)

Figure 2.9. The model of source-relay-destination two-hop links in a
DF relaying protocol. [4]
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Fig. 2.9 is a simple representation of the decode-and-forward (DF) protocol.

In this figure, the middle point is a mobile relay node which first decodes the

received signals and then forwards the re-encoded signals to the destination.

The decoding can be done fully at the bit level or partially at the symbol

level. When the channel between the source and the relay is of good quality,

DF provides error correlation capability and is then superior to amplify-

and-forward (AF) [39]. However, when the channel link suffers from deep

fading, the decoding could produce errors. On the other hands, although

DF cannot provide full diversity by itself, it can achieve full diversity when

complex codes are applied at the relays.

• Amplify-and-Forward Relay Protocol (AF)

Figure 2.10. The model of source-relay-destination two-hop links in
a AF relaying protocol. [4]

In the amplify-and-forward (AF) protocol, as represented in Fig. 2.10. The

source broadcasts the signals to the relay and the destination. The relay

amplifies the received noisy signals and forwards to the destination with

transmitted power of the relay. In terms of details of the algorithm, the
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source node sends the signal vector xs and the relays receive signal yr. The

relay will send the signal that is like:

xr = βryr (2.3.1)

where βr is the gain to amplify the relay given its power constraint

βr ≤

√
Ps

|Ar|2Pr +N0
, (2.3.2)

and the gain depends on Ar which is a channel fading coefficient between

the source and relay.

After that, the destination node obtains the signal yd from relays. How-

ever, the destination must know the channel coefficients to perform optimal

coding with amplify and relay processing. Therefore, AF is a simple method

that lends itself to analysis, and has been very useful in furthering under-

standing of a cooperative communication system [4].

• Distributed Space-Time Coding

Space-time coding can be applied to a relay network to achieve coopera-

tive diversity [40]. This coding method is similar to a point-to-point MIMO

system. In a distributed MIMO system, distributed space-time block cod-

ing (DSTBC) is extended to networks with multiple-antenna nodes. So,

designing a DSTBC is the most important aspect for this system. It will

successfully lead to realizing cooperation communication in wireless relay

networks. As shown in Fig. 2.11, this is an R-relay wireless relay network

model, which means the maximal diversity is R. One relay transmission

procedure from source S to receiver X can be divided into two steps. In

step one, the source broadcasts the signal to the relays, and in the second

step relays the signals from the relays to the receiver. Through the use of R

relays a linear space-time codeword is generated at the receiver.

The channels are assumed to be Rayleigh flat fading with coefficients
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Figure 2.11. Example two-stage co-operative relay network [5].

fi and gi, which are complex Gaussian random variables independent and

identically distributed (i.i.d.) with zero-mean and unit-variance. Assuming

a block-fading model with coherence interval T , for which fi and gi remain

constant during a block of T transmissions, and for the next block, the

values are changed. In detail, a block of symbols to be transmitted is s =

[s1, · · ·, sT ]T with the normalization E{s∗s} = 1. It means the power of the

signal at the transmitter node is unity, where (·)T denotes transpose and

(·)∗ conjugate transpose. In Fig. 2.11, the transmitter signal
√
P1T s. P1 is

the average power per transmission at the transmitter. The received signal

vector at the ith relay is denoted as ri. It includes the effect of fi and the

noise vi. This is the broadcast step of the relay transmission. The received

signal at the relays is given by

ri =
√
P1Tfis + vi (2.3.3)

The next step is from relays to the receiver. The i -th relay transmits the

signal vector ti which corresponds to the received signal ri multiplied by a

scaled identity matrix. The transmitted signal from the ith relay node can
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be generated from

ti =

√
P2

P1 + 1
(Airi + Bir

∗
i ) (2.3.4)

=

√
P1P2Ts
P1 + 1

(fiAis + f∗i Bis
∗) +

√
P2

P1 + 1
(Aivi + Biv

∗
i )

where Ai and Bi are T × T complex matrices used depending on the dis-

tributed space time code, 1 is the unity noise power, and P2 is the average

transmission power at every relay node. The received signal vector y at the

receiver is given by

y =
R∑
i=1

giti + w. (2.3.5)

The special case that either Ai = 0T , Bi is unitary or Bi = 0T and Ai is

unitary is considered. Ai = 0T means that the ith relay column of the code

matrix contains the conjugates s∗1, ..., s
∗
T only and Bi = 0T means that the

ith relay column contains the information symbols s1, · · ·, sT only. Thus the

following variables are defined as [5]

Âi = Ai, f̂i = fi, v̂i = vi, s(i) = s, if Bi = 0T

Âi = Bi, f̂i = f∗i , v̂i = v∗i , s(i) = s∗, if Ai = 0T

(2.3.6)

From (2.3.4),

ti =

√
P1P2T

P1 + 1
f̂iÂis

(i) +

√
P2

P1 + 1
Âiv̂i (2.3.7)

And then, the signal vector at the receiver is (considering noise w):

y =

R∑
i=1

giti+w =

R∑
i=1

√
P1P2T

P1 + 1
f̂igiÂis

(i)+

R∑
i=1

√
P2

P1 + 1
giÂiv̂i+w. (2.3.8)

Thus, the general equation of the received signal vector at the destination

can be obtained:

x =

√
P1P2T

P1 + 1
Sh + w (2.3.9)
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where

S = [Â1s
(1) ... ÂRs(R)] , h = [f̂1g1 ... f̂RgR]T (2.3.10)

and

w =

√
P2

P1 + 1

R∑
i=1

giÂiv̂i + wd

S is space-time coding matrix formed at the receiver by relays. The vector h

is the equivalent channel and wd is the equivalent noise. Maximum-likelihood

decoding is defined by

arg min
S

‖x−
√
P1P2T

P1 + 1
Sh‖2, (2.3.11)

where ‖ · ‖2 denotes the Euclidean norm, and all possible S formed as in

(2.3.10) from the source signal vectors s defined by the source constellation.

If the total power is fixed as P per symbol transmission within this network,

then the optimal power allocation, which maximizes the expected receive

SNR, is [5]

P1 =
P

2
and P2 =

P

2R
(2.3.12)

So far the transmission process of a distributed MIMO system, and dis-

tributed space-time coding design have been discussed. Note that in a prac-

tical application, neither Ai nor Bi are zero.

2.3.2 Distributed Relay Selection

In the previous sections, all relays participate in the relayed transmission

which they transmit over orthogonal channels. Although the orthogonal-

ity assumption reduces the system implementation complexity, it limits the

system throughput. It can however lead to a further capacity increase, but

system implementation complexity is also increased, such as the CSI of the

forward channels from the relays to the destination needs to be found. To
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overcome these problems, in this section, a simple relay selection algorithm

based on an AF relay protocol to facilitate the system design for two-hop

multiple relay networks is introduced. The relay selection improves the sys-

tem performance and capacity compared to the all participation orthogonal

AF relay schemes.

This section considers the same two-hop relay network Fig. 2.11, which

consists of one source, n relays and one destination, and assuming that there

is no direct link. Let γif = |fi|2γ̄if and γig = |gi|2γ̄ig denote the instantaneously

received SNR in the link from the source to the relay i and that from the

relay i to the destination, where γ̄if = ps(fi)
2

N0
and γ̄ig = pir(gi)

2

N0
are the average

SNRs in the link from the source to the relay i and from the relay i to

the destination, and ps is the source transmission power and pir is the relay

transmission power.

Assuming γ̄if = γ̄f and γ̄ig = γ̄g for all i = 1, 2, · · · , n. Using the same

calculation as for the AF protocol, let γifg be the destination received SNR

[10],

γifg =
γifγ

i
g

γif + γig + 1
. (2.3.13)

In the AF relay selection scheme, a single relay, which has the maximum

source-relay-destination link SNR is selected to forward the information

symbols from the source to the destination. Therefore, the mathematical

expression is determined by

i = arg max
1≤i≤n

{γifg}. (2.3.14)

To analyze the performance of AF relay selection schemes, order statistics are

also useful. In this section, some basic order statistical tools are introduced

[41], which will be used later for the performance analysis.

Assuming j independent and identically distributed random variables,

X1, · · · , Xj , each with a CDF F(x). Arranging the variables X1, · · · , Xn in
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an increasing order of magnitude, denoted by:

X(1) ≤ X(2) ≤ · · · ≤ X(j), (2.3.15)

whereX(ω) is the wth order statistic. Then the CDF of the ωth order statistic

X(ω) is given by [41]

F(w)(x) = P (X(w) ≤ x) =

j∑
k=1

 j
w

Fw(x)[1− F (x)]j−w. (2.3.16)

If w = 1 and w = j, the above equation can become

F(j)(x) = F j(x)

F(1)(x) = 1− [1− F (x)]j .

(2.3.17)

The PDFs of X(1) and X(j) are obtained by differentiating their respective

CDFs

f(j)(x) =
∂F(j)(x)

∂x
= jf(x)F j−1(x)

F(1)(x) =
∂F(1)(x)

∂x
= jf(x)1− [1− F (x)]j−1.

(2.3.18)

Therefore, the joint PDF of X(j1), · · · , X(jk)(1 ≤ j1 ≤ j2 ≤ jk ≤ j) can be

achieved

f(j1),··· ,(jk)(x1, · · · , xk) =
j!

(j1 − 1)!(j2 − j1 − 1)! · · · (j − jk)!

F j1−1(x1)f(x1)[F (x2)− F (x1)]
j2−j1−1f(x2) · · · [1− F (xk)]

j−jkf(xk)

(2.3.19)

In particular, the joint PDF of all j order statistics is given by

j!f(x1)f(x2) · · · f(xj), x1 ≤ · · · ≤ xj . (2.3.20)
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2.4 Performance Analysis of Wireless Cooperative Networks

In wireless cooperative networks, signal fading arising from multipath prop-

agation is a particularly severe channel impairment that can be mitigated

through the application of diversity. When compared with the pairwise er-

ror probability (PEP) of a traditional MIMO system, the diversity gain for

the cooperative system is no longer just a simple exponential function of the

signal-to-noise ratio (SNR), rather, it involves the logarithm of the SNR.

The term diversity gain function is used to designate this characteristic of

the PEP. Diversity gain and coding gain can be achieved in a wireless relay

network by having the relays cooperate distributively. The coding gain is

the improvement in the PEP obtained by the code design [42]. Therefore,

PEP analysis is an important method to analyze the cooperative diversity

and will be described in this section. Moreover, performance characteriza-

tion in terms of outage events is also an important evaluation of robustness

of transmission to fading, typically performed as outage probability analysis.

Therefore, the outage probability analysis will be presented after the PEP

analysis in this section.

2.4.1 Pairwise Error Probability

• Chernoff Bound of General Communication System

Pairwise error probability (PEP) is an error measure that is related to

system error performance via the union bound [43]. The upper PEP bound

in the chapter is the Chernoff bound. Chernoff bound provides a very tight

upper bound in PEP [14]. Chernoff bound has been widely used in various

cases in approximating the PEP [44] and [45]. The Chernoff bound for a

general communication network is briefly described. A random variable k is
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assumed together with function f(k), which satisfies

f(k) ≥

1 k ≥ 0

0 k < 0
, (2.4.1)

If the various order statistics of k always exist, the Chernoff bound implies

that the following inequality always exists:

P (k > 0) ≤ E(f(k)). (2.4.2)

where E(·) represents the statistical expectation operation. Setting f(k) =

exp(λk), then the Chernoff bound becomes:

P (k > 0) ≤ E(exp(λk)). (2.4.3)

where λ > 0. Then, a general point-to-point single antenna communication

system is considered. The received signal is obtained as y = hs + n, where

s is the transmission signal, h is the fading coefficient and n is a Gaussian

random noise with the spectrum density of N0 per dimension. The maximum

likelihood (ML) decoding is given by

ŝ = arg max
s∈Sc

P (y|s) = arg min
s∈Sc

|y − hs|2. (2.4.4)

The decoder always selects the symbol that has the minimum distance to

the received signal. Therefore, the probability that the decoder chooses that

a wrong symbol s̃ is transmitted, denoted by P (s→ s̃|y, h), is given by:

P (s→ s̃|y, h) = P (|y − hs|2 > |y − hs̃|2) = P (|y − hs|2 − |y − hs̃|2) > 0).

(2.4.5)
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Applying the Chernoff bound (2.4.3) to the equation (2.4.5), yields:

P (s→ s̃|y, h) ≤ E(exp(λ(|y − hs|2 − |y − hs̃|2))). (2.4.6)

After some algebraic manipulation [7] and [46] , equation (2.4.7) can be

obtained as

P (s→ s̃|y, h) = exp(−λh2(1−N0λ)|s− s̃|2), (2.4.7)

if λ = 1/2N0, the above equation becomes

P (s→ s̃|y, h) ≤ exp(− 1

4N0
h2|s− s̃|2). (2.4.8)

Similarly, for a multiple antenna space-time coded system, the transmitted

codeword, channel and noise terms become matrices, namely S, H and N,

respectively. Thus, the received signal matrix can be represented as

Y = HS + N. (2.4.9)

Following the same calculation as in the single antenna system, the PEP of

the decoder deciding in favour of another codeword S when actually S̃ has

been transmitted, can be upper bounded as

P (S→ S̃|Y,H) ≤ exp(− 1

4N0
HH(S− S̃)

H
(S− S̃)H). (2.4.10)

where HH represents the Hermitian transpose of matrix H.

• PEP Upper Bound for a Distributed Space-Time Code

This section employs the Chernoff bound to derive the PEP upper bound

for an AF type DSTC network. Since Ai are unitary and wj , vi,j in (2.3.6)

are independent Gaussian random variables, w is a Gaussian random vector

when the gi are known. Assume that sk is transmitted. Define Sk = [A1sk ·
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· · ARsk]. Therefore, Sk is an element in a distributed space-time code.

As fi and gi are known, x|sk is also a Gaussian random vector with mean√
P1P2T
P1+1 Skh and covariance matrix (1 + P2

P1+1

∑R
i=1 |gi|2)IT . Therefore,

P (x|sk) =
e
−

(x−
√
P1P2T
P1+1

Skh)H (x−
√
P1P2T
P1+1

Skh)

1+
P2
P1+1

∑R
i=1
|gi|2

πT (1 + P2
P1+1

∑R
i=1 |gi|2)T

. (2.4.11)

Moreover, the maximum-likelihood (ML) decoding of the system can be

easily seen to be

arg max
Sk∈Sc

P (x|sk) = arg min
Sk∈Sc

‖x−
√
P1P2T

P1 + 1
Skh‖2. (2.4.12)

With the ML decoding in (2.4.12), the PEP, averaged over the channel co-

efficients, of mistaking sk by sl has the following Chernoff bound [42]:

P (S→ S̃ |Y,h) ≤ exp

(
− P1P2T

4(1 + P1 + P2
∑R

i=1 |gi|2)
hH(S− S̃)

H
(S− S̃)h

)
(2.4.13)

Averaging the above equation with respect to the |f̂i|2 yields

P (S→ S̃|Y, hi, i = 1, · · ·, R) ≤ det−1
[
IR +

P1P2T

4(1 + P1 + P2
∑R

i=1 |gi|2)
MG

]
(2.4.14)

where

M = (S− S̃)H(S− S̃) and G = diag{|g1|2, · · ·, |gR|2}, (2.4.15)

and det(·) and diag(·) denote the matrix determinant and diagonal matrix

respectively. Comparing with the PEP Chernoff bound of a multiple antenna

system, the expressions are very similar. In order to derive the final PEP

upper bound [44], to average equation (2.4.14) must be averaged over |gi|2.

Unfortunately, the expectations over all |gi|2 are difficult to calculate in a
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closed form, therefore, some approximation has to be considered. Setting

g =
∑R

i=1 |gi|2 which has gamma distribution

fg(x) =
xR−1e−x

(R− 1)!
, (2.4.16)

where R is both for mean and variance of g. For large R, the mean of g ≈ R.

Therefore,

P (S→ S̃|Y, hi, i = 1, · · ·, R) ≤ det−1
[
IR +

P1P2T

4(1 + P1 + P2R)
MG

]
(2.4.17)

When P1P2T
4(1+P1+P2R

) is maximised, the above equation is minimised. Letting

P = P1+P2R be the total transmission power at the source and all relays and

according to the power allocation (2.3.12), the term in the above equation

can be simplified as

P1P2T

4(1 + P1 + P2R)
=
P1(P − P1)T

4R(1 + P )
≤ P 2T

16R(1 + P )
. (2.4.18)

Therefore,

P (S→ S̃|Y, hi, i = 1, · · ·, R) ≤ det−1
[
IR +

PT

16R
MG

]
(2.4.19)

is obtained. Integrating the above equation with respect to |gi|2 and assum-

ing M is a full rank matrix and T ≥ R, the average PEP of the distributed

space-time coding can be approximated as

P (S→ S̃|Y) ≤ det−1[M]

(
8R

T

)R
P
−R(1− log logP

logP
)
. (2.4.20)

From the above equation, the diversity order is achieved R(1 − log logP
logP ).

When P is very large, log logP
logP → 0 and the asymptotic diversity order is

R. In general, the rank of M will be min{T,R} instead of R. Thereby, the

diversity order achieved by the DSTC is min{T,R}(1− log logP
logP ).
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2.4.2 Outage Probability

Developing performance characterisations in terms of outage events and asso-

ciated outage probabilities, which measure robustness of the transmissions to

fading is typically performed in the high signal-to-noise ratio (SNR) regime.

The outage is converted into an equivalent event defined in terms of the

fading coefficients of the channel. Since the channel average mutual infor-

mation I is a function of the fading coefficients of the channel, it is a random

variable. The event I < R that is the mutual information random variable

falls below some fixed spectral R, which is referred to as an outage event,

because reliable communication is not possible for realizations in this event.

The probability of an outage event, P [I < R] is referred to as the outage

probability of the channel. The outage events are independent of the dis-

tribution of the underlying random variables, while outage probabilities are

intimately tied to them. Several of the cooperation strategies have similar

outage probabilities, but the structure of their outage events is sufficiently

different [47]. As a result, both outage events and outage probabilities are

useful for characterising the transmission protocols.

• Direct Transmission

This transmission protocol is a typical three-node transmission as shown

in Fig. 2.12. Under direct transmission, the source terminal transmits the

signal over the channel directly to the destination node, while at this time,

the relay node does not work. The maximum average mutual information

between input and output is given by

ID = log2(1 + SNR|hsd|2). (2.4.21)

The outage event for spectral efficiency R is given by ID < R and is equiva-

lent to the event

|hsd|2 <
2R − 1

SNR
. (2.4.22)
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Figure 2.12. A basic wireless cooperative network with a direct link
and single relay node.

For Rayleigh fading, i.e., |hsd|2 is exponentially distributed with parameter

|σsd|−2, the outage probability satisfies

P outD (SNR,R) = P (ID < R) = P (|hsd|2 <
2R − 1

SNR
)

= 1− exp(− 2R − 1

SNRσ2sd
) ≈ 1

σ2sd
· 2R − 1

SNR
,

(2.4.23)

where σ2sd is the channel variance from the source to the destination. There-

fore, to achieve low outage probability needs high SNR and channel variance

σ2sd.

• Fixed relay transmission

Amplify-and-Forward Scheme

The AF transmission has a direct link and produces an equivalent one-input

two-output, complex Gaussian noise channel with different noise levels in

the outputs, and the maximum average mutual information between input

and output is given by

IAF =
1

2
log(1 + SNR|hsd|2 + f(SNR|hsd|2, SNR|hrd|2)), (2.4.24)

where f(x, y) = xy
x+y+1 . The outage event for spectral efficiency R is given
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by ID < R and is equivalent to the event

|hsd|2 +
1

SNR
f(SNR|hsd|2, SNR|hrd|2)) <

22R − 1

SNR
. (2.4.25)

For Rayleigh fading, |hij |2 is exponentially distributed with parameter σ−2ij ,

the outage probability can be approximated as

P outAF = P (IAF < R) ≈
(

σ2srσ
2
rd

2σ2sdσ
2
srσ

2
rd

)(
22R − 1

SNR

)2

. (2.4.26)

for high SNR, where σ2ij , i ∈ (s, r) and i ∈ (r, d) are the channel variances.

Decode-and-Forward Scheme

To establish decode-and-forward transmission, a particular decoding struc-

ture must be used at the relay. It is assumed the relay can fully decodes

the source message and examine the symbol-by-symbol, and the destina-

tion also decode perfectly. The maximum average mutual information for

repetition-coded DF can be shown to be [47]

IDF =
1

2
min{log2(1 + SNR|hsr|2), log2(1 + SNR|hsd|2) + |hrd|2}. (2.4.27)

The first term of the above equation denotes the maximum rate at which

the relay can reliably decode the source message, and the second term shows

the maximum rate at which the destination can reliably decode the source

message given repeated transmissions from the source and destination. The

mutual information forms are typical of relay channels with full decoding at

the relay [47]. The outage event for spectral efficiency R is given by IDF < R

and is equivalent to the event

min{|hsr|2, |hsd|2 + |hrd|2} <
22R − 1

SNR
. (2.4.28)
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For Rayleigh fading, the outage probability for repetition-coded DF can be

computed as

P outDF (SNR,R) = P (IDF < R) = P (|hsr|2 <
22R − 1

SNR
)

+ P (|hsr|2 ≥
22R − 1

SNR
)P (|hsd|2 + |hrd|2 <

22R − 1

SNR
)

(2.4.29)

When SNR approaches infinity,

P outDF (SNR,R) ≈ 22R − 1

σ2srSNR
(2.4.30)

where σ2sr is channel variance from the source to the relay. Fixed DF trans-

mission does not offer the diversity gain for large SNR, because the relays

fully decode the source information which limits the performance of DF to

that of direct transmission between the source and relay.

Selecting Relay Scheme

The task of relay selection is important to realise cooperative relaying in

practice according to the measured SNR. When the relay cannot decode,

direct transmission is implemented. Selection relaying can be applied to

overcome the weakness of the DF transmission. This section introduces

considering the performance of selection DF. In the case of repetition coding

at the relay the mutual information can be shown to be

IADF =


1
2 log2(1 + 2SNR|hsd|2) |hsr|2 < 22R−1

SNR

1
2 log2(1 + SNR|hsd|2 + SNR|hrd|2) |hsr|2 ≥ 22R−1

SNR

, (2.4.31)

The first case of the above equation represents the case when the relay is not

available to decode and the source repeats its transmission so that the mutual

information is that of repetition coding from the source to the destination,

hence the extra factor of two in the SNR. For the second case, the relay



Section 2.5. Summary 46

has the ability to decode and repeat the source transmission and the mutual

information is that of repetition coding from the source and relay to the

destination. The outage event for spectral efficiency R is given by ISDF < R

and is equivalent to the event

(
{|hsr|2 <

22R − 1

SNR
}
⋂
{2|hsd|2 <

22R − 1

SNR
}
)

⋃(
{|hsr|2 ≥

22R − 1

SNR
}
⋂
{|hsd|2 + |hrd|2 <

22R − 1

SNR
}
) (2.4.32)

where
⋂

and
⋃

denote “OR” and “AND” operations. Because the events in

the union of (2.4.32) are mutually exclusive, the outage probability becomes

the sum

P outSDF (SNR,R) = P (ISDF < R)

= P

(
|hsr|2 <

22R − 1

SNR

)
P

(
2|hsd|2 <

22R − 1

SNR

)
+ P

(
|hsr|2 ≥

22R − 1

SNR

)
P

(
|hsd|2 + |hrd|2 <

22R − 1

SNR

)
.

(2.4.33)

When SNR→∞, the limit can be obtained from the above equation [47]

P outSDF (SNR,R) ≈
(

σ2srσ
2
rd

2σ2sdσ
2
srσ

2
rd

)
(2.4.34)

Therefore, the performance of selection DF is identical to that of fixed AF

for large SNR.

2.5 Summary

This chapter presented a brief overview of the space-time coding, including

the Alamouti code and the Golden Code in a conventional MIMO system

and MIMO-OFDM. OFDM offered the advantage of lower implementation

complexity in systems with a large bandwidth-delay spread product. To
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overcome the drawback of traditional MIMO, distributed MIMO with dis-

tributed space-time coding was discussed. Using all the relays may not

obtain the optimal performance of the relay network, and may present prac-

tical problems such as asynchronism between the relays. Due to the high

cost of a multi-antenna system, antenna selection was described. Improved

performance was shown to be potentially achieved by selecting the cooper-

ating relays and antennas employed. The next chapter considers methods

for increasing data rate and mitigating asynchronism in relay networks.



Chapter 3

INCREASING DATA RATE IN

ASYNCHRONOUS ONE-WAY

AND TWO-WAY RELAY

NETWORKS

In this chapter, firstly, a simple full interference cancellation (FIC) scheme

and orthogonal frequency-division multiplexing (OFDM) are used in a two-

hop cooperative four relay network with asynchronism in the second stage.

This approach can achieve the full available diversity and asymptotically

full rate with distributed space-time code (DSTC) scheme. This is followed

by the description of an FIC scheme with offset transmission scheme for

a more practical cooperative network with asynchronism in both stages.

Then, the Golden Code is used in two-way transmission over a wireless relay

network in the fixed and selected relay cases. The rate performance over one-

way schemes is potentially improved by such two-way transmission. A four

time slot amplify-and-forward (AF) protocol is exploited. Two policies are

considered for relay selection, one based on a maximum-minimum strategy

and a second using the maximum-mean approach. Finally, simulation results

to demonstrate the behavior of the methods are presented.

48
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3.1 Introduction

One of the key challenges to designing a high-performance distributed space-

time code system is symbol-level synchronization among the relay nodes. In

conventional point-to-point space time coded MIMO systems, co-located an-

tennas obviate this issue. In cooperative systems, the antennas are separated

by wireless links. Cooperative relays are an important physical layer concept

for mobile wireless ad hoc networks. Moreover, as compared with conven-

tional systems, relaying can provide high quality of service (QoS) for users

at the cell edge or in shadowed areas [10]. One of the key challenges to

designing high-performance distributed space-time code systems is symbol-

level synchronisation among the relay nodes. For example, asynchronism

results from the nodes being in different locations and mismatch between

their individual oscillators [48]. The scheme in [36] achieves robustness to

asynchronism with a simple space-time coding cooperative scheme through

the use of OFDM type transmission and a cyclic prefix (CP). However, this

scheme has weaknesses, firstly its end-to-end transmission rate is only one

half. Therefore, an offset transmission scheme with FIC is applied in this

chapter. The second disadvantage is that this network just considers the tim-

ing error from one relay node to the destination node and assumes perfect

symbol level synchronisation in the transmission from the source to the re-

lays, namely the signals are assumed to arrive at the relays at the same time.

However, this assumption may not hold in practice. Therefore, in Section

3.2, two timing errors are considered in the channels, one from the source to

a relay and a separate one from a relay to the destination. The timing errors

are removed by exploiting the CP, and in order to decrease the complexity

of decoding at the relay nodes, the CP removal is only implemented at the

destination.

Initial work in the chapter focuses upon one-way transmission, as men-
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tioned in Section 3.2. In one-way communication based on distributed space

time coding an end-to-end transmission rate of a half is achieved when per-

fect channel state information is assumed to be available at the destination.

Two-way communication on the other hand can make the system obtain

full-rate. Such two-way communication without relay channels was first

proposed by Shannon in 1961, and he derived the inner and outer bounds

on the capacity region [49]. In two-way communication the destination (the

other terminal) also has data to send to its source, i.e., the downlink and

uplink need to exchange information [50]. This system was built based on

single user transmission. Therefore, a multi-user two-way scheme is consid-

ered in Section 3.3. Such transmission is used to increase the sum-rate of two

terminal users. On the other hand, using all the relays may not obtain the

optimal performance. Improved performance can be achieved by selecting

the cooperative relays. Selection can aim to find the best relays for solving

the problem of multi-relay transmission by using a limited number of relays

to forward the information from the source node [21].

3.2 STBC Scheme with FIC for an Asynchronous Cooperative

Four Relay Network

The relay model for the four-path relay scheme is illustrated in Fig. 3.1.

The fi (i = 1, ..., 4) denote the channels from the transmitter to the four

relays and gi (i = 1, ..., 4) denote the channels from the four relays to the

destination. The parameters τ1 and τ2 are delays from S to R1 and R2, and

τ3 and τ4 are delays from R3 and R4 to D, respectively. There is no direct

link between the source and the destination as path loss or shadowing is

assumed to render it unusable. The inter-relay channels are reciprocal, i.e.

the gains from R1 and R3 to R2 and R4 are the same as those from R2 and

R4 to R1 and R3, which are denoted h12, h23, h34 and h14. The channels are
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Figure 3.1. An offset transmission model for a four relay network with
asynchronism.

quasi-static flat-fading: fi and gi are independent and identically distributed

(i.i.d.) zero-mean and unit-variance complex Gaussian random variables.

Two receive antennas 1 and 2 can be used to separate the signals from

R1 (R2) and R3 (R4), respectively, since a beamforming technique can be

applied at the destination node [51].

Implementation at the source node

At the source node, two consecutive OFDM blocks x1 = [x0,1, x1,1, . . . , xN−1,1]
T

and x2 = [x0,2, x1,2, . . . , xN−1,2]
T are broadcast, which are composed of a set

of N modulated complex symbols xi,j , i = 0, · · ·, N−1 and j = 1 or 2, which

are modulated into time domain samples using DFT operations. Therefore,

x1dft = DFT(x1) and x2dft = DFT(x2). Then each block is preceded by a

CP with length lcp. Thus, each OFDM symbol consists of Ls = N + lcp sam-

ples. The length of the CP is not less than the maximum possible relative

timing errors τmax of the signals which arrive at the destination node from

the relay nodes. The two OFDM symbols with their corresponding CPs are

denoted as x1 and x2.
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Implementation at the relay nodes

At the relay nodes, assume the channel coefficients are quasi-static over two

OFDM symbol intervals. Then the received signals at the ith (i = 1, ..., 4)

relay for two successive OFDM symbol durations can be written as

yi1 = x1fi + ni1 and yi2 = x2fi + ni2, (3.2.1)

where ni1 and ni2 are the corresponding AWGN vectors at the relay node

i with zero-mean and identity-covariance matrix, in two successive OFDM

symbol durations, respectively. Let Ps denote the transmission power at the

source node, then the average power of the signal received at the relay node

is Ps +N0, where N0 is the noise variances of the AWGN at the relay node.

The optimum power allocation proposed in [42] is used in this scheme, where

Ps = RPr = 0.5P (3.2.2)

where P is the total transmission power in the whole scheme, Pr denotes

the relay transmission power, and R is equal to 2 in this work. The relay

nodes will process and transmit the received noisy signal according to the

ith column of the relay encoding matrix S,

S = β

 ζ(y11) − y∗32

ζ(y12) y∗31

 or β

 ζ(y21) − y∗42

ζ(y22) y∗41

 (3.2.3)

where β =
√

Pr
Ps+1 , and ζ(.) represents the modulo Ls time-reversal of the

signal, i.e., ζ(y(n)) = y(Ls − n), n = 0, 1, . . . , Ls − 1, and y(Ls) = y(0).

Implementation at the destination node

At the destination node, in order to separate out the individual relay trans-

mitted signals, which arrive at the destination, a perfect beamforming tech-



Section 3.2. STBC Scheme with FIC for an Asynchronous Cooperative Four Relay Network 53

Figure 3.2. Architecture of the offset transmission relay network.

nique is assumed to be used. The effect of errors in this operation are

considered in the simulation section. The CP only needs to be removed at

the destination node thereby reducing complexity as compared to schemes

which also remove the CP at the relays [52]. The destination processing

consists of two paths for both sets of signals received from R1 and R3 and

for the received signals from R2 and R4, as represented in Fig. 3.2. The first

path consists of i) Time reversal; ii) Remove CP; and iii) Time reversal, and

a second path in which only the CP is removed. After that, the two received

signals are transformed by the N -point DFT. As mentioned before, because

of timing errors, the signals from the source arrive at R1 or R2 τi (i = 1, 2)

samples later than the signals from the source to R3 or R4, respectively.

And the signals from R3 or R4 arrive at the destination node τi (i = 3, 4)

samples later than the signals from R1 or R2, respectively. Since lcp is not

less than τmax, the orthogonality between the subcarriers can be still main-

tained. The delay in the time domain corresponds to a phase change in the

frequency domain,

uτi = [u0,τi , u1,τi , . . . , uN−1,τi ]
T (3.2.4)

where uk,τi = exp(−j2πkτi/N) and k = 0, 1, · · · , N − 1.

Let z1 = [z0,1, z1,1, · · · , zN−1,1]T and z2 = [z0,2, z1,2, . . . , zN−1,2]
T be the

received signals for two successive OFDM blocks at the destination node
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after the DFT transformation. In this DFT transformation,

F1 = DFT[ζ(D(DFT(x1)))]

F2 = DFT[D(−(DFT(x2))
∗)]

F3 = DFT[ζ(D(DFT(x2)))]

and

F4 = DFT[D((DFT(x1))
∗)]

where D(·) denotes the cyclic delay, the maximum delay is 15 in this work.

Taking transmission step one as an example, z1 and z2 can be written as

z1 = β(F1f1g1 + F2 ◦ uτ1f
∗
3 g3 + n11g1 + n32 ◦ uτ3g3 + w1) (3.2.5)

z2 = β(F3f1g1 + F4 ◦ uτ1f
∗
3 g3 + n12g1 + n31 ◦ uτ3g3 + w2) (3.2.6)

where ◦ is the Hadamard product, nij is the DFT of nij and wj , j ∈

(1, 2), are AWGN vectors at the destination node with zero-mean and unit-

variance elements in the j time slot. Using DFT[ζ(D(DFT(x)))] = x ◦ u∗τ ,

DFT[D(−(DFT(x))∗)] = −x∗ ◦ uτ and DFT[D((DFT(x))∗)] = x∗ ◦ uτ ,

(3.2.5) and (3.2.6) can be rewritten as in the following Alamouti code at

each subcarrier k, 0 ≤ k ≤ N − 1

 zk,1

zk,2

 = γ

 xk,1 − x∗k,2

xk,2 x∗k,1


 u∗k,τ1f1g1

uk,τ3f
∗
3 g3

+

 vk,1

vk,2

 (3.2.7)

where vk,j = β(nk,1jg1 + nk,3j ◦ uk,τ3g3) + wk,j . Then the Alamouti fast

symbolwise ML decoding can be used at the destination node.



Section 3.2. STBC Scheme with FIC for an Asynchronous Cooperative Four Relay Network 55

3.2.1 Interference Cancellation Scheme

In this part, the inter-relay inference from the other relays is removed com-

pletely by a full interference cancellation scheme. Similarly to that in [53],

the relay nodes R1 and R3 are assumed to receive at the transmission step

n− 1, which corresponds to two time slots, and the relay nodes R2 and R4

send the signal to the destination node. And all of the channel information

is known by the receiver.

Therefore, the received signals in the two time slots at the destination

node at the transmission step n− 1 can be written as

zn−1,1 = βζ(y21)g2(n− 1) + βD((−y∗42)g4(n− 1)) + w1

zn−1,2 = βζ(y22)g2(n− 1) + βD(y∗41g4(n− 1)) + w2

(3.2.8)

where β =
√

Pr
Ps+1 , and zi,j denote the received signals in the jth j ∈ (1, 2)

time slot at the ith (i = 1, 2, ..., n) transmission step, y21 and y42, y22 and

y41 are the received signal vectors at R2 and R4 at transmission step n− 2,

respectively, and they are encoded by using (3.2.3), which are given by:

y21 =
√
PsD(x1f2(n− 2)) + n21 + β(ζ(y11)h12 + (−y∗32)h32)

y41 =
√
Psx1f4(n− 2) + n41 + β(ζ(y11)h14 + (−y∗32)h34)

y22 =
√
PsD(x2f2(n− 2)) + n22 + β(ζ(y12)h12 + y∗31h32)

y42 =
√
Psx2f4(n− 2) + n42 + β(ζ(y12)h14 + y∗31h34)

(3.2.9)

The received signals at the destination node at transmission step n − 2

become

zn−2,1 = βζ(y11)g1(n− 2) + βD((−y∗32)g3(n− 2)) + w1

zn−2,2 = βζ(y12)g1(n− 2) + βD((y∗31)g3(n− 2)) + w2

(3.2.10)

Assumption 1: If multiple antennas are available at the destination node,
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and given that the relays are sufficiently spatially separated by using a per-

fect beamforming technique, the assumption is that it is possible to separate

out the individual relay components within

zn−2,1 = zn−2,1,1 + zn−2,1,2 + w1

zn−2,2 = zn−2,2,1 + zn−2,2,2 + w2,

as given by

zn−2,1,1 = βζ(y11)g1(n− 2)

zn−2,1,2 = βD((−y∗32)g3(n− 2))

zn−2,2,1 = βζ(y12)g1(n− 2)

zn−2,2,2 = βD((y∗31)g3(n− 2))

(3.2.11)

where the noise term is assumed to be insignificant in the current devel-

opment however this issue and the validity of this assumption is addressed

further in Section 3.2.2. Therefore,

ζ(y11) =
zn−2,1,1

βg1(n− 2)
D(−y∗32) =

zn−2,1,2
βD(g3(n− 2))

ζ(y12) =
zn−2,2,1

βg1(n− 2)
D(y∗31) =

zn−2,2,2
βD(g3(n− 2))

(3.2.12)

Because the destination node knows the channel information and all of the

delays, −y∗32 and y∗31 can be obtained at the destination node by using: i)

CP removal; ii) shifting the first length of τ (lτ ) samples as the last samples;

and iii) adding a CP. These processes can be denoted by ψ(·). Finally,



Section 3.2. STBC Scheme with FIC for an Asynchronous Cooperative Four Relay Network 57

substituting (3.2.12) and (3.2.9) into (3.2.8) gives

zn−1,1 = βg2(n− 1)[ζ(
√
PsD(x1f2(n− 2)) + n21 +

zn−2,1,1
g1(n− 2)

h12

+ ψ

(
zn−2,1,2
g3(n− 2)

)
h32)]− βD(g4(n− 1)(

√
Psx

∗
2f
∗
4 (n− 2) + n∗42

+

(
zn−2,2,1
g1(n− 2)

h14

)∗
+ (ψ

(
zn−2,2,2
g3(n− 2)

)
h34)

∗)) + w1

(3.2.13)

zn−1,2 = βg2(n− 1)[ζ(
√
PsD(x2f2(n− 2)) + n22 +

zn−2,2,1
g1(n− 2)

h12

+ ψ

(
zn−2,2,2
g3(n− 2)

)
h32)] + βD(g4(n− 1)(

√
Psx

∗
1f
∗
4 (n− 2) + n∗41

+

(
zn−2,1,1
g1(n− 2)

h14

)∗
+ (ψ

(
zn−2,1,2
g3(n− 2)

)
h34)

∗)) + w2

(3.2.14)

From (3.2.13) and (3.2.14), the IRI is a recursive term in the received signal

at the destination node. For example, (3.2.15), (3.2.16), (3.2.17) and (3.2.18)

are IRI terms, which are functions only of the previous output values.

βg2(n− 1)ζ(
zn−2,1,1
g1(n− 2)

h12 + ψ

(
zn−2,1,2
g3(n− 2)

)
h32) (3.2.15)

βD(g4(n− 1)(
zn−2,2,1
g1(n− 2)

h14 + ψ

(
zn−2,2,2
g3(n− 2)

)
h34)

∗ (3.2.16)

βg2(n− 1)ζ(
zn−2,1,1
g1(n− 2)

h12 + ψ

(
zn−2,2,2
g3(n− 2)

)
h32) (3.2.17)

βD(g4(n− 1)(
zn−2,2,1
g1(n− 2)

h14 + ψ

(
zn−2,1,2
g3(n− 2)

)
h34)

∗ (3.2.18)

Therefore, these terms can be completely removed in order to cancel the IRI
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at the receiver, which are given by

z
′
n−1,1 = βg2(n− 1)[ζ(

√
PsD(x1f2(n− 2)) + n21)]

− βD(g4(n− 1)(
√
Psx

∗
2f
∗
4 (n− 2) + n∗42)) + w1

z
′
n−1,2 = βg2(n− 1)[ζ(

√
PsD(x2f2(n− 2)) + n22)]

+ βD(g4(n− 1)(
√
Psx

∗
1f
∗
4 (n− 2) + n∗41)) + w2

(3.2.19)

As such, (3.2.19) has no IRI, only the desired signal and the noise. The

same method to obtain the received signal at transmission step n at the

destination node yields

zn,1 = βg1(n)[ζ(
√
PsD(x1f1(n− 1)) + n11 +

zn−1,1,1
g2(n− 1)

h21

+ ψ(
zn−1,1,2
g4(n− 1)

)h41)]− βD(g3(n)(
√
Psx

∗
2f
∗
3 (n− 1) + x∗32

+ (
zn−1,2,1
g2(n− 1)

h23)
∗ + (ψ(

zn−1,2,2
g4(n− 1)

)h43)
∗)) + w1

(3.2.20)

zn,2 = βg1(n)[ζ(
√
PsD(x2f1(n− 1)) + n12 +

zn−1,2,1
g2(n− 1)

h21

+ ψ(
zn−1,2,2
g4(n− 1)

)h41)] + βD(g3(n)(
√
PsX

∗
1f
∗
3 (n− 1) + N∗31

+ (
zn−1,1,1
g2(n− 1)

h23)
∗ + (ψ(

zn−1,1,2
g4(n− 1)

)h43)
∗)) + w2

(3.2.21)

From (3.2.20) and (3.2.21), the IRI is a recursive term in the received signal

at the destination node. For example, (3.2.22), (3.2.23), (3.2.24) and (3.2.25)

are IRI terms.

βg1(n)ζ(
zn−1,1,1
g2(n− 1)

h21 + ψ(
zn−1,1,2
g4(n− 1)

)h41) (3.2.22)

βD(g3(n)(
zn−1,2,1
g2(n− 1)

h23 + ψ(
zn−1,2,2
g4(n− 1)

)h43)
∗ (3.2.23)

βg1(n)ζ(
zn−1,1,1
g2(n− 1)

h21 + ψ(
zn−1,2,2
g4(n− 1)

)h41) (3.2.24)

βD(g3(n)(
zn−1,2,1
g2(n− 1)

h23 + ψ(
zn−1,1,2
g4(n− 1)

)h43)
∗ (3.2.25)
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Therefore, these terms are completely removed from (3.2.20) and (3.2.21) by

using the same method, which are given by:

z
′
n,1 = βg1(n− 1)[ζ(

√
PsD(x1f1(n− 1)) + n11)]−

βD(g3(n)(
√
Psx

∗
2f
∗
3 (n− 1) + n∗32)) + w1

z
′
n,2 = βg1(n)[ζ(

√
PsD(x2f1(n− 1)) + n12)]+

βD(g3(n− 1)(
√
Psx

∗
1f
∗
3 (n− 1) + n∗31)) + w2

(3.2.26)

Comparing (3.2.19) with (3.2.26), they have the same structure. However,

according to the different offset transmission steps, the alternate channels

are switched regularly. Therefore, the transmission symbols can be easily

detected by the fast symbol-wise ML decoding.

3.2.2 Simulation Results

In this section, the simulated performance of the asynchronous relay network

will be shown using the offset transmission with FIC and OFDM approaches.

The performance is shown by the end-to-end BER using BPSK symbols.

N = 64 and CP = 16 are assumed. The delays τi i ∈ (1, 2, 3, 4) are chosen

randomly from 0 to 15 with the uniform distribution. The total power per

symbol transmission is fixed as P.

Fig. 3.3 compares, firstly, the BER performance without FIC and with

FIC. The advantage of using the FIC scheme is clear, the BER performance

is significantly better than without the FIC approach. In fact, without using

FIC the scheme is unusable. The IRI considerably corrupts the transmis-

sion signal, thereby leading to the performance degradation. Secondly, the

performance of Alamouti in an asynchronous two relay network without IRI

is contrasted with that of the FIC Alamouti in an asynchronous four relay

network with IRI. For the cooperative four relay network, the FIC scheme

is used to completely remove the IRI, the performance closely matches the
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Figure 3.3. BER performance for no FIC and FIC approaches

Alamouti type scheme without IRI.

In Fig. 3.4, however, for the Alamouti type scheme with two relay net-

works, every transmission time slot is divided into two sub-slots: firstly,

the source transmits to the relay nodes; secondly, the relay node sends the

data to the destination. Therefore, the rate and bandwidth efficiency of this

scheme is a half of the direct transmission. On the contrary, the proposed

method uses the two group relay nodes in order to retain the successive

transmission signal from the source node, so the full unity data rate can be

obtained when the number of symbols is large.

In the next simulation result the effect of Assumption 1, which multiple

antennas are used at the destination and using beam forming technique, is

considered. To model the effect that even with multiple antennas at the

destination node there will be uncertainties in the values of zn−2,1,1, zn−2,1,2,

zn−2,2,1 and zn−2,2,2 in (3.2.11), due for example to estimation errors in
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Figure 3.4. End-to-end transmission rate

beamforming, noise vectors are added to yield

zn−1,1,1 = βζ(y21)g2(n− 1) + n′1

zn−1,1,2 = βD((−y∗42)g4(n− 1)) + n′2

zn−1,2,1 = βζ(y22)g2(n− 1) + n′1

zn−1,2,2 = βD(y∗41g4(n− 1)) + n′2,

(3.2.27)

where all the elements of n′1 and n′2 are chosen to have noise powers at the

relative levels of either -6 dB or -3 dB or 0 dB, and these three cases are

denoted Assumption 2, Assumption 3 and Assumption 4. The degradation

in BER is shown in Fig. 3.5, for example, at BER = 10−3 the required

transmit power increases from 21.5 dB to 22.5 dB and to 25 dB for the three

cases.
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Figure 3.5. BER performance of the four relay with offset transmission
and FIC and varying uncertainty in Assumption 1.

3.3 Two-way Distributed Relay Transmission Using the Golden

Code

3.3.1 Overview of the Golden Code

The Golden Code is a full rate and full diversity 2 × 2 linear dispersion

algebraic space-time code for a two transmit antennas and two or more

receive antennas MIMO system [23]. The essence of the code is the Golden

number 1+
√
5

2 which is used to generate the best performance [23]. The

Golden Code codeword is of the form as (3.3.1).
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Figure 3.6. The transmitted rotated constellation of the Golden Code
(4QAM)

.

C =
1√
5

 ϕ(s1 + s2θ) ϕ(s3 + s4θ)

γϕ(s3 + s4θ) ϕ(s1 + s2θ)


=

1√
5

 x1 x2

x3 x4

 ,
(3.3.1)

where s1, s2, s3, s4 describe the information symbol constellation; θ = 1+
√
5

2 ,

θ = 1−
√
5

2 , ϕ = 1 + i(1− θ) and ϕ = 1 + i(1− θ), and i is set as
√
−1. The

|γ| is set to unity to satisfy the non-vanishing determinant and ensures the

same average power is transmitted [23]. To avoid vanishing determinants,
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the factor |γ| is set as unity, which guarantees that the same average power

is transmitted from each antenna at each channel use [23]. For the Golden

Code, the elements of the codeword matrix are from the information symbol

constellation. The symbols per transmit antenna (i.e., the elements of the

matrix codewords) are drawn from a “coded” constellation plotted in Fig.

3.6 which is a rotated regular QAM constellation. The Golden Code integer

lattice structure provides efficient constellation shaping, so it may have the

information lossless property [54]. The diversity multiplexing tradeoff is an

essential tradeoff between the error probability and the data rate of a system.

The Golden Code can achieve optimal diversity-multiplexing tradeoff for a 2

× 2 MIMO system [23]. Due to obtaining simultaneously both diversity and

multiplexing gain, the Golden Code scheme is “Perfect”. It will not only

improve the link performance, but also increase the transmission rate when

used in two-way transmission. Several decoding strategies for Golden Codes

have been studied, such as full ML and sphere decoding (SD) [25]. In the

next chapter, these two methods are adopted to decode the Golden Code at

the destination assuming 4-QAM transmission.

3.3.2 Two-way Fixed Relay Scheme for the Golden Code

A cooperative two-way network is adopted as a basic transmission scenario

for the Golden Code, as shown Fig. 3.7. The wireless network is equipped

with two terminals namely the base station (BS) and user equipment (UE)

respectively denoted by Tm, m = 1, 2, and Rj relays j = 1, 2, where each of

the two terminal nodes has two antennas Ai and A
′
i, where i denotes i-th

antenna, and only one antenna is available for each relay. Every node is

half-duplex, so cannot transmit and receive simultaneously. The channels

are set from T1 to T2 as the downlink, and channel coefficients are fj from T1

to relays and gj from relays to T2, and the uplink is from T2 to T1, because

of the symmetrical system model, the channel coefficients are the same as
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in the downlink. The signals are simultaneously encoded at the BS and UE

with the Golden Code matrix. The channels are quasi-static Rayleigh flat

fading, which are i.i.d. complex Gaussian random variables with zero-mean

and unit-variance, i.e. fj ∼ CN (0, 1) and gj ∼ CN (0, 1).

Figure 3.7. The system model for the use of the Golden Code over a
two-way distributed wireless network. (The solid line is the downlink from
BS to UE and the dashed line is the uplink from UE to BS. )

The information bits are modulated as sk at the BS and s
′
k at the UE,

and then respectively encoded with the Golden Code matrix (3.3.1). The

encoded symbols at the BS and UE are denoted as xk and x
′
k respectively,

where k = 1, 2, 3, 4. Sending a Golden Codeword needs two slots. For a

one-way relay scheme, a total of eight time slots are required to complete

a bi-direction transmission of two codewords. For a two-way relay scheme,

however, the number of symbols using the same time slot is doubled as

compared to the one-way case, thereby doubling the rate. A two-way relay

process for bi-direction transmission can be described as follows: the first

phase (the Tm − R phase), where two terminals simultaneously send their

symbols to the relays and the second phase (the R−Tm phase), where relays

send the symbols without decoding to the terminals. In the R − Tm phase,
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due to the half-duplex antennas, the relays will use the last two time slots

to amplify the power of the signal and directly resend to the corresponding

terminals. The average power of the terminal Tm is PTm, m = 1, 2. Each

relay can use the average power PRj , j = 1, 2, so the total power of the relays

PR = 2PRj .

The signal received by the j-th relay for the first two time slots can

mathematically be expressed as

rt,j =
√

4PT1(f2j−1x2t−1 + f2jx2t) + n2j−1

+
√

4PT2(g2j−1x
′
2t−1 + g2jx

′
2t) + n2j ,

(3.3.2)

where t = 1, 2 denotes the time slot. The terms n2j−1 and n2j are the AWGN

at the j-th relay. Then, the relays implement the AF protocol by using a

scale factor

βj =

√
2PR

N(4PT1 + 1)
. (3.3.3)

In this chapter, due to the symmetry in transmission, the transmission

is from the BS to UE through the downlink channels. The redundant infor-

mation is removed which occurred after exchanging the information at every

relay. The signal received at the third time slot by the UE can be expressed

as

z11 = βj(r11g1 + r12g3) + w2j−1

z21 = βj(r11g2 + r12g4) + w2j ,

(3.3.4)

at the fourth time slot, the UE receives

z12 = βj(r21g1 + r22g3) + w2j−1

z22 = βj(r21g2 + r22g4) + w2j ,

(3.3.5)

where w2j−1 and w2j are the AWGN terms at the terminals. The antennas at

the terminals perfectly know the signals they first transmitted. For example,

in Fig. 3.7, at the BS, A1 knows s1 and s2, and antenna A2 knows s3 and s4
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from the first time slot transmission. Due to the construction of the Golden

Code, at the next time slot, A1 sends x3 which includes s3 and s4. At the

terminal UE, the antennas A
′
1 and A

′
2 know their transmitted information

as well. Therefore, the self-interference terms at the UE are shown as follow

t11 = βj
√

4PT2
(
g1(g1x

′
1 + g2x

′
2) + g3(g3x

′
1 + g4x

′
2)
)

t21 = βj
√

4PT2
(
g2(g1x

′
1 + g2x

′
2) + g4(g3x

′
1 + g4x

′
2)
)

t12 = βj
√

4PT2
(
g1(g1x

′
3 + g2x

′
4) + g3(g3x

′
3 + g4x

′
4)
)

t22 = βj
√

4PT2
(
g2(g1x

′
3 + g2x

′
4) + g4(g3x

′
3 + g4x

′
4)
)

(3.3.6)

Finally, (3.3.6) is cancellated from (3.3.4) and (3.3.5), the UE obtain the

signals as

z11 =
√

4P1βj((f1g1 + f3g3)x1 + (f2g1 + f4g3)x2) + u1

z21 =
√

4P1βj((f1g2 + f3g4)x1 + (f2g2 + f4g4)x2) + u2

z12 =
√

4P1βj((f1g1 + f3g3)x3 + (f2g1 + f4g3)x4) + u3

z21 =
√

4P1βj((f1g2 + f3g4)x3 + (f2g2 + f4g4)x4) + u4

, (3.3.7)

where u1, u2, u3 and u4 are

u1 = βj((n1 + n2)g1 + (n3 + n4)g3) + w
′
1

u2 = βj((n1 + n2)g2 + (n3 + n4)g4) + w
′
2

u3 = βj((n1 + n2)g1 + (n3 + n4)g3) + w
′
3

u4 = βj((n1 + n2)g2 + (n3 + n4)g4) + w
′
4

. (3.3.8)

The terms w
′
1, w

′
2, w

′
3 and w

′
4 are the Gaussian noises at the relays and UE.

The vector of symbols received at the UE is denoted as y. Thus, the received

signal can be written as

y = Hx + u, (3.3.9)

where y is the vector [y11, y21, y12, y22]
T and x is the vector [x1, x2, x3, x4]

T .
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H is a 4× 4 block diagonal matrix of effective transmission channels which

is given by H =

 M 0

0 M

, where

M =

 f1g1 + f3g3 f2g1 + f4g3

f1g2 + f3g4 f2g2 + f4g4

 (3.3.10)

and 0 represents a 2× 2 full zero matrix. Note that the elements of M are

not statistically independent as would be the case for the codes in [42]. Full

ML is adopted for decoding the Golden Code:

arg min
y∈Sc
{‖y−Hx‖2}, (3.3.11)

where Sc denotes the collection of possible symbol constellation points.

3.3.3 Discussion of Relay Selection for Two-Way Transmission of

the Golden Code

Multi-relay selection for the Golden Code with the maximum-minimum

strategy and the maximum-mean strategy were proposed in the one-way

transmission environment [55]. In this section, the multi-relay selection with

the Golden Code is used in wireless networks for the two-way case. Due to

the special limitation of the Golden Code, the aim is to select the best two

relays from the j relays for transmission in cooperative networks. The chan-

nels of candidate relays are used for transmitting information from BS to

UE and vice versa. All of the assumptions are the same as the system model

of the fixed case.

Firstly, the maximum-minimum selection method is implemented in the

model.

R
(j)
min = min{|f2j−1|2, |f2j |2, |g2j−1|2, |g2j |2}. (3.3.12)
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These values are then calculated for all of the relays and stored in Rmin.

Choosing the relay node with the maximum value from all the minima

R(j)
max ∈ Rmin (3.3.13)

to be the best transmitted relay. The second best relay is decided by the

relay node with the maximum of the remaining minima. The simulation of

this selection strategy is provided in Section 3.3.4.

On the other hand, for maximum-means selection, the mean of these

remaining four channels for the j-th relay is obtained as

R(j)
mean =

|f2j−1|2 + |f2j |2 + |g2j−1|2 + |g2j |2

4
. (3.3.14)

The mean value measures the average quality of each relay. Then, the max-

imum one is extracted from R
(j)
mean as the best available relay

R(j)
max ∈ Rmean, (3.3.15)

where Rmean is the collection of all mean values for the relays. Consequently,

for the remaining relays, choosing the relay node with the second maximum

average quality is the second best relay to use.

As in the one-way case, this method can better balance the level among

the remaining channels. One shortcoming of the maximum-minimum selec-

tion is that the quality of one link just depends on the minimum value of the

channels. It means that an available relay may lose the chance to transmit.

Therefore, the maximum-mean selection can be better for relay selection.

3.3.4 Discussion of the DMT of the Golden Code

In determining the PEP with the Chernoff Bound type analysis, the diversity

gain is found to be d = minrank[(C−Ĉ)(C−Ĉ)H ], where Ĉ is the estimated
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codeword matrix [42]. The rank of the difference matrix of C − Ĉ for the

uncoded point-to-point Golden Code is more than zero. Therefore, it can

achieve full diversity. Due to the code construction, it also obtains the full

rate in a 2× 2 MIMO system. With two transmit antennas and two receive

antennas, the Golden Code is DMT-optimal and exhibits very good perfor-

mance in terms of codeword error probability [15]. When the Golden Code

is applied in distributed transmission, due to the non independent elements

of the channel matrix as in (3.3.10), the diversity gain will generally be de-

creased, and the data rate is degraded as well by the multihop transmission.

Therefore, using relay selection and two-way transmission can address these

weaknesses.

3.3.5 Simulation Results

In this section, all of the simulated performances with and without relay

selection based on the Golden Code for uncoded and coded two-way wireless

networks will be shown. The performances are shown by end-to-end BER

using QPSK symbols. The powers PT1 = PT2 = 2PRj = 1. The number of

participating relays for selection with the two selection strategies is set to 4,

8 and 16, as described in Section 3.3.3.

In Fig. 3.8, the BER performances are compared for the no relay case se-

lection in coded one-way and two-way transmission scenarios, and the coded

to uncoded cases. Before encoding with the Golden Code, the convolutional

code is used as the outer coding in the systems under study. The constraint

length is equal to 3 at the coder and the code generator for the convolutional

code is represented as [7 5] in octal. Obviously, the convolutional code means

that the performance of the coded system is better than uncoded one by 2

dB at the BER of 10−3. As the two Gaussian noises introduced in trans-

mitting the data from the UE terminal to the relays cannot be removed, the

simulation results confirm that the bit error rate performance of systems us-
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Figure 3.8. Comparison of BER performances of uncoded and coded dis-
tributed Golden Code for one-way and two-way cases without relay selection.

ing one-way transmission slightly outperform the two-way scenario, however

at lower rate.

Fig. 3.9 presents the simulation results with maximum-min relay selec-

tion and no selection. Clearly, the BER performance of the maximum-min

relay selection outperforms the fixed relay scheme at least by 2 dB. For exam-

ple, the selection case can achieve 10−3 bit error rate at approximately 16 dB

of SNR. If the no selection case wants to achieve the same performance, the

system must have about 18 dB SNR. Moreover, with the increasing number

of relays, the BER performances can be improved, i.e., when BER = 10−3,

the SNR of 4, 8 and 16 relay cases respectively attain approximately 15.5

dB, 14.5 dB and 14 dB.
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Figure 3.9. Comparison of BER performances of coded distributed Golden
Code for two-way transmission with max-minimum relay selection.

Fig. 3.10 shows the comparison of performances of maximum-mean relay

selection and no selection. The same case as for the maximum-minimum se-

lection. The performance of selection has advantage over without selection.

The superiority is larger than using maximum-minimum selection. Selec-

tion is better than without selection by approximately average 2 dB SNR;

therefore, the result that the performances of maximum-mean selection out-

performs the maximum-minimum selection. That is because the maximum-

mean selection can better balance the channel qualities. Generally, when

the number of selected relays equal to 4, 8, and 16, the maximum of means

selection always has approximately one dB superiority.
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Figure 3.10. Comparison of BER performances of coded distributed
Golden Code for two-way transmission with max-mean relay selection.

3.4 Summary

In this chapter, a simple offset transmission with FIC and OFDM scheme

for a four path asynchronous cooperative relay system was proposed. In

order to achieve asymptotically full data rate the source and one group

of relays transmits on even transmission steps whilst on odd transmission

steps a different group of relays transmits and the first group receiver. The

approach achieves the same diversity of 2 as a previously proposed half rate

scheme. OFDM and CP were used at the source to combat timing errors

from the source to the destination node. Moreover, through the use of time

reversal in the destination node, CP removal is avoided at the relays in

order to decrease the complexity of relay decoding. In order to mitigate
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the potential reduction in diversity gain due to dependent channel matrix

elements in distributed Golden Code transmission, and the rate penalty

of multihop transmission, relay selection based on two-way transmission is

proposed. Simulation studies were used to evaluate the relative end-to-end

BER performance of uncoded, coded, one-way and two-way networks with

fixed and selected relays. The maximum-mean relay selection policy was

shown to outperform the maximum-minimum approach. In the next chapter,

relay selection in distributed relay network using the Golden Code will be

introduced.



Chapter 4

RELAY SELECTION IN A

DISTRIBUTED RELAY

NETWORK USING THE

GOLDEN CODE

The implementation of cooperative diversity with relays has advantages over

point-to-point MIMO systems in particular overcoming correlated paths due

to small inter-element spacing. A simple transmitter with one antenna may

moreover exploit cooperative diversity or space time coding gain through

distributed relays. In this chapter, similar distributed transmission is consid-

ered with a linear dispersion algebraic space-time code, namely the Golden

Code, and a strategy for relay selection, called the maximum-mean selec-

tion policy, is introduced. This new strategy performs a channel strength

tradeoff at every relay node to select the best two relays for transmission.

It improves upon the established one-sided selection strategy of maximum-

minimum policy. In addition, an effective scheme is proposed to achieve

asynchronous distributed transmission with the Golden Code over a two-hop

MIMO relay channel. Full ML decoding and sphere decoding (SD) are used

as the detection approaches for distributed transmission in the synchronous

and asynchronous wireless relay networks. Simulation results comparing the

75



Section 4.1. Introduction 76

BER based on different detectors and a scheme without relay selection, with

the maximum-minimum and maximum-mean selection schemes confirm the

performance advantage of relay selection and that the proposed strategy

yields the best performance of the three methods.

4.1 Introduction

In a wireless network, independent paths between the source and destination

exist when the multiple users act as relays for each other [42]. Cooperative

diversity has been shown to be an effective technique to enable single-antenna

users to share their antennas to create a virtual MIMO system [48]. Cooper-

ative diversity has potential application in mobile wireless ad hoc networks.

Better system performance gains can be achieved by exploiting relays due

to path loss gains as well as diversity and multiplexing gains. In traditional

direct link communication systems, it is difficult to achieve high QoS for

users, but with the exploitation of relays higher quality and cost effective

transmission can be achieved [10].

In recent years there has been considerable effort in the development of

cooperative diversity schemes. Various cooperative schemes have been pro-

posed. Among these strategies, perhaps the most important are amplify-and-

forward (AF) and decode-and-forward (DF) approaches. For AF schemes,

every relay cooperates and just retransmits its received signal scaled by its

own transmitted power. For most DF schemes, every relay decodes the trans-

mitted information before retransmitting it using its transmit power [20].

However, using all the relays may not obtain the optimal performance of

the relay network, and present practical problems such as asynchronism [36]

between the relays. Improved performance can be achieved by selecting the

cooperating relays to employ. In particular, selection can aim to find the

best relay for solving the problem of multiple relay transmissions by re-
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questing only a single relay to forward the information from the source [21].

Such relay selection must be repeated as the channel conditions can change.

In [56], a scheme was proposed for opportunistic relaying to exploit coop-

erative diversity. The scheme relies on distributed path selection consider-

ing the instantaneous end-to-end wireless channel conditions, and employs

the maximum-minimum selection strategy. Relay selection in cooperative

wireless networks with flat fading and frequency selective fading channels

is considered in this chapter, with focus on an AF system. However, a

maximum-minimum selection strategy cannot best balance the levels among

the frequency flat channels for the Golden Code. Therefore, a new relay se-

lection approach called maximum-mean strategy is proposed, and it is used

in flat and frequency selective quasi-static fading channel environments.

On the other hand, space-time coding is also used to exploit spatial di-

versity in traditional point-to-point MIMO systems and in recent years such

encoding has been adopted in distributed cooperative networks [57]. While

space-time codes for MIMO systems can achieve full spatial diversity, a new

full-rate and full-diversity linear dispersion algebraic space-time code based

on the Golden number was proposed in [23]. Due to the performance of the

algebraic construction, the Golden Code outperforms the Alamouti code in

the flat fading channels. However, in frequency selective channels environ-

ment, the Golden Code lose its properties because of the inter-symbol inter-

ference (ISI) [24]. For overcoming this weakness, the orthogonal frequency

division multiplexing (OFDM) modulation can be used. The channel coding

is adopted to improve the performance of the Golden Code in MIMO sys-

tem. The Golden Code also provides full-rank, cubic shaping, non-vanishing

minimum determinant and optimal diversity-multiplexing gain tradeoff [15].

It is best matched to a 2 × 2 coherent MIMO system. The minimum deter-

minant of the Golden Code matrix does not depend on the size of the signal

constellation and it achieves the diversity-multiplexing tradeoff (DMT) [15]



Section 4.1. Introduction 78

and [43], which for the single-antenna non-orthogonal amplify-and-forward

(NAF) channel can be characterised by [16],

dNAF (r) = (1− r) +N(1− 2r)+ (4.1.1)

where (x)+ means the max{x, 0}, r is the multiplexing gain and dNAF is the

diversity gain, which are given by

lim
SNR→∞

R(SNR)

logSNR
= r and lim

SNR→∞

logPe(SNR)

logSNR
= −dNAF (4.1.2)

where R(SNR) is the data rate measured by bits per channel usage and

Pe(SNR) is the average error probability using the ML decoder. The con-

struction of the Golden Code allows application of spatial multiplexing so

that it has higher bit rates. Meanwhile, the spatial diversity can improve

the bit error performance [1]. These features of the Golden Code should

therefore be exploited in distributed transmission in order to improve link

performance. A MIMO system using space-time coding techniques can po-

tentially achieve a huge capacity increase over a single wireless link. In such

processing, the received signal is given by a linear combination of the data

symbols with additive noise. As the best detection method, ML, depends

on searching all of the transmitted signal possibilities in the constellation

and chooses the closest to the received signals as the estimated transmitted

signal [58], but it has high complexity. On the other hand, due to redundant

information which can make the space-time system orthogonal, the linear

decoder can approach approximate ML performance with lower complex-

ity [59]. For overcoming the weaknesses of ML detection, the sphere decoder

was proposed by Pohst in [60].

As mentioned above, practical problems such as asynchronism exist in

distributed transmission, while most previous research assumes synchronous

transmission. Synchronisation of transmission is a critical issue in exploiting
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cooperative diversity in wireless ad hoc networks so that the signals arrive ef-

fectively at the destination simultaneously. In a wireless network, the nodes

are geographically dispersed and hence the inter-node channels will have

varying strengths and delays [61]. In the presence of such time delays, a

simple Alamouti space-time transmission scheme for asynchronous coopera-

tive systems is proposed in [36] based on an OFDM scheme. In [62] and [63],

the authors respectively proposed a new 2 × 2 delay tolerant code based

on the Golden Code and a bounded delay-tolerant STBC for asynchronous

cooperative networks. However, in this chapter, the original Golden Code

is still used to transmit over a two-hop MIMO relay channel with asynchro-

nism.

This chapter focuses on multiple relay selection in synchronous and asyn-

chronous distributed transmission based on the Golden Code. Section 4.2.1

and Section 4.2.2 build and analyse the basic fixed relay selection scheme

using full ML and SD for detection. Section 4.2.3 elaborates further upon

the two different relay selection strategies. In this section, based on previ-

ous relay selection strategies of optimal-SNR and maximum-minimum se-

lection, a maximum-mean selection approach for distributed Golden Code

transmission is proposed. The SNR-maximising multiple relay selection can

be achieved over all relays [20]. However, its complexity is exponential in

the numbers of relays in the networks. Computer simulation results are

presented in Section 4.2.4 which show the new strategy proposed in this

chapter has advantage for a distributed Golden Code in wireless networks.

The asynchronous cooperative transmission schemes with the Golden Code

over flat fading and frequency selective channels are shown in Section 4.3.1

and Section 4.4.1. Two strategies for relay selection in the asynchronous

cooperative transmission are also elaborated in Section 4.4.2. Finally, the

simulation results and summary are drawn in Section 4.4.3 and Section 4.5,

respectively.
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Figure 4.1. The two-input two-output relay network transmission struc-
ture for the Golden Code.

4.2 Relay Selection Based on the Golden Code in Synchronous

Wireless Networks

4.2.1 Fixed Relay Scheme with the Golden Code

For satisfying the basic environment of a 2 × 2 MIMO channel when trans-

mitting a Golden Code, the fixed relay scheme adopts the model shown in

Fig. 4.1. It is composed of one source, two relays and one destination. There

are respectively two antennas at the source and the destination, but only one

antenna at each relay. Each node is half-duplex. The information symbols

are coded with the Golden Code in the source rather than in the relays.

The channels are quasi-static Rayleigh flat fading with coefficients fij and

gji, which are i.i.d. complex Gaussian random variables with zero-mean and

unit-variance, subscript i represents the ith antenna at the source and the

destination, and j denotes the jth relay. There are two transmission phases

in the model. In step one, from (3.3.1), s1 and s2 are broadcast respectively

by the source to the destination through relays R1 and R2, and then the
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source broadcasts s3 and s4 in the second symbol period. Mathematically,

the signal received by the jth relay can be expressed as

rkj =
√
Pt(s2k−1h1j + s2kh2j) + nkrj , (4.2.1)

where Pt denotes the average transmit power of the source, and k ∈ (1, 2)

is the symbol index; nkrj is the AWGN at the jth relay. The signal received

by the ith antenna of the destination, during the relaying phase, can be

expressed as

yki =

2∑
j=1

√
Prr

k
j gji + nkdi, (4.2.2)

where Pr represents the average transmit power of the relay node, nkdi is the

AWGN at the ith antenna of the destination. The power of every transmit-

ting antenna in the source and relays is given by

Pt = Pr =
P

2A
, (4.2.3)

where P is the total transmit power of the system [5], and A denotes the

number of relays used. The vector of symbols received at the destination

across the two antennas is denoted as y. Thus, the received signal can be

written as

y = Hs + n, (4.2.4)

where y is the vector

[
y11 y12 y21 y22

]T
and s is the source vector[

s1 s2 s3 s4

]T
. H is a 4 × 4 block diagonal matrix of effective trans-

mission channels which is given by

H =

M 0

0 M

 (4.2.5)
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where,

M =

f11g11 + f12g21 f21g11 + f22g21

f11g12 + f12g22 f21g12 + f22g22

 , (4.2.6)

and 0 represents a 2 × 2 full zero matrix. The total noise n is the vector[
n11 n12 n21 n22

]T
. The elements of n can be written as

nki =
2∑
j=1

√
Prn

k
rjgji + nkdi. (4.2.7)

As known the received signals above, next section will focus on the com-

parison of decoding approaches such as Maximum-likelihood decoding and

Sphere decoding.

4.2.2 Maximum-likelihood Decoding and Sphere Decoding

Maximum-likelihood Decoding

First, the full ML approach is used for decoding the Golden Code:

ŝ = argmin
s∈Sc
{‖y−Hs‖2}, (4.2.8)

where Sc denotes the collection of all member of the symbol constellation.

The principle of ML detection is to compare all possible values of the re-

ceived signals and transmitted one-by-one, and then to take the closest one

to be the estimated signal [2]. In the AWGN channel environment, in the

sense of obtaining the minimum BER for every antenna, this decoding ap-

proach has the best performance. From (4.2.8), when calculating one ŝ, it

has to compare one-by-one all the possible signals transmitted to determine

the estimated signals. Therefore, with the increasing number of transmitted

antennas and modulation levels, the complexity of maximum-likelihood de-

tection increases exponentially. It causes so large a calculation that it would

be very difficult to realize. For overcoming this computational complexing
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weakness of ML, lower complexity sphere decoding is applied.

Sphere Decoding

All possible received signals can be represented in a lattice structure, there-

fore, the SD algorithm is easily used for decoding the MIMO system [64].

The principle of the SD algorithm is to search the closest lattice points to the

received signal within a radius c of a sphere centred at the particular received

signal value [65]. The choice of c is crucial to the speed of the algorithm.

Decreasing the radius r, the number of signal points to be searched can be

reduced and the speed of calculation will rise [66], however the performance

of the decoding may be affected.

A. Initial Radius

As for the basic ML algorithm (4.2.8), the sphere decoder of the Golden

Code searches over only a radius c centred around the received signal vector,

i.e. ‖y−Hs‖2 ≤ c2 [67]. From (3.3.1), the new channel matrix H̃ can be

obtained

H̃ =
1√
5

ϕ ϕθ

ϕ̄ ϕ̄θ̄

 . (4.2.9)

Therefore, the initial radius can defined as [1]

c2 =
∥∥∥y− H̃szf

∥∥∥
2
, (4.2.10)

where szf denotes the initial estimate, which is the Zero-Forcing (ZF) detec-

tion solution. Therefore,

szf = H̃
+

y, (4.2.11)

where H̃
+

denotes the pseudo-inverse of H̃

H̃
+

= (H̃
T
H̃)
−1

H̃
T
. (4.2.12)
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B. Derivation

Assuming the channel is known at the receiver and taking the QR factorisa-

tion of the channel matrix H̃ (4.2.9)

H̃ = Q

R

0

 , (4.2.13)

where R is an upper triangular matrix with positive diagonal elements, 0 is

a null matrix, and Q =

[
Q1 Q2

]
is unitary matrix. Therefore,

c2 ≥

∥∥∥∥∥∥∥y−
[
Q1 Q2

]R

0

 s

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
Q∗1

Q∗2

y−

R

0

 s

∥∥∥∥∥∥∥
2

= ‖Q∗1y−Rs‖2 + ‖Q∗2y‖2.

(4.2.14)

where (·)∗ here denotes Hermitian matrix transposition, and

c2 − ‖Q∗2y‖2 ≥ ‖Q∗1y−Rs‖2 (4.2.15)

are easily obtained. Setting y
′

= Q∗1y and c
′2 = c2 − |Q∗2|y, (4.2.15) can be

rewritten as

c
′2 ≥

m∑
i=1

(y
′
i −

m∑
j=i

ri,jsj)
2, (4.2.16)

where ri,j denotes the (i, j) entry of R. Expanding (4.2.16) yields

c
′2 ≥ (y

′
m−rm,msm)2 +(y

′
m−1−rm−1,msm−rm−1,m−1sm−1)2 + · · ·. (4.2.17)

From (4.2.17), the first term depends only on sm, the second term depends on

{sm, sm−1} and so on. Therefore, a necessary condition c
′2 ≥ (y

′
m−rm,msm)2

leads to ⌈
−c′ + y

′
m

rm,m

⌉
≤ sm ≤

⌊
c
′
+ y

′
m

rm,m

⌋
, (4.2.18)
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Figure 4.2. Relay selection scheme with the Golden Code in distributed
wireless networks.

where d·e and b·c denote rounded up and rounded down. For every sm satis-

fying (4.2.18), sm−1 in (4.2.17) can be obtained. According to the iteration,

sm−2 can be easily found. Three results can be obtained: if c
′
< c, the initial

radius is changed to c
′
; if not, the process has to return to the last step to

continue to calculate until the entire set {sm, sm−1, · · ·, s2, s1} is found; if the

entire collection cannot be found, the value of the initial radius needs to be

increased. In the simulation section of this chapter, the simulation results

of the Golden Code with ML detection and SD will be given.

4.2.3 Relay Selection with the Golden Code

A multi-relay selection strategy approach is represented in Fig. 4.2 for dis-

tributed Golden Code transmission in wireless networks. In the figure, the

channels from the source to the jth relay are denoted as fj and from jth

relay to the destination as gi. All of assumptions are the same as the sys-
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tem model of Fig. 4.1. Firstly, the maximum-minimum selection method is

adopted, then, a selection scheme which finds the mean of maximum value

among the channels is used. The aim is to select the best two relays from j

relays for transmission in the cooperative network as in Section 3.3.3.

A. Maximum-minimum selection

The conventional strategy of relay selection was first considered in [56] for

distributed two-hop implementation. It required no explicit communication

among the relays and is based on local measurements of the instantaneous

channel conditions from the source to relays and relays to the destination in

slow fading wireless environments, however, the approach that is considered

in this work is somewhat different. To achieve basic 2×2 MIMO transmission

channels, each relay node has four channel connections. Two channels from

the source to the relay denoted by f2j−1 and f2j , and two other channels

from the relay to the destination denoted g2j−1 and g2j . Then, the best and

the second best relays from the j available relays are chosen as the most

effective for transmission. For example, in Fig. 4.2, comparing these four

channels for the jth relay, the worst channel is found as

R
(j)
min = min{|f2j−1|2, |f2j |2, |g2j−1|2, |g2j |2}. (4.2.19)

These values are then calculated for all of the relays and stored in the vector

Rmin. The relay corresponding to the maximum of these minima is selected,

together with the relay which has the maximum of the remaining minima.

B. Maximum-mean selection

The second selection approach is based on calculating the mean of the

strengths of the channels connected to each relay. The mean of these four
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channels for the jth relay is obtained as

R(j)
mean =

|f2j−1|2 + |f2j |2 + |g2i−1|2 + |g2i|2

4
. (4.2.20)

This mean value is then calculated for all relays and stored in the vector

Rmean. The relay with the maximum value of these minima is selected

as the relay with the maximum of the remaining means. Comparing with

the maximum-minimum selection, this method can better balance the level

among the channels, since the maximum-minimum selection just depends

on the minimum value of one channel, rather than an overall performance

measure. Therefore, the maximum-mean selection can be better for relay

selection. In the next section, the performance of these schemes is evaluated.

4.2.4 Simulation Results

In this simulation section, first the full diversity and full rate Golden Code

with 4-QAM is used in the point-to-point MIMO system and the distributed

MIMO system. The number of transmit antennas and receive antennas is

two, and the number of available relays is two. The assumptions are that

the channels are quasi-static flat fading and perfectly known at the receiver.

Fig. 4.3 and Fig. 4.4 show the BER performances with increased SNR.

Fig. 4.3 is the comparison of the performances of the Golden Code in

the point-to-point MIMO system with the maximum-likelihood detection,

the sphere detection with the radius 2 and zero-forcing detection. Clearly,

from 0 dB to 8 dB SNR, the performance of SD is worse than the ML

approach. When the SNR is approximately 0 dB, almost every symbol is

decoded in error when using SD. However, the slope of the SD curve decreases

rapidly. Therefore, when the SNR equals to approximately 8 dB, the meeting

point with these two curves occurs, and after that, the performance of SD

can reach the performance of ML. On the other hand, due to using zero-
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forcing detection, the noise is increasing by H†n, where H† is the Moore

pseudo-inverse of the channel matrix. Therefore, the performance curve of

zero-forcing detection is much worse than ML detection and SD.

SNR    dB

0 2 4 6 8 10 12 14 16 18 20

B
E

R

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Maximum-likelihood dectection

Sphere detection (radius = 2)

Zero-forcing detection

Figure 4.3. Bit error rate performances of the Golden Code in the MIMO
system with the maximum-likelihood detection, the sphere detection and
zero-forcing detection.

Fig. 4.4 shows the comparison of the performances of the Golden Code

in the distributed MIMO system with different radii in the sphere decoding.

The simulation is based on radius values of 2, 5 and 8. Therefore, it is easy

to show that the BER of the system decreased with increasing the value of

SNR. When the radius is equal to 5 and 8, the performances of the system

are nearly the same at 8 dB of SNR, after that these two are always the

same. When the radius is 2, the system performance approaches to the

performance of the system with radii 5 and 8 at 10 dB SNR. Therefore, for

high SNR, based on the different radii of sphere detection the performance

of the system is nearly the same.
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Figure 4.4. Bit error rate performances of the Golden Code in the dis-
tributed MIMO system with the different radii of the sphere decoding.

Secondly, the simulated performance of the relay selection with dis-

tributed transmission based on the Golden Code in wireless networks is

studied. The performance is shown by BER using QPSK symbols. The

total transmission power of the system is fixed as P and the additive noise

variance at each receiving node is unity. The selection of two relays from a

total of 4, 6 and 8 relays is for the above two different selection strategies.

In Fig. 4.5, the BER performances of fixed relay and maximum-minimum

relay selection schemes are compared. The BER performance with fixed

relays is clearly worse than with the maximum-minimum relay selection.

For example, to obtain BER performance of 10−3 with four participated

relays, the maximum-minimum relay selection scheme needs essentially 13

dB total power, P , but the fixed relay system requires almost 14 dB. The
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Figure 4.5. Bit error rate performances of maximum-minimum relay se-
lection with Golden Code based transmission.

figure also shows a small improvement in performance as the total number

of relays is increased.

Fig. 4.6 includes the simulation results of BER performance of the

maximum-mean relay selection and the fixed relay scheme. Obviously, the

BER performance of the maximum-mean relay selection outperforms the

fixed relay scheme. For example, the selection case requires approximately

12 dB of total power, P , and the power of the no selection case is 14 dB at

BER 10−3. Moreover, with increasing the total number of relays, the BER

performances can be improved, i.e., when BER = 10−3, the total transmis-

sion powers of the 4, 6 and 8 relay cases respectively need approximately

13.5 dB, 12.5 dB and 12 dB.
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Figure 4.6. Bit error rate performances of maximum-mean relay selection
with Golden Code based transmission.

Fig. 4.7 shows a direct comparison of performances of maximum-minimum

strategy and maximum-mean strategy. The dashed curves represent the per-

formances of maximum-minimum selection, and the solid curves show the

performances of maximum-minimum selection. Clearly, the maximum-mean

scheme shows a small advantage. Generally, when the number of selected

relays equals to 4, 6, and 8, the maximum of means selection always has ap-

proximately 1 dB superiority. That is because the maximum-mean selection

can better balance the channel qualities.
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Figure 4.7. Bit error rate performances of maximum-minimum strategy
and maximum-mean strategy with Golden Code based transmission.

4.3 Transmission strategy of the Golden Code in coded MIMO-

OFDM System

4.3.1 Channel Models

The coherence bandwidth measures the separation in frequency after which

two signals will experience uncorrelated fading [43]. In flat fading, the co-

herence bandwidth of the channel is larger than the bandwidth of the signal.

Therefore, all frequency components of the signal will experience the same

magnitude of fading. In frequency-selective fading, the coherence band-

width of the channel is smaller than the bandwidth of the signal. Different

frequency components of the signal therefore experience varying levels of

fading.
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A. Flat Fading MIMO Channel

The delays associated with different signal paths in a multipath fading chan-

nel change in an unpredictable manner and can only be characterised statis-

tically. When there is a large number of paths, the central limit theorem can

be applied to model the time-variant impulse response of the channel as a

complex-valued Gaussian random process [43]. When the impulse response

is modelled as a zero mean complex-valued Gaussian process, the channel

is said to be a Rayleigh fading channel. If the coherence bandwidth of the

channel is much greater than the bandwidth of the signal, the channel is

frequency-flat since it affects all signal frequencies in essentially the same

manner [43]. A frequency-flat Nt ×Nr MIMO link can be modelled by

r = Hx + n, (4.3.1)

where r ∈ CNr×1 is the received vector, x ∈ CNt×1 is the transmitted vector

and n ∈ CNr×1 ∼ CN (0Nr×1,N0INr) is the noise vector, and H is the MIMO

channel matrix.

B. Frequency Selective MIMO Channel

Frequency selective channels are characterised by a constant gain and linear

phase response over a bandwidth which is smaller than the bandwidth of

the signal to be transmitted [24]. Equivalently, in the time domain, the

length of the impulse response of the channel is equal to or longer than

the width of the modulation signal in high data rate wireless systems. For

frequency-selective MIMO channels, the channel impulse response between

the qth transmitted antenna and pth received antenna is modelled by

hp,q(t) =

L−1∑
l=0

hq,p(l)δ(t− l), (4.3.2)
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where q = 1, . . . , Nt and p = 1, . . . , Nr. The parameter hq,p(l) is the strength

of the lth path from the qth transmitting antenna to the pth receiving antenna

and L is the length of all impulse responses. Thus, the received signal rp(t)

at the pth received antenna is

rp(t) =

Nt∑
q=1

L−1∑
l=0

hq,p(l)xq(t− l) + np(t) (4.3.3)

where xq(t) is the symbol scalar transmitted by the qth antenna and np(t)

is an AWGN scalar. For the received signal vector, it also can be written as

r(t) =

L−1∑
l=0

H(l)x(t− l) + n(t), (4.3.4)

where r(t) is the received vector of dimension Nr × 1. Assuming Nr < Nt,

H(l) is defined as



h1,1(l) 0 0 . . . 0

0 h2,2(l) 0 . . . 0

...
. . .

. . .
. . .

...

0 0 . . . hNr,Nt(l) 0


, (4.3.5)

and x(t) is the transmitted vector of dimension Nt×1 and n(t) is the AWGN

noise vector of dimension Nr × 1. Next, a distributed asynchronous MIMO

channel is considered.

4.3.2 System Model

In this section, the Golden Code is used in the MIMO-OFDM system model

as Fig. 4.8. The transmitted binary source sequence si is 4-QAM modulated.

The 4-QAM symbols sk go through Series-Parallel (S/P) and form as vk

signals. vk are then encoded using convolutional channel coding and encoded

using the Golden Code matrix (3.3.1).
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xk is then fed to OFDM modulators with nc subcarriers and a cycle

prefix (CP) of length ng. The two columns of (3.3.1) is transmitted by two

antennas. The sequence xqk is at the qth OFDM modulator, where qth(q =

1, 2) column of (3.3.1). The OFDM modulator uses an inverse fast Fourier

transform (IFFT) module and a CP is added. The overall vectors of length

nc+ng are transmitted over a frequency and time selective MIMO channels.

The CP length ng is assumed to be longer than the largest multipath delay

spread in order to avoid OFDM inter-symbol interference. xn,k is the nt× 1

MIMO vector to be transmitted on the nth subcarrier at time k. The kth

MIMO-OFDM symbol is then given by

uk = ξ1
√
nc(F

−1 ⊗ Int)xk (4.3.6)

where F−1 is the nc×nc Fourier matrix, of which the element is exp(−j2πnk/nc),

⊗ is the Kronecker product, Int represents the nt identity matrix, and xk is

an vector ncnt × 1 vector given by

xk =



x1,k

·

·

·

xn,k


(4.3.7)

and ξ1 is the CP adding matrix given by

ξ1 =


 0 Ing

Inc

⊗ Int

 (4.3.8)

The nt(nc + ng) length MIMO-OFDM symbol is transmitted over a fre-

quency selective channel. As mentioned above, the channel impulse response

between qth transmitting antenna and pth receiving antenna is given by a
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tapped delay line (4.3.2) as [24]. The channel taps sequence hp,qk (l) is a cor-

related complex Gaussian process with zero mean, the same variance σ2h.

Therefore, the received signal during the kth MIMO-OFDM symbol is

ypk =

nt∑
q=1

L−1∑
l=0

hp,qk (l)uqk(k − l) + wp
k (4.3.9)

where uqk is the symbol vector transmitted by the qth antenna and wp
k is a

zero mean white Gaussian complex noise.

In order to decode the Golden Code by sphere decoding, the code matrix

has to be vectorized, furthermore real and imaginary part are separated.

Thereby, an 8× 8 real part matrix R can be obtained as

R =

√
1

5



1 −σ(θ) θ 1 0 0 0 0

σ(θ) 1 −1 θ 0 0 0 0

0 0 0 0 −θ −1 1 −σ(θ)

0 0 0 0 1 −θ σ(θ) 1

0 0 0 0 1 −σ(θ) θ 1

0 0 0 0 σ(θ) 1 −1 θ

1 −θ σ(θ) 1 0 0 0 0

θ 1 −1 σ(θ) 0 0 0 0


(4.3.10)

and signal sent over a channel also described by 8× 8 matrix HO

HO =



Re(h11) −Im(h11) Re(h12) −Im(h12) 0 0 0 0

Im(h11) Re(h11) Im(h12) Re(h12) 0 0 0 0

Re(h21) −Im(h21) Re(h22) −Im(h22) 0 0 0 0

Im(h21) Re(h21) Im(h22) Re(h22) 0 0 0 0

0 0 0 0 Re(h11) −Im(h11) Re(h12) −Im(h12)

0 0 0 0 Im(h11) Re(h11) Im(h12) Re(h12)

0 0 0 0 Re(h21) −Im(h21) Re(h22) −Im(h22)

0 0 0 0 Im(h21) Re(h21) Im(h22) Re(h22)


(4.3.11)

Finally, the decoding of the 8-dimensional lattice with generator matrix HR

can be performed using the sphere decoding.
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4.3.3 Channel Coding - Convolutional Code

Figure 4.9. Block diagram for a simple convolutional encoder.

Convolutional codes was invented in 1954 by P.Elias, constitute a fam-

ily of error correcting codes whose decoding simplicity and good perfor-

mances [68]. However, the convolutional codes do not device a defined block

structure. A continuous flowing data stream will be encoded into a con-

tinuously flowing code word. The length of a code word is given by other

requirements than the structure of the code. Convolutional encoder is a

linear and time-invariant system given by the convolution of a binary data

stream with generator sequences. Fig.4.9 shows a simple example of such an

encoder with rate Rc = 1/2 and memory m = 2.

Given an input bit stream bi, a convolutional encoder of code rate Rc =

1/n produces n parallel data streams cv,i, v = 1, · · ·, n that may be mul-

tiplexed to one serial code word before transmission. Therefore, it can be

written as

cv,i =

m∑
k=0

gv,kbi−k, (4.3.12)

where setting bi = 0 and gv,k(v = 1, · · ·, n); (k = 0, · · ·,m) are the generators

that can also be written as generator polynomials

gv(D) =

m∑
k=0

gv,kD
k, (4.3.13)
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where D is a formal variable that can be interpreted as delay [68]. Using

example Fig. 4.9 can obtain

g1(D) = 1 +D2 ≡ (101) ≡ 5oct

g2(D) = 1 +D +D2 ≡ (111) ≡ 7oct.

Above formula are the binary vector notation and the octal notation for the

generators. While, adopting the above coded word in coded MIMO-OFDM

system simulated the performance of the Golden Code transmission.

4.3.4 Simulation Results
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Figure 4.10. The BER and FER performances of the Golden Code in
uncoded and coded MIMO-OFDM.

Fig.4.10 shows the simulated results on the performances of the Golden

Code in uncode and coded MIMO-OFDM system. QPSK symbols are trans-
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mitted at the source. The length of symbol is 128, CP sets the length of

32 and the channel length is 3. The decoding approach is full maximum-

likelihood. It is clear that the bit error rate of MIMO-OFDM system with

channel coding outperforms the no channel coding approximately 2 dB gen-

erally in the same error bits case. i.e. when SNR is from 4 dB to 20 dB.

Moreover, increasing with the values of SNR, this gap is increasing as well.

The other performance frame error rate (FER) of the Golden Code in un-

coded and coded MIMO-OFDM is also shown in Fig.4.10. The curve with

circle mark is the Golden Code in uncoded system and with square mark is

the Golden Code in coded system. From 0 dB to 8 dB SNR, every frame is

uncorrect, therefore the FER values always equal to 1 for these two curves.

After 10 dB of SNR, the curves decreased. However, the SNR value of coded

system outperforms uncoded system approximate 2 dB when the FER is

fixed.

4.4 Relay Selection over Asynchronous Two-hop MIMO Relay

Channels

4.4.1 System Model

Due to the basic transmission environment of the Golden Code, a 2×2 MIMO

channel scheme is adopted. The cooperative scheme in general contains

two phases of transmission, a broadcast phase and a cooperation phase as

represented in Fig. 4.11. The network is composed of one source, j relays

and one destination. There are respectively two antennas at the source and

the destination, but only one antenna at each relay. Each node is half-

duplex. The information symbols are coded with the Golden Code in the

source rather than in the relays. As mentioned, these j relay nodes are

geographically dispersed, with a random time delay τ in the cooperation

phase. For instance, there is a τ time difference between the signals from
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Figure 4.11. Relay selection with the Golden Code in an asynchronous
two-hop MIMO wireless network.

the R1 relay and the signals from R2 to the destination node. Moreover, the

length of the cyclic prefix lcp > τ + L and the subcarriers are orthogonal to

each other. The other assumption is that the channels are either quasi-static

Rayleigh flat fading or frequency selective fading with coefficients fj and gj ,

or sets of L coefficients which are i.i.d. complex Gaussian random variables

with zero-mean and unit-variance, subscript j denotes the jth relay.

A. Implementation at the source

The block diagram Fig. 4.12 illustrates the whole transmission scheme.

Combining with Fig. 4.11, the information symbols are modulated as QPSK

and stored as vectors s1, s2, s3 and s4, and then encoded with the Golden

Code matrix (3.3.1). The encoded symbol vectors are x1, x2, x3 and x4.

Each block of N modulated symbols is fed to an OFDM modulator of N

subcarriers. Four OFDM blocks which are modulated by an N -Point IDFT
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can be obtained : txv = [tx0,v, tx1,v, tx2,v · ··, txN−1,v]T , v = 1, 2, 3 and 4.

Then each block is preceded by a CP with the length lcp. The CP length

lcp is set to be not less than or equal to the time delay τ , and lcp ≥ (L −

1) + (L − 1) + τmax where L is the number of multipaths. tx1 and tx2 are

broadcasted respectively by the source to the destination through two relay

nodes, and then the source broadcasts tx3 and tx4 in the second period.
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In the fixed relay case, only two relays R1 and R2 are used. The signal

received by the jth relay can be expressed in the time domain as

trkj =
√
Pt(tx2k−1 ~ fj−1 + tx2k ~ fj) + tnkrj , (4.4.1)

where ~ denotes discrete time convolution operation and f2j−1 and f2j are

channel vectors from the source to the relays. Pt denotes average transmit

power of the source, and k ∈ (1, 2) is the symbol index; tnkrj is the vector of

the AWGN at the jth relay in the time domain.

B. Implementation at the destination

As mentioned, due to the timing errors, there is a τ sample delay between

the signals from the R1 relay and the signals from R2 to the destination

node. The signal received by the ith antenna of the destination, during the

relaying phase in the time domain, can be expressed as

tyki =
√
Pr(tr

k
1 ~ g2i−1 + (trk2 ~ g2i)τ ) + tnkdi, (4.4.2)

where Pr represents the average transmit power of the relay node, tnkdi is the

AWGN at the ith antenna of the destination, and (·)τ denotes the timing

offset due to asynchronism.

The power allocation is the same as (4.2.3). After the removal of the CP

and the DFT operation at the receiver, the time domain operation in (4.4.2)

can be equivalently written in the frequency domain as

yki =
√
Pr(r

k
1 ◦ g

′
2i−1 + rk2 ◦ g

′
2i ◦mτ ) + nkdi, (4.4.3)

where g
′
2i−1 and g

′
2i represent the DFTs of g2i−1 and g2i, and the time

delay in the time domain corresponds to a phase change in the frequency
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domain [36] which in vector form becomes

mτ = [1, e−j2πτ/N , · · ·, e−j2πτ(N−1)/N ]T . (4.4.4)

Thus, the total received signal vector in the frequency domain for the asyn-

chronous network yα can be written as

yα = Hαxα + nα, (4.4.5)

where yα is the vector [y1
1
T
,y1

2
T
,y2

1
T
,y2

2
T

]T and xα is the source vector

[xT1 ,x
T
2 ,x

T
3 ,x

T
4 ]T . Hα is a 4× 4 block diagonal matrix of effective transmis-

sion channels which is given by

Hα =

 M 0

0 M

 , (4.4.6)

where,

M =

 diag{f′1 ◦ g
′
1 + f

′
3 ◦ g

′
2 ◦mτ} diag{f′2 ◦ g

′
1 + f

′
4 ◦ g

′
2 ◦mτ}

diag{f′1 ◦ g
′
3 + f

′
3 ◦ g

′
4 ◦mτ} diag{f′2 ◦ g

′
3 + f

′
4 ◦ g

′
4 ◦mτ}

 ,
(4.4.7)

0 represents a 2 × 2 full zero matrix, and f
′
j represents the DFT of fj and

gi. The total noise nα is the vector [n1
1
T
,n1

2
T
,n2

1
T
,n2

2
T

]T . The elements of

nα can be written as

nki =
√
Pr(n

k
r1 ◦ g

′
2i−1 + nkr2 ◦ g

′
2i) + nkdi. (4.4.8)

The decoding method of yα in (4.4.5) is considered next.

First, using a full ML for decoding the Golden Code

x̂ = arg min
xα∈Sc

{‖yα −Hαxα‖2}, (4.4.9)

where Sc denotes the collection of all members of the symbol constella-

tion and x̂ represents the estimated signal vectors. Due to the orthogo-
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nality in the OFDM channels, however, this decoding can be performed on

a frequency-by-frequency basis as in the frequency flat case. For example,

without noise,



y1
1(ωu)

y1
2(ωu)

y2
1(ωu)

y2
2(ωu)


=



(f
′
1(ωu)g

′
1(ωu) + f

′
3(ωu)g

′
2(ωu)mτ (ωu))x1(ωu)

(f
′
2(ωu)f

′
1(ωu) + f

′
4(ωu)f

′
2(ωu)mτ (ωu))x2(ωu)

(f
′
1(ωu)g

′
3(ωu) + f

′
3(ωu)g

′
4(ωu)mτ (ωu))x3(ωu)

(f
′
2(ωu)g

′
3(ωu) + f

′
4(ωu)g

′
4(ωu)mτ (ωu))x4(ωu)


, (4.4.10)

where ωu denotes the uth frequency and u = 1, 2, · · ·, N . In the AWGN

channel environment, due to obtaining the minimum BER for every an-

tenna, this decoding approach has the best performance. However, with the

increasing number of transmitted antennas and modulation levels, the com-

plexity of maximum-likelihood detection increases and becomes difficult to

realize. For overcoming this computational complexty weakness of full ML,

the low complexity SD is applied.

The sphere decoding algorithm is easily used for decoding the MIMO

system. When received signals can be represented in a lattice structure, SD

detection will search the closest lattice points to the received signal within

a radius c (4.2.17). Selection of c corresponds crucially to the speed of

this algorithm. Once the radius c is decreased, the number of signal points

which are searched can be reduced in order to increase the calculation speed,

although the performance of the decoding will generally be decreased at lower

SNRs.

4.4.2 A Relay Selection Scheme in Asynchronous Distribution

System

The aim is to select the best two relays for the Golden Code transmission in

a cooperative asynchronous network as in Fig. 4.11. Firstly, the maximum-
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minimum selection strategy is used as in [56]. Then, the other selection

scheme which finds the mean of the maximum values among the channels is

considered.

A. Maximum-minimum selection

To build the basic 2× 2 relay MIMO transmission channel, every relay node

has four channels linked to it. Therefore choosing the best relay and the

second best from j relays yield the most effective transmission.

L
(j)
min = min{|fj−1|2, |fj |2, |gj |2, |g2j |2}, (4.4.11)

and in a frequency selective channel environment, the optimal relay selection

can be expressed as

L
(j)
min = min{

L∑
l=1

|fj−1,l|2,
L∑
l=1

|fj,l|2,
L∑
l=1

|gj,l|2
L∑
l=1

|g2j,l|2}. (4.4.12)

These values are then calculated for all of the relays and stored in Lmin. The

relay corresponding to the maximum of these minima is selected, together

with the relay which has the maximum of the remaining minima.

B. Maximum-mean selection

The second selection approach is based on calculating the mean of the

strengths of the channels connected to each relay. The mean of these four

flat fading channels for the jth relay is obtained as

L(j)
mean =

|fj−1|2 + |fj |2 + |gj |2 + |g2j |2

4
, (4.4.13)
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and the mean of four frequency selective channels for the jth relay is obtained

as

L(j)
mean =

∑L
l=1 |fj−1,l|2 +

∑L
l=1 |fj,l|2 +

∑L
l=1 |gj,l|2 +

∑L
l=1 |g2j,l|2

4
.

(4.4.14)

This mean value is then calculated for all relays and stored in Lmean. In con-

trast to maximum-minimum selection, this method can best balance the lev-

els among the channels, while the maximum-minimum selection just depends

on the minimum value of one channel. Next, these schemes are evaluated in

simulations.

4.4.3 Simulation Results

This section shows the simulated performances of the relay selection with

the distributed transmission using maximum-likelihood and sphere detection

based on the Golden Code in asynchronous wireless networks. The perfor-

mance is shown by BER using QPSK symbols. The total transmission power

of the system is fixed as P . The transmitted symbol block size is 64. The

assumptions are that the channel is quasi-static flat fading and perfectly

known at the receiver.

Fig. 4.13 presents the comparison of performances of the Golden Code

in the asynchronous distributed system with ML and the SD. Clearly, from

0 dB to 12 dB of power, the performance of SD is slightly worse than the

ML. However, the slope of the SD curve decreases rapidly. Therefore, when

the power equals to approximately 12 dB, the meeting point with these

two curves occurs, and after that, the performance of SD can reach the

performance of ML. The speed of calculation of SD is considerably faster

than the ML decoding. In simulation on a dual-core PC under Windows 7

and MATLAB 7.1, the simulations presented in Fig. 4.13 would take more

than 6 hours with full ML whereas this time is halved with SD.
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Figure 4.13. End-to-end BER performances of the Golden Code in the
asynchronous distributed system with the maximum-likelihood detection
and the sphere detection.

In Fig. 4.14, the BER performances are compared for the fixed relay,

maximum-minimum relay selection and maximum-mean relay selection with

the Golden Code in the asynchronous distributed system over SD. Obviously,

the BER performance of the fixed relay scheme is worse than those based

on relay selections. For example, the BER reaches 10−2 and the power

must reach 19 dB in the fixed relay scheme. While in the relay selection

scheme, two relays are selected out of four relays using maximum-minimum

selection strategy and the same BER is achieved with only 15dB power.

For the relay selection cases, the dashed curve shows the performance of

maximum-minimum strategy and the solid curves present the maximum-

mean strategy. The performance of maximum-minimum selection is worse
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Figure 4.14. End-to-end bit error rate performances of no selection,
maximum-minimum,maximum-mean relay selections and to deal with time
delay without OFDM in asynchronous distributed system with the sphere
detection.

than the maximum-mean selection 1 dB to 2 dB power generally with the

same BER, such as BER equals to 10−3. Moreover, when the number of

participating relays is increased, the performance is further improved.

On the other hand, the BER performances of the relay selection trans-

mission with the Golden Code in an asynchronous wireless relay network

over frequency selective channel is shown in Fig. 4.15. In the frequency

selective channel environment, the relay selection based on the maximum-

minimum relay selection strategy outperforms the maximum-mean strategy.

Generally, based on the same BER performance, the selection case needs

power less than the fixed relay scheme 0.5 dB to 1 dB. By contrast, there is

approximately 0.2-0.5 dB power superiority using the maximum-minimum

strategy.



Section 4.4. Relay Selection over Asynchronous Two-hop MIMO Relay Channels 111

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

Power dB

B
E

R

 

 

 

select 2 from 4 (maximum−mean)

select 2 from 16 (maximum−mean)

select 2 from 4 (maximum−minimum)

select 2 from 16 (maximum−minimum)

fixed relay selection

Figure 4.15. End-to-end bit error rate performances of no selection,
maximum-minimum and maximum-mean relay selections in asynchronous
distributed system over frequency selective fading channel with the sphere
detection.

Finally, the simulated performance of relay selection over a sparse fre-

quency selective channel is compared with that for flat fading and general fre-

quency selective channels in Fig. 4.16. In the range of low power, the perfor-

mance of maximum-minimum selection is almost the same as the maximum-

mean selection over frequency selective channels. From 16 dB to 20 dB

power, this property of performance is reversed. The BER performance of

maximum-minimum restore the case which is worse than maximum-mean se-

lection. Thus, there is 0.5-1 dB power general superiority for the maximum-

mean selection over frequency selective channels. Generally, bit error rate

performance of wireless transmission over flat fading channel is better than

over frequency selective channel. OFDM was adopted in this case, which

overcomes the weak of frequency selective channel. The signals from multi-
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Figure 4.16. Bit error rate performances of relay selections in asyn-
chronous distributed system over flat fading channel and sparse frequency
selective channel with the sphere detection.

path can be combined to form stronger signals. Therefore, the performance

over frequency selective channel has better performance in this case.

4.5 Summary

Distributed transmission using the Golden Code in wireless relay networks,

and a new multiple relay selection strategy, were proposed in this chapter.

Through end-to-end BER simulations, the maximum of the channel param-

eter means selection was shown to achieve the best performance. The im-

provement was because this approach performs an overall channel strength

tradeoff at every relay node to select the best two relays. Therefore, this

new maximum-mean policy appears valuable for cooperative diversity sys-

tems based on the Golden Code.

The Golden Code was also implemented in an asynchronous wireless re-

lay network over frequency flat and selective channels, and a simple approach
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to overcome asynchronism was proposed in this chapter. As in synchronous

wireless relay networks, the maximum of the channel parameter means selec-

tion was shown to still achieve the best performance for the relay selection

through BER simulations with computationally efficient SD in a flat fading

channel environment. The improvement was because this approach performs

an overall channel strength tradeoff at every relay node to select the best

two relays. In the frequency selective channel case, however, the advantage

of the maximum-mean selection was lost. Performance analysis of Golden

Code based transmission with antenna selection in MIMO systems will be

provided in the next chapter. This analysis also provides guidance for dis-

tributed MIMO systems operating in DF mode of transmission, which also

applies to Chapter 6.



Chapter 5

MULTI-ANTENNA

SELECTION POLICIES USING

THE GOLDEN CODE IN

MIMO SYSTEMS

In MIMO systems, multiple-antenna selection has been proposed as a prac-

tical scheme for improving signal transmission quality as well as reducing

realisation cost due to minimising the number of radio frequency chains.

In this chapter, transmit antenna selection for MIMO systems with the

Golden Code is investigated. Two antenna selection schemes are consid-

ered: maximum-minimum and maximum-sum approaches. The outage and

pairwise error probability performance of the proposed approaches are anal-

ysed. Simulations are also given to verify the analysis. The results show the

proposed methods provide useful schemes for antenna selection.

5.1 Introduction

MIMO wireless communications increases spectrum efficiency by spatial mul-

tiplexing and improves link reliability by antenna diversity [2] and [6]. Al-

though many benefits of multi-antenna systems have been verified, the de-

114
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ployment of multiple antennas requires multiple radio-frequency (RF) chains

associated with each antenna. A conventional MIMO system, with Nt trans-

mit and Nr receive antennas, requires Nt and Nr RF chains respectively.

These RF chains include multiple analog-digital converters, low noise am-

plifiers, and downconverters. This leads to a considerable increase in the

cost and complexity of implementing such systems and represents a major

practical drawback. To reduce the number of RF chains and keep the system

simple and inexpensive, antenna selection (AS) algorithms are proposed to

feed the most favourable subsets of transmit and/or receive antennas to RF

chains.

Antenna selection selects a subset of antennas to feed to the RF chains.

The selection algorithm is based on the SNR of the received signals. This

benefits diversity but not spatial multiplexing. A reduced-complexity MIMO

scheme that selects the Lr best available from Nr receive antennas was pro-

posed in [6], wherein an upper bound on the capacity was also derived that

can be expressed as the sum of the logarithms of ordered chi-square dis-

tributed variables. In [69], a MIMO scheme combining transmit antenna se-

lection and receiver maximal-ratio combining was investigated. The impact

of antenna selection on the PEP for space-time code systems was approxi-

mately analysed in [70]. In [71], theoretical performance analysis including

PEP for multi-antenna systems with antenna selection was presented. A

practical algorithm for antenna selection in MIMO wireless communication

systems employing STBC was described in [72], where the outage probability

was analyzed. The outage probability of multiuser diversity in a transmit

antenna selection system was derived for Nakagami-m channels in [73]. Both

single transmit and single receive antenna selection were examined for flat

Nakagami-m fading channels in [18]. Based on two-way relay networks, [74]

proposed two strategies for transmit and receive antenna selection, where

outage probability results revealed that the joint relay and antenna selection
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strategies achieve significant diversity and array gains over their single relay

counterparts. The authors of [75] presented a unified asymptotic framework

for transmit antenna selection in MIMO multirelay networks with Rician,

Nakagami-m, Weibull, and generalized-K fading channels and derived new

closed-form expressions for the outage probability and symbol error rate

of the AF relaying in MIMO multirelay networks with two distinct proto-

cols: transmit antenna selection with receiver maximal-ratio combining and

transmit antenna selection with receiver selection combining.

This chapter describes the analysis of outage probability and PEP of

transmit antenna selection schemes for a Golden Code network. Select-

ing the best two transmit antennas from N participating antenna by us-

ing maximum-minimum and maximum-sum selection schemes is proposed.

Comparison of the outage probability of these two approaches, and deriva-

tion of an upper bound for the PEP and the diversity order are also shown in

this chapter. Simulations are finally used to verify the theoretical analysis.

5.2 System Model

A point-to-point MIMO network as a basic transmission scenario for the

Golden Code is shown in Fig. 5.1. One BS as the transmitter and one UE

as a receiver; moreover, the wireless network has N transmit antennas at the

BS, and two receive antennas at the UE. Every antenna is half-duplex, so

that it cannot transmit and receive simultaneously. Channel coefficients are

denoted from BS to UE as gAnDk , where n represents the nth antenna at the

BS and k represents the kth antenna at the UE, n ∈ {1, ···, N} and k ∈ {1, 2}.

The signals are encoded at the BS with the Golden Code (3.3.1). The two

transmit antennas which achieve the highest SNR are selected to transmit

the signal encoded with the Golden Code. The channels are quasi-static

Rayleigh flat fading, which are i.i.d. complex Gaussian random variables
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with zero-mean and unit-variance, i.e. gAnDk ∼ CN (0, 1). The instantaneous

SNR for channel gAnDk is γAnDk = |gAnDk |2Es/N0, where Es is the average

power per symbol and N0 is the noise variance. Es is assumed unity and the

noise variances are the same in all antennas at the destination in this chapter.

Perfect CSI is assumed known at the destination node. The information bits

Figure 5.1. The system model of antenna selection at the transmitter, i.e.
the ith and jth Antenna are selected.

are respectively encoded with the Golden Code matrix (3.3.1). Sending a

Golden codeword needs two time slots. The transmission process is listed as

below if the best two transmit antennas are selected. The signal received at

the UE kth antenna at the first time slot, t = 1,

y1k =

√
P

2
(gAiDkx1 + gAjDkx2) + n1k (5.2.1)
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and at the second time slot, t = 2

y2k =

√
P

2
(gAiDkx3 + gAjDkx4) + n2k (5.2.2)

where P
2 is the transmitted energy at every antenna, nk is AWGN with vari-

ance σ2k. At the receiver, maximum-likelihood decoding is used to estimate

the original signal

arg min
x∈Sc
{‖y−Hcx‖2}, (5.2.3)

where Sc denotes the collection of possible symbol constellation points and

‖ · ‖ denotes the Euclidean norm. Hc is the selected channel matrix which

contains gAiDk and gAjDk , for example

Hc =



gA1D1 gA2D1 0 0

gA1D2 gA2D2 0 0

0 0 gA1D1 gA2D1

0 0 gA1D2 gA2D2


(5.2.4)

y is the received signal vector which takes the form

y =

[
y11 y12 y21 y22

]T
. (5.2.5)

Next, the outage probability of the antenna selection scheme is analysed.

5.3 Multi-antenna Selection with Outage Probability Analysis

The outage probability is defined as P (Cd < R), where Cd denotes the

channel capacity and R is the target rate. Therefore, the SNR at D1 is

γD1 =
|gAiD1|2+|gAjD1|2

σ2
k

and at D2 is γD2 =
|gAiD2|2+|gAjD2|2

σ2
k

. An outage

standard

γd =
|gAiD1 |2 + |gAiD2 |2 + |gAjD1 |2 + |gAjD2 |2

σ2k
. (5.3.1)
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is defined as total end-to-end SNR which is similar to the real SNR. Then

the capacity between source and destination is given by

Cd = log2(1 + γd). (5.3.2)

The multiple transmit antenna selection chooses the most suitable two

from N transmit antennas. The transmit signals must be such that their

superposition at the receiver results in maximal receive SNR. Two antenna

selection schemes are considered in this section: the maximum-minimum

and maximum-sum antenna selection, respectively.

5.3.1 Maximum-Minimum Selection

Because the Golden Code requires two antennas at the transmitter, the aim

is to select the best two transmit antennas from N available antennas. In

the maximum-minimum selection scheme, the best two links can be selected

as:

i = argmax { min
i∈{1,···,N}

(γAiD1 , γAiD2)}

j = argmax { min
j∈{1,···,N−1},j 6=i

(γAjD1 , γAjD2)},
(5.3.3)

where i indexes the best antenna, and j is the second best. To be specific,

the maximum-minimum selection as is shown in (5.3.3) contains two steps:

1) For every transmission antenna Ai(j), choosing the channel with the

minimum gain represents as γAi(j)D = min(γAi(j)D1 , γAi(j)D2), where γAi(j)D1

and γAi(j)D2 are the channel SNRs from Ai(j) to the two receiving antennas

D1 and D2 respectively;

2) Then the transmission antennas are selected with the two largest

γAi(j)D among all transmission antennas.

In order to obtain the outage probability for the maximum-minimum
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selection scheme, the probability density function (PDF) of the four channel

SNRs for the two selected antennas need to be obtained. However, from

“step 1” in the maximum-minimum selection rule, for each selected antenna,

only the distribution of the smaller channel SNR can be obtained. For the

larger channel SNR, as only known that it is larger than the other but do not

know by how much. Thus the PDF of the larger channel SNR for the selected

antenna is very hard (if not impossible) to obtain. This leads to the bound

in (5.3.4), which again leads to the outage upper bound. Because the “larger

channel SNR-s” themselves are random numbers and can not be controlled

by the specific values, there exist sizeable gaps between the derived outage

upper bounds and the numerical results. With this observation, the final

SNR with the selected i and j is given by (5.3.1) which is lower-bounded as

γd ≥ 2 max
i∈{1,···,N}

{min(γAiD1 , γAiD2)}+ 2 max
j∈{1,···,N−1},j 6=i

{min(γAjD1 , γAjD2)}.

(5.3.4)

For all Rayleigh flat-fading channels, the PDF and the cumulative dis-

tribution function (CDF) of the SNR are given by

fγv(γ) =
1

γv
e
− γ
γv

Fγv(γ) = 1− e−
γ
γv

, (5.3.5)

respectively, where γv ∈ (γAnD1 , γAnD2), γ > 0 and γv is the average mean

SNR of all links. The channels are i.i.d. and γAnD1
= γAnD2

= γv. Thus,
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the CDF of min(γAnD1 , γAnD2) can be expressed as

F (γ) = 1− (Pr(γAnD1 > γ))(Pr(γAnD2 > γ))

= 1− (1− Pr(γAnD1 ≤ γ))(1− Pr(γAnD2 ≤ γ))

= 1− (1− FγAnD1
(γ))(1− FγAnD2

(γ))

= 1− e−
2γ
γv .

(5.3.6)

Then, the PDF of γv can be obtained as

f(γv) =
dF (γ)

d(γ)
=

2

γv
e
− γv
γv . (5.3.7)

In this approach, the best two antennas are selected with the largest two

SNRs among all N available transmitted antennas. According to [41], the

joint distribution of the L largest values from N candidates can be obtained

as

f(x1, x2, · · ·, xL) = L!

N
L

 [F (xL)]N−L
L∏
i=1

f(xi), (5.3.8)

where x1 ≥ x2 · ·· ≥ xT · ·· ≥ xN . Substituting L = 2 into (5.3.8) yields the

joint PDF of the two largest SNRs as

f(γi, γj) = N(N − 1)F (γj)
N−2f(γi)f(γj), (5.3.9)

Substituting (5.3.6) into (5.3.9), and using binomial expansion (1− x)n =
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∑n
k=0

n
k

 (−x)k gives

f(γi, γj) = N(N − 1)(1− e−
2γj
γv )N−2

2

γv
e
− γi
γv

2

γv
e
−
γj
γv

= N(N − 1)

N−2∑
u=0

N − 2

u

 (−e−
2γj
γv )u

︸ ︷︷ ︸
Binomial expansion

2

γv
e
− γi
γv

2

γv
e
−
γj
γv .

(5.3.10)

Let γlow = γi + γj , the CDF Fγlow(γ) is obtained as

Fγlow(γ) = Pr{γi + γj ≤ γ}

=

∫ γ
2

0

∫ γ−y

y
f(x, y)dxdy

= 2N(N − 1)

∫ γ
2

0

(
− e

2y

γ2v + 1
)N−2(

1

e
− 4y

γ4v

− e−
2γ

γ2v

)
γ2v

dy.

(5.3.11)

According to the definition of outage probability, an outage occurs when

the average end-to-end SNR falls below a certain threshold value γth, namely,

according to (5.3.4), target SNR γth = (2R−1)/2. For any N and γv, (5.3.11)

can be obtained numerically with, for example Matlab or Maple [76]. The

outage probability can be expressed as

Pout = Fγlow(γth). (5.3.12)

5.3.2 Maximum-Sum Selection

In this section, the maximum-sum selection scheme is proposed. The sum

SNRs is first obtained from the transmit antenna to the two receive antennas,

and then two antennas are chosen which achieve the two largest sum SNRs
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as:

i = arg max
i∈{1,···,N}

{γAiD1 + γAiD2}

j = arg max
j∈{1,···,N−1},j 6=i

{γAjD1 + γAjD2}.
(5.3.13)

The PDF of the sum γµ = γAi(j)D1 + γAi(j)D2 can be expressed as

fγµ(γ) =
γ

γ2µ
e
− γ

γ2µ , (5.3.14)

where γµ is the average mean SNR of γµ. Then the CDF of γµ is

F (γ) = 1− γ

γµ
e
− γ
γµ − e−

γ
γµ = 1− e−

γ
γµ (1 +

γ

γµ
). (5.3.15)

And substituting (5.3.14) and (5.3.15) to (5.3.9) gives the PDF of the final

SNR. Then the CDF of the final SNR can be obtained as

Fγe(γ) =

∫ γ
2

0

∫ γ−y

y
N(N − 1)

·
N−2∑
u=0

N − 2

u

 (−1)ue
− yu
γµ

u∑
m

u

m

 · ( y
γµ

)m
xy

γ4µ
e
−x+y

γµ dxdy

=

∫ γ
2

0

ξ · η · ϕ
ω

dy,

(5.3.16)

where

ξ = N(N − 1)y,

η =

N∑
a=0

N
a

 (−1)ae
− ya
γµ

a∑
b=0

a
b

 (
y

γµ
)b,

ϕ = −y − γµ + e
2y−γ
γµ (γµ + γ − y),

and

ω = −γµy2 − 2yγ2µ + 2yγ2µe
y
γµ − γ3µ + 2γ3µe

y
γµ − e

2y
γµ γ3µ.
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Finally, using the target SNR γth = 2R− 1, the exact outage probability

of the maximum-sum selection scheme can be obtained. Similarly, for any

N and γµ, the outage can be obtained by using a numerical method [76].

5.4 PEP Analysis of the Maximum-Sum Multi-Antenna Selection

with the Golden Code

In this section, the PEP over flat fading channels is analysed and the diversity

order of the point-to-point Golden Code is investigated. For convenience,

the 2×N channel is written in the form of the following matrix

Hc =

 gA1D1 gA2D1 · · · gAND1

gA1D2 gA2D2 · · · gAND2

 . (5.4.1)

The antenna selection can be described as choosing the two columns with

the highest norm as the best transmitted antennas. Finding the joint PDF

of the largest two norms is the first step. In [71] the joint PDF of the selected

H̃c which represents H̃c = [gi gj ] can be written as

f(gi,gj) =
N !

(N − 2)!2

·
2∑
l=1

(1− e−‖gl‖2 − e−‖gl‖2‖gl‖2)N−2IRl(gi,gj))
e−(‖gi‖2+‖gj‖2)

π4
,

(5.4.2)

where, ‖gi‖2 and ‖gj‖2 are the largest and the second largest squared Eu-

clidean norms, let I(gi,gj) be the indicator function. If (gi,gj) ∈ Rl,

IRl(gi,gj) is 1 and else equals zero; l denotes the column in gl, where Rl is

a region defined by{g1, · · ·,gL : ‖gl‖ < ‖gc‖,

c = 1, · · ·, l − 1, l + 1, · · ·, L}. The PEP can be upper bounded by using the
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Chernoff bound [45],

P (X→ X̂) ≤ e−
ρ
4M
‖HcE‖2F , (5.4.3)

where E = X − X̂ is the code error matrix and the number of transmit

antennas is M, which sets 2. X is the transmitted code matrix in (3.3.1)

and X̂ is the expected received code matrix, ‖ · ‖2F represents the sum of

magnitude squares of all entries of a matrix, i.e. the squared Frobenius norm,

ρ is the expected SNR at the receive antenna. Using the new selected channel

matrix H̃c of matrix Hc with all channels, it follows that the averaged upper

bound from (5.4.2) is

P (X→ X̂) ≤
2∑
l=1

∫ ∫
Rl

e−
ρ
8
‖H̃cE‖2 N !

(N − 2)!2
(1− e−‖gl‖2 − e−‖gl‖2‖gl‖2)N−2

· e
−

∑L=2
c=1 ‖gc‖2

π4
dgidgj .

(5.4.4)

One property of the Golden Code is a full rank space-time code, so the

eigenvalues of the matrix EEH are nonzero, where (·)H is the Hermitian of

matrix E. The PEP bound can be simplified by using

‖H̃E‖2F = trace((H̃U)Λ(H̃U)∗) =

2∑
z=1

λz‖gz‖2, (5.4.5)

where U is a unitary matrix and Λ is a diagonal matrix with eigenvalues of

EEH . The minimum of λz is denoted by λ̃, where z = 1, · · ·, L. The upper

bound PEP can thus be rewritten as

P (X→ X̂) ≤
2∑
l=1

∫ ∫
Rl

e−
ρ
8

∑2
i=1 λ̃‖gz‖2

· N !

(N − 2)!2
(1− e−‖gl‖2 − e−‖gl‖2‖gl‖2)N−2

e−
∑L=2
c=1 ‖gc‖2

π4
dgidgj .

(5.4.6)
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As in [71], (5.4.6) can be simplified by using

g(v) = 1− e−v
N−1∑
n=0

vn

n!
≤ vN

N !
(5.4.7)

where v > 0. Therefore, (5.4.6) becomes

P (X→ X̂) ≤ N !

(N − 2)!2

∫
Rl

e−
ρ
8

∑2
i=1 λ̂‖gz‖2

(‖gl‖42
2

)N−2 e−(‖gi‖2+‖gj‖2)
π4

dgidgj .

(5.4.8)

Exponentials are used to represent gnl, gnl = anle
bnl , and set cnl = a2nl, where

‖gl‖2 =
∑2

n=1 cnl, while dhnl = anldanldbnl and evaluating the integral with

respect to db over [0, 2π], yields,

P (X→ X̂) ≤ N !

(N − 2)!2

∫ ∞
0
· · ·
∫ ∞
0

e−
ρ
8
λ̃(c11+c21+c12+c22)

·
[(c1l + c2l)

2

2

]N−2
· e−(c11+c21+c12+c22)dc11dc21dc12dc22

(5.4.9)

A looser upper bound occurs by evaluating the integral throughout the whole

space. For mathematical derivation, using Q represents P (X → X̂). The

upper bound of Q in (5.4.9) can be rewritten as Q ≤ Q1(l)Q2(l) , where

Q1(l) =
N !

(N − 2)!2

∫ ∞
0

∫ ∞
0

e−
ρ
8
λ̃
∑L
i=1,i 6=l

∑N
n=1 cni · e−(

∑L
i=1,i 6=l

∑N
n=1 cni)

·
L∏

i=1,i 6=l

N∏
n=1

dcni

and

Q2(l) =

∫ ∞
0

∫ ∞
0

e−(
ρ
8
λ̃+1)(c1l+c2l)

[(c1l + c2l)
2

2

]N−2
· dc1ldc2l.

(5.4.10)

Since
∫∞
0 e−εxdx = 1

ε ,

Q1(l) =
N !

(N − 2)!2

[ 1

(1 + ρλ̃
4 )(1 + ρλ̃

8 )

]2
. (5.4.11)
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On the other hand, cnl is denoted by pn and then it follows that

( 2∑
n=1

pn

)2(N−2)
=

2∑
n1=1

· · ·
2∑

n2(N−2)=1

pn1 · · · pn2(n−2)
, (5.4.12)

where pn1 · · · pn2(N−2)
=
∏2
n=1(pn)ln . Hence,

∑2
n=1 ln = 2(N − 2), and then

Q2(l) =
(1

2

)N−2 ∫ ∞
0

∫ ∞
0

e−
∑2
n=1(

ρλ̃
8
+1)pn

2∑
n1=1

· · ·
2∑

n2(N−2)=1

(p1)
l1(p2)

l2dp1dp2.

(5.4.13)

Using
∫∞
0 xme−axdx = m!

am+1 yields

Q2(l) =
(1

2

)N−2 2∑
n1=1

· · ·
2∑

n2(N−2)=1

l1!l2!

(ρλ̃8 + 1)l1+1(ρλ̃8 + 1)l2+1
. (5.4.14)

At the high SNRs, therefore,

P (X→ X̂) ≤ N !

(N − 2)!2N−1
(

1

λ̃2N
)(

2∑
n1=1

· · ·
2∑

n2(N−2)=1

l1!l2!)(
ρ

8
)−2N .

(5.4.15)

In general, the diversity order is N×M , which M is the number of receive

antennas. From (5.4.15), the diversity order is 2N for the full diversity sys-

tem, and λ̃ is nonzero since the Golden Code is a full rank code. Maximizing

λ̃ can thereby design a code useful for transmit antenna selection.

5.5 Simulation Results

In this section, in order to verify the above mathematical expressions, the

simulation of the outage performance of the antenna selection scheme with

the maximum-minimum and maximum-sum selection scenarios using the

Golden Code is shown. In addition, the PEP performance for the maximum-

sum selection scheme is also simulated. Assuming 4, 6 and 8 participating
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transmitted antennas are exploited in this scheme. Four different symbols

would be transmitted in two time slots by the Golden Code. The target rate

is set as 2.
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Figure 5.2. The outage probability for the maximum-minimum antenna
selection in the Golden Code system.

Fig. 5.2 compares the simulated and theoretical upper bounds of the

outage probability for the maximum-minimum selection scheme. The gap

between the simulation results and the theoretical upper bounds comes from

the lower bounds for the end-to-end SNR as is shown in (5.3.4). It can be

seen that with more participating transmit antennas, the outage probability

becomes smaller. For example, with the total number of available antennas

increased from 6 to 8, the target SNR of the best two antenna selection

is decreased from approximately 7.6 dB to 6.8 dB when the probability is

0.1. When choosing the best two from 6 antennas, the outage probability
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upper bound is 0.189 at 7 dB target SNR, while the outage is 0.023 in the

simulation.
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Figure 5.3. The outage probability for the maximum-sum antenna selec-
tion in the Golden Code system.

Fig. 5.3 shows the outage probability for the maximum-sum antenna

scenario scheme. It is shown that, when the number of participating trans-

mit antennas is increased from 6 to 8, the outage probability still decreases.

The mathematical analysis results well match the simulation results. Com-

paring Fig. 5.2 and Fig. 5.3 clearly shows that the maximum-sum selection

significantly outperforms maximum-minimum selection in the outage perfor-

mance.

Fig. 5.4 shows the PEP performance for the maximum-sum antenna

selection scheme. It is clearly shown that the derived Chernoff bound pro-

vides a fairly tight upper bound for the PEP performance at the high SNR
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Figure 5.4. The PEP for the maximum-sum antenna selection in the
Golden Code system.

ranges. Note, that as in [71], the bound is not shown for SNRs less than 10

dB, where the high SNR assumption does not hold. As is expected, with

more available transmit antennas, the PEP performance becomes better and

the diversity order is clearly increased.

5.6 Summary

The chapter examined the best two transmit antenna selection for the Golden

Code in a MIMO system with instantaneous channel conditions by using

maximum-minimum and maximum-sum selection. Mathematical derivation

and analysis of the PDF and CDF of end-to-end SNR were performed for

Rayleigh fading channels. The numerical results presented the outage proba-

bility, based on the different participating transmit antennas, and the outage



Section 5.6. Summary 131

events of antenna selection for a MIMO system using maximum-sum selec-

tion which was shown to outperform the maximum-minimum selection. The

PEP analysis was performed for maximum-sum transmit antenna selection

within the Golden Code and the diversity order was obtained. The results

confirmed that full diversity can be achieved by the full rank Golden Code.

The next chapter analyses buffer-aided distributed multi-antenna selection

for cooperative diversity system.



Chapter 6

BUFFER-AIDED

DISTRIBUTED

MULTI-ANTENNA

SELECTION FOR

COOPERATIVE NETWORKS

In MIMO systems, multiple-antenna selection has been proposed as a prac-

tical scheme for improving signal transmission quality as well as reducing

realisation cost due to minimising the number of radio frequency chains. In

this chapter, a relay station with fiber-connected distributed multi-antenna

(DMA) selection is investigated for reception and transmission with buffers

in cooperative decode-and-forward (DF) MIMO systems. The maximum-

sum of signal-to-noise ratio (SNR) strategy is used to choose the best two

antennas which respectively are receiving the signal from source to the relay

station and transmitting from the relay station to the destination. This new

scheme incorporates the instantaneous strength of the wireless links as well

as the status of the finite buffer of a relay station and adapts the antenna

selection decision on the strongest link. Based on the DMA selection, the

132
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outage performance of the system is analysed by using a theoretical frame-

work represented by a Markov Chain (MC). The construction of the state

transition matrix and related steady state of the MC are studied. Simula-

tions are also given to verify the analysis. The results show the proposed

methods provide useful schemes for buffer-aided DMA selection in a coop-

erative diversity system.

6.1 Introduction

In Chapter 4, a major practical drawback of multiple-input and multiple-

output (MIMO) wireless communication systems is considered, namely, the

number of multiple radio frequency (RF) chains associated with multiple

antennas which leads to increase in cost and hardware complexity. However,

this can mitigated by antenna selection.

Antenna selection selects a subset of antennas to feed to the RF chains,

the associated antenna selection rules are described in [3] and [77]. The

selection algorithm is typically based on the largest SNR of the received sig-

nals. A fast reliable feedback link from the destination to relay station is

assumed to exists. The bit error rate analysis for single transmit antenna se-

lection and outage probability analysis for transmit antenna selection with a

receiver maximal-ratio combining scheme over flat Rayleigh fading channels

are given in [78]. In [79], the authors presented the diversity-multiplexing

tradeoff for a multi-antenna relay network, but the multi-antennas appear

in terminals for the construction of this system. In the system this chap-

ter proposes, however, multi-antenna not only exist at terminals but also

at relays. In [19], the authors proposed two joint relay-and-antenna selec-

tion schemes which combine opportunistic relaying and selection coopera-

tion with a DF transmission policy. A new source transmit antenna selec-

tion (STAS) scheme which selects antennas among transmit antennas at the
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source has been shown to achieve full diversity based on both channel state

information and a transmission scheme for the MIMO DF relay networks

in [80]. On the other hand, in 1987 in the context of indoor radio propaga-

tion measurements, a building was divided into one or more large cells, each

served from a distributed antenna (DA) system which attains the dramatic

reductions in multi-path delay spread and signal attenuation compared to

a centralised system [81]. A novel distributed transmit antenna selection

concept for dual-hop fixed-gain amplify-and-forward (AF) relaying systems

was proposed and analysed in [82], where a multi-antenna source transmits

information to a single-antenna destination by using a single-antenna half-

duplex relay. In [83], cooperative network coding strategies for relay-aided

two-source two-destination wireless networks with a backhaul connection be-

tween the source nodes was investigated. In practice the backhaul normally

has much higher capacity and lower error rates than the forward wireless

channels. Therefore, in the system in [83] the backhaul is assumed to be

error free and of sufficiently high capacity (higher than the forward aver-

age capacity). Recently, the authors of [84] proposed a DA relay system in

which DAs are connected to a central control unit (CCU) by radio-over-fibre

(RoF) techniques. In this chapter, a DF policy is also adopted to imple-

ment transmission on two-hop DMA selection wireless networks which are

fibre-connected.

Although antenna selection has various benefits, the performance is con-

strained by using the same selected antenna at the relay for receive and

transmission. Instead by using buffers, the best channel always links the

receive antenna and transmission antenna at the relays. In [85], the authors

explored two buffering relay models: a fixed buffering relay model and a

dynamic buffering relay model, and verified for arbitrary fading statistics,

both models offered significant performance advantages. An opportunistic

buffered DF protocol was proposed in [86] to exploit both relay buffering and
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relay mobility to enhance the system throughput and the end-to-end packet

delay under bursty arrivals. The authors of [87] employed max-max relay

selection (MMRS) and best relay selection (BRS). They made the idealistic

assumption that the buffer of the relay selected for reception (transmission)

is not full (empty), which is only possible for buffers of infinite size. For a

practical finite size of buffer, the relay selection has to depend on MMRS

and BRS at the same time. In order to overcome this drawback, a max-link

relay selection approach was proposed in [88] according to the instantaneous

quality of the links and the status of the relays buffers. For analysis of outage

probability in [88], the authors exploit a Markov Chain (MC) the theoretical

framework incorporating a state transition matrix to model the buffer.

This chapter proposes a max-sum selection scheme for distributed multi-

antenna selection for wireless relay networks with buffering. To avoid the

limitation of the state of the buffer, the max-sum strategy is used twice in-

dependent for two-hop DF transmission policy. Selecting the multi-antenna

from the DAs at the relay station while the multi-antenna at the terminals

are fixed. A stationary distribution for the MC is adopted to obtain the the-

oretical framework for analysing the outage probability. Finally, the effect

of buffer size is studied, and the outage probabilities under different buffer

sizes, different target rates and different numbers of available participating

antennas are analysed.

The remainder of this chapter is organised as follows. Section 6.2 in-

troduces and proposes the system model and details the max-sum antenna

selection method; Section 6.3 describes the outage probability analysis of

the stationary distribution of the MC; Section 6.4 shows the simulation re-

sults which support the theoretical derivation, and Section 6.5 concludes this

chapter.
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6.2 System Model and Maximum-Sum DMA selection

6.2.1 System Model

Figure 6.1. The system model of the distributed multi-antenna selection
with buffers, i.e. the i-th and j-th antenna, are selected namely the best
and the second best for reception and re-transmission. The fiber-connected
DMAs use RoF to connect to the CCU.

The wireless relay network is composed of one source node with two an-

tennas, one half-duplex DF relay station with N fixed distributed antennas

and one destination node with two antennas. Each antenna in relay station

is equipped with an independent buffer. N fixed distributed antennas form

distributed multi-antennas, which connected to the CCU by the RoF tech-

nique. The transmission of the considered system model is organised in two

time slots as shown in Fig. 6.1. In the first time slot, the best two antennas

are selected from N by using the CCU for reception, which receives an Alam-

outi coded packet that is transmitted from the source node to DMAs. The

selected received antennas decode them and then stored in their correspond-

ing buffers. In the second time slot, the best two transmit antennas from

the CCU are chosen to transmit a coded packet from the relay station to the

destination. The distributed antennas are selected that provide the high-

est equivalent receive SNR. Assuming that a direct link between the source
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and the destination does not exist or, if it does exist, it is not exploited

for simplicity of implementation. Furthermore, the decoded Alamouti code

in DMAs are reciprocal via the CCU, which offers a convenience method to

encode at the CCU. The channel coefficients from source to relay are fTkNi(j)

and from relay to destination are hNi(j)Dk , where k = 1, 2 represents the k -

th antenna at the source and destination, i, j = 1, 2, 3, · · · , N represent the

i -th antenna and j -th antenna at the relay. The channel coefficients fTkNi(j)

and hNi(j)Dk are mutually independent zero-mean complex Gaussian ran-

dom variables (Rayleigh fading) with unit-variance, i.e. fTkNi(j) ∼ CN (0, 1)

and hNi(j)Dk ∼ CN (0, 1). The instantaneous SNR for channel fTkNi(j) is

γTkNi(j) = |fTkNi(j) |2Es/N0 and γNNi(j)Dk = |hNi(j)Dk |2Es/N1, where Es is

the average energy per symbol at the source and selected transmit antennas,

respectively. N0 and N1 are respectively the noise variances of the additive

white Gaussian noise (AWGN) at the selected receive antennas in the relay

station and the destinations. For convenience, Es is assumed unity and the

noise variances are the same in all antennas of the relay and the destination.

Assuming that the CCU does not know the channel state information

(CSI) but destination node has perfect CSI. The destination node informs

the CCU to select antennas via an error-free feedback channel. It is worth

noting that the antenna selected for reception is active during the first time

slot and the DMA selected for transmission is active during the second time

slot, whereas the remaining DAs are idle during both time slots.

6.2.2 Buffering Max-Sum Antenna Selection

One benefit of selecting two antennas with buffers is the signals can be

stored and wait to be re-transmited until the corresponding channel links

are sufficiently strong. For the DF transmission scheme, the sum of largest

SNRs is obtained from two selected receive antennas at the CCU and the

other largest SNRs is obtained from the received antenna at the destination.
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Therefore, the best antenna selection for reception at the relay station, is

selected based on

(ri, rj) = arg max
i∈1,··· ,N

max
j∈1,··· ,N,j 6=i

{γT1Ni(j) + γT2Ni(j)}, (6.2.1)

where ri and rj are respectively the selected best two. The corresponding

buffer stores the packet received from the source. The packet is decoded, and

remains in the buffer until this antenna is selected again for transmission.

If the buffer of the antenna, which is selected has no useful coded packet,

no selected antenna send useful uncoded signal to the former, so that, the

selected two antennas for re-transmission can cooperatively encode. There-

fore, all packets in a queue wait for selection and re-transmission. The buffer

operation status with a given signal sequence is shown as Table 6.1. For in-

stance, the source node broadcasts an Alamouti code

−x∗2
x∗1

x1

x2

 in first time

slot T1. The selected antennas receive, decode and store them in their own

buffers. For preparing the second time transmission, the buffer status will

behave as following: The buffers of A1 and A2 both store 00x2x1,

Case1 and the re-transmit antennas nicely are the same A1 and A2. There-

fore, the sequence x2x1 can successfully encode and forward to the

destination.

Case2 and the antennas A1 and A3 are selected to re-transmit, while the

Buffer3 of A3 is empty. The central control unit picks up the sequence

from the Buffer2 to Buffer3. Then, A3 can cooperatively encode with

A1 and forward.

Case3 and the selected two re-transmit antennas A3 and A4 neither have

sequences. The CCU will collect the corresponding information from

A1 and A2 and give A3 and A4 so that the re-transmission can proceed

successfully.
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Time slots T1 T2

Selected antennas ri, rj ti, tj

Buffer status

A1A2 A1A2 A1A3

or

A3A4

Buffer1 00x2x1 00x2x1 00x2x1 0000
Buffer2 00x2x1 00x2x1 0000 0000
Buffer3 0000 0000 00x2x1 00x2x1

Buffer4 0000 0000 0000 00x2x1

Table 6.1. Operation of the Max-Sum strategy for a given sequence
with four distributed antennas N = 4.

If each buffer is half empty and half full, the above reciprocality still exist.

This benefit can relax the limitation of buffer state that at least one buffer

can be full and empty respectively for reception and empty. It is unlike the

usage of buffers in [87] which not full and not empty all the time ensures

that all buffers are available to use. For the re-transmission antenna at the

relay,

(ti, tj) = arg max
i∈1,··· ,N

max
j∈1,··· ,N,j 6=i

{γNi(j)D1 + γNi(j)D2}, (6.2.2)

where ti and tj are the selected best two transmit antennas. During the

second time slot, the selected antennas transmit the re-coded packet in the

queue of its buffer, which received in a previous time slot.

On the other hand, sending a sufficient number of packets from the source

to the CCU before the system starts can guarantee the operational status of

all buffers. Given the buffer size in the system is finite the buffer state has

two constraints

N∑
i(j)=1

bi(j) = Nb

0 ≤ bi(j) ≤ L− 1 (i, j ∈ {1, · · ·, N}, j 6= i),

(6.2.3)

where Nb is the total number of full elements of all buffers. For example,

this system uses three antennas N = 3 at the relay station and the buffer
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size of each relay is L = 4. The best two antennas is K = 2. The state of

the corresponding MC has to satisfy the constraints (6.2.3):

b1 + b2 + b3 = 6,

0 ≤ b1 ≤ 4,

0 ≤ b2 ≤ 4

and

0 ≤ b3 ≤ 4.

(6.2.4)

Moreover, when the available relays receive the latest signals, the temporary

buffer state satisfies b1 + b2 + b3 = 8.

6.3 Outage Performance Analysis Based Markov Chain Station-

ary Distribution

For the max-sum antenna selection of the DF scheme, the outage probability

is defined as Pout(C < R), where C denotes the channel capacity

C =


1
2 log2(1 + γTN )

1
2 log2(1 + γND)

(6.3.1)

and R is the target rate. The end-to-end SNRs at the relays and destination

are respectively γTN and γND.

In order to show clearly the buffers operation process, for each time

slot, the buffer status can be described as follows: the number of elements

of one selected receive antenna buffer can be increased by one, when the

source successfully transmits; the buffer status retrieves its current status

or returns to its last status in the case of outage, either the outage event

occurs in source or in the relay station; the number of elements of one selected

transmit antenna buffer can be decreased by one, when the relays successfully
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transmission. To analyze the max-sum antenna selection, the possible states

of the buffers and the transitions between the states are modelled as an MC.

The total number of buffer states of the MC is given by St = 2
(
Nb+2

2

)
−

3(Nb − L) ∗ (Nb − L + 1) − 4. The optimal Nb is N∗L
2 . In the case of

N = 3 and L = 4, the state MC topology is presented in Fig. 6.3. Su =(
Nb+2

2

)
− 3(Nb−L)∗(Nb−L+1)

2 is the buffer initial state and Tv = Su − 4 is the

buffer temporary transition state, 1 ≤ u ≤ Su and 1 ≤ v ≤ Tv.

The state transition matrix represents the MC of the states of the buffers

and the connectivity between them. Setting matrix S is represented state

transition. The size of S is St×St. Each element in S is Sm,n = Pr(sm → sn),

which represents the transition probability to move from sm at time t to state

sn at time (t+1). The number of available participated receive and transmit

antenna corresponding links is decided by the buffer status. Thereby, the

transition probability has to change with different number of participating

antennas which depend on buffer states.
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Figure 6.2. State diagram of MC representing the states of the buffers
and the transitions between them for a case with L =4, N=3.

For symmetric links, firstly, from source to relay antennas the state m is

considered. The PDF of the sums γTN = γT1Ni(j) +γT2Ni(j) can be expressed

as

fγµ(γ) =
γ

γ2µ
e
− γ

γ2µ , (6.3.2)

where γµ is the average mean SNR of γT1Ni(j) + γT2Ni(j) . Then the CDF of

γµ is

F (γ) = 1− γ

γµ
e
− γ
γµ − e−

γ
γµ = 1− e−

γ
γµ (1 +

γ

γµ
). (6.3.3)
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In this approach, the best two antennas are selected with the largest two

SNRs among all K available transmitted antennas. According to [41], the

joint distribution of the l largest values from K candidates can be obtained

as

f(x1, x2, · · ·, xl) = l!

K
l

 [F (xl)]
K−l

l∏
i=1

f(xi), (6.3.4)

where x1 ≥ x2 · ·· ≥ xK . Substituting l = 2 into (6.3.4) given the joint PDF

of the two largest SNRs as

f((γi, γj) = K(K − 1)F (γj)
K−2f(γi)f(γj), (6.3.5)

Then the CDF of the final SNR can be obtained as (5.3.16).

Finally, using the same target SNR γth = 22R − 1, the exact outage

probability of the max-sum selection scheme can be obtained and expressed

as Pmreout = Fγe(γth). As shown the sample above, when the number of DMAs

N = 3, the closed form of the exact outage probability can be obtained as

Pmreout =

∫ r
2

0

∫ r−y

y

N (N − 1)xy

γµ
4

·
N−2∑
k=0


N − 2

k

 (−1)k e
− yk
γµ

k∑
m=0

 k

m

( y

γµ

)m e
−x+y

γµ dxdy

= − 1

2γµ
3

(
e
−1/2 r

γµ r3 + 6r2γµe
−1/2 r

γµ − 64γµ
3e
−1/2 r

γµ − 2γµ
3e

r
γµ

+r3 + 3r2γµ − 30rγµ
2 + 66γµ

3
)
e
− r
γµ

(6.3.6)

Similarly, for any N and γµ, the outage can be obtained by using a numerical

method [76]. Due to the symmetry of two-hop selection scheme, the outage

probability Pmtrout from relays to destinations also use the same expression as

above. For i.i.d. symmetric channel links, the probability to select a specific
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link is 1
C2
K

. Therefore, the probability of changing buffer state (successfully

receive and transmission) is equal to

Pmsucc =
1

C2
Km

(1− Pmre(tr)out). (6.3.7)

A transition matrix contains

A =


Pmre(tr)out if m = n;

Pmsucc if m 6= n;

0 no transition state.

(6.3.8)

The state transition matrix A of the MC that describes the buffer states is

a column stochastic matrix. Setting the stationary distribution πm,m > 0,

πn =
∑St

m=1 Am,n. The sum of all possible state transition probabilities, for

any column
St∑
m=1

Am,n = 1. (6.3.9)

The transition matrix A is not symmetric. The number of available partici-

pating receive and transmit antennas is not fixed and does not have a regular

pattern. Therefore, the transition probability is column stochastic but not

doubly stochastic. On the other hand, noting that A is also reversible [89],

πmPr(X(t+1) = n | Xt = m) = πnPr(X(t+1) = m | Xt = n) for all times t.

Since the MC considered is irreducible and aperiodic, then there exists

a unique solution πππ = (π1π2 . . . π(L+1)K)T such that

Aπππ = πππ, (6.3.10)

(L+1)k∑
i=1

πππi = 1. (6.3.11)

In this case, (6.3.11) is written as

Bπππ = b, (6.3.12)
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where b = (11 . . . 1)T and Bi,j = 1. Then, through mathematical analysis,

(6.3.10) and (6.3.12) become

Aπππ − πππ + Bπππ = b. (6.3.13)

Meanwhile, letting z be a zero vector.

z(A− I + B) = 0. (6.3.14)

It is sufficient to show that the inverse of (A − I + B) exists. Equation

(6.3.14) is multiplied by πππ,

z(A− I + B)πππ = z(Aπππ − Iπππ + Bπππ) = zb = 0. (6.3.15)

The stationary distribution πππ exists and has a unique solution

πππ = (A− I + B)−1b, (6.3.16)

As known above, πππ is positive. A is a nonnegative and irreducible matrix.

Due to no changes in the buffer status, outage occurs. Therefore, the outage

probability of the system can be expressed as

Pout =

St∑
m=1

πππmP
m
re(tr)out = diag(A)πππ (6.3.17)

The above expression shows that the construction of the state matrix A and

the computation of the related steady state πππ consists of a simple theoretical

framework for the computation of the outage probability for the max-sum

antenna selection with finite buffers.
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6.4 Simulation Results

In this section, in order to verify the proposed system model and the above

mathematical expressions, the outage performance of the aided-buffer an-

tenna selection scheme is simulated over a DF transmission scenario. The

antenna selection is max-sum for both sides from source to relays and from

relays to the destination. Different target rates, and the number of available

antennas and different buffer size of the system are simulated and discussed.

Fig. 6.3 shows the outage probability with different target rate R = 1, 2,

and 3 bits/sec/Hz for a simulation with and without buffers, and theoretical

mathematical analysis by using available antenna N=3 and buffer size L=4.

Obviously and generally, if without buffers, the outage performance is worse

than using buffers independent of the target rate. The system can achieve

the diversity order 4. The target rate R is increased from 1 to 3 bits/sec/Hz

and the system capacity is unchanged, the outage probability significantly

increases from 10−6 to 1 at 15 dB channel SNR. If to achieve the outage

probability 10−4 is kept, the system SNR of the target rate 3 is in the high

region while low target rate 1 in the low region.

Fig. 6.4 indicates the variation of the outage probability by different

buffer size L=4, 10, 30 and 50, participating antenna N=3 and system target

rate R=3. Setting half of elements of buffers are in initial state, e.g. N∗L
2 =

Nb. Comparing clearly shows that the outage probability curve decreased to

a limitation about L=50 with increasing the buffer size.

Fig. 6.5 shows the investigate the effect of different the number of par-

ticipating antennas at relay N=3, 4 and 5 on the buffer size L=4 and target

rate R=3. The same as the previous research simulation results without

buffer aided, with increasing the number of available antennas, the outage

probability of the aided-buffer antenna selection is also decreased. In Fig.

6.5, the total number of available antennas increased from 3 to 4, the channel
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Figure 6.3. The outage probability for a simulation with and without
buffers, and theory of target rate R=1, 2 and 3bits/sec/Hz.

SNR of the best two antenna selection is decreased from approximately 20

dB to 22.5 dB when the probability is 10−4.
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Figure 6.4. The outage probability for a simulation and theory of buffer
size L=4, 10, 30 and 50.

6.5 Summary

In this chapter, fibre-connected distributed multi-antenna selection with fi-

nite buffers for cooperative wireless networks was realised. Max-sum antenna

selection as the selection scenario was used for DF scheme over Rayleigh fad-

ing channels. The buffer states transition was described by the formed MC.

The state stationary property of MC was used to analyse the outage prob-

ability performance of the system. Given participated number of antennas

N , the performance can be derived in closed form. Numerical results were

presented and verified the outage probability, based on different target rates,

variation of buffer size and increasing the participating available antennas.
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Figure 6.5. The outage probability for a simulation and theory of partic-
ipating available antennas N=3, 4 and 5.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

The contributions of this thesis are summarised below and discussion on

possible future work is also included.

7.1 Conclusions

Considering the chapters in detail:

In Chapter 2, a brief overview of space-time coding, including the Alam-

outi code and the Golden Code for use in a conventional MIMO system

and MIMO-OFDM was presented. OFDM offers the advantage of lower

implementation complexity in systems with a large bandwidth-delay spread

product. To overcome the correlated path drawback of traditional MIMO,

distributed MIMO with distributed space-time coding was introduced. Using

all the relays was shown to have the disadvantage that it may not obtain the

optimal performance in the relay network, and present practical problems

such as asynchronism between the relays. Due to the high implementation

cost of a multi-antenna system, antenna selection was described.

In Chapter 3, a simple offset transmission with FIC and OFDM scheme

for a four path asynchronous cooperative relay system was proposed. In

order to achieve asymptotically full data rate the source and one group

of relays transmits on even transmission steps, whilst on odd transmission

150
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steps, a different group of relays transmits and the first group receivers.

The approach achieves the same diversity of 2 as a previously proposed half

rate scheme. OFDM and CP were used at the source to combat timing

errors from the source to the destination node. Moreover, through the use

of time reversal in the destination node, CP removal is avoided at the relays

in order to decrease the complexity of relay decoding. In order to mitigate

the potential reduction in diversity gain due to dependent channel matrix

elements in distributed Golden Code transmission, and the rate penalty

of multihop transmission, relay selection based on two-way transmission is

proposed. Simulation studies were used to evaluate the relative end-to-end

BER performance of uncoded, coded, one-way and two-way networks with

fixed and selected relays. The maximum-mean relay selection policy was

shown to outperform the maximum-minimum approach by 1 to 1.5 dB SNR

with given BER.

In Chapter 4, distributed transmission using the Golden Code in wireless

relay networks, and a new multiple relay selection strategy, were proposed.

Through end-to-end BER simulations, the maximum of the channel param-

eter means selection was shown to achieve the best performance. The im-

provement was because this approach performs an overall channel strength

tradeoff at every relay node to select the best two relays. Therefore, this

new maximum-mean policy appears valuable for cooperative diversity sys-

tems based on the Golden Code. The Golden Code was also implemented

in an asynchronous wireless relay network over frequency flat and selective

channels, and a simple approach to overcome asynchronism was proposed.

As in synchronous wireless relay networks, the maximum of the channel pa-

rameter means selection was shown to still have the advantage of 0.5 -1 dB

SNR when given BER for the relay selection through BER simulations with

computationally efficient SD in flat fading channel environment. The im-

provement was because this approach performs an overall channel strength
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tradeoff at every relay node to select the best two relays. In the frequency se-

lective channel case, however, the advantage of the maximum-mean selection

was lost.

Chapter 5 examined the best two transmit antenna selection for the

Golden Code in a MIMO system with instantaneous channel conditions

by using maximum-minimum and maximum-sum selection. Mathemati-

cal derivation and analysis of the PDF and CDF of end-to-end SNR were

performed for Rayleigh fading channels. The numerical results presented

the outage probability, based on the different participating transmit anten-

nas, and the outage events of antenna selection for a MIMO system us-

ing maximum-sum selection which was shown to outperform the maximum-

minimum selection. If the measurement of outage probability is 10−1 for

6 participating antennas, simulation results have shown that maximum-

sum selection is better than maximum-minimum by 1 dB in terms of target

SNR. The other superiority is that the maximum-sum selection be able to

achieve accurate outage probability while maximum-minimum selection just

determined the upper bound of outage probability. The PEP analysis was

performed for maximum-sum transmit antenna selection within the Golden

Code and the diversity order was obtained. The results confirmed that full

diversity can be achieved by the full rank Golden Code.

In Chapter 6, fibre-connected distributed multi-antenna selection with

finite buffers for cooperative wireless networks was realised. Max-sum an-

tenna selection was used within a DF scheme over Rayleigh fading channels.

The buffer states were described by a Markov Chain. The stationary state

property of which was used to analyse the outage probability performance of

the system. Given participating number of antennas N, the performance can

be derived in closed form. Numerical results were presented and verified the

outage probability, based on different target rates, variation of buffer size

and increasing the number of participating antennas. The target rate R was
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increased from 1 to 3 bits/sec/Hz and the system capacity was unchanged,

the outage probability significantly increases from 10−6 to 1 at 15 dB chan-

nel SNR for 3 participating antennas and buffer size L = 4. When changing

the buffer size, the outage probability curve decreased to a limitation about

L = 50 with increasing the buffer size. For the effect of different the number

of participating antennas at relay, the total number of available antennas

increased from 3 to 4, the channel SNR of the best two antenna selection

is decreased from approximately 20 dB to 22.5 dB when the probability is

10−4.

7.2 Future Work

There are several directions in which the research presented in this thesis

could be extended.

The solutions presented in this thesis were for Rayleigh channels but

a wider class of fading channel conditions, modelled by for example the

Nakagami-m distribution could be considered. In Chapter 5, the closed form

of outage probability for multi-antenna selection still can not be obtained. In

future work, mutual information could play an important roll in performance

analysis.

The system performance measurement could extent to other sides, such

as system throughput. In future, BLAST and space-time trellis codes could

be used in the systems of this thesis. To compare the Golden Code, BLAST

is the simplest transmitted code. The concept of space-time trellis code

was first introduced by [7]. It became extremely popular because space-time

trellis codes can simultaneously offer coding gain with spectral efficiency and

full diversity over fading channels.

Recently, multi-antenna selection is implemented to enhance security

with reduced hardware complexity [90] and [91]. On the other hand, the
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idea of multi-antenna selection of a multi-source and multi-destination sys-

tem could be considered, which may have application in 5G systems. The

outstanding characteristic of 5G is the high peak transmit rate which should

achieve 10Gbps (4G:100Mbps). The end-to-end time delay will also be de-

creased 5-10 times. Larger MIMO systems will play an important roll. Be-

fore 5G, the antenna array was two dimensional while three dimensional

MIMO technique will be researched. This will decrease the interference so

that the performance of wireless signal coverage will be improved. There-

fore, decreasing the cost reduction of antenna hardwares will be more and

more attractive for researchers.
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