23 research outputs found

    Application of a 6DOF algorithm for the investigation of impulse waves generated due to sub-aerial landslides

    Get PDF
    Inland water bodies such as lakes, rivers and streams are generally considered safe from extreme wave events. Such inland water bodies are susceptible to extreme wave events due to impact of aerial landslides, where a large mass of land impacts the water at high velocities, resulting in a sudden transfer of momentum to the water body. Similar events can occur due to an underwater landslide as well. The evaluation of such extreme events in inland water bodies and the impact of such extreme waves on the regions adjacent to the water body is essential to assess the safety of the constructions on the banks of the water bodies. The generation of extreme waves due to aerial and sub-aerial landslides depends on several parameters such as the height of fall, the composition of the impacting land mass and the bottom slope of the water body. In this paper, the 6DOF algorithm implemented in the open source Computational Fluid Dy- namics (CFD) model REEF3D is used to simulate the motion of a sliding wedge impacting the water free surface. This is used to represent a sliding landmass impacting water after a landslide event. The wedge is represented using a primitive triangular surface mesh and a ray-tracing algorithm is used to determine the position of the object with respect to the underlying grid. Further, the level set method is then used to represent the solid boundary. The motion of the wedge is obtained by propagating the level set equation. The interaction of the wedge with the free water surface is obtained in a sharp and accurate manner using the level set method for both the water free surface and the solid boundary. REEF3D uses a staggered Cartesian numerical grid with a fifth-order WENO scheme for convection discretisation and a third-order Runge- Kutta scheme for time advancement. With the higher-order methods and the level set method, the model can be used to calculate detailed flow information such as the pressure changes in the water on impact and the associated deformation of the water free surface. The accurate representation of these characteristics is essential for correctly evaluating the height and period of the generated extreme wave and associated properties such as the wave celerity and wave run up on the banks during the extreme event

    Numerical study of an impulse wave generated by a sliding mass

    Get PDF
    © 2018 WIT PressIn this work, a numerical framework for the direct numerical simulation of tsunami waves generated by landslide events is proposed. The method, implemented on the TermoFluids numerical platform, adopts a free surface model for the simulation of momentum equations; thus, considering the effect of air on the flow physics negligible. The effect of the solid motion on the flow is taken into account by means of a direct forcing immersed boundary method (IBM). The method is available for 3-D unstructured meshes; however, it can be integrated with an adaptive mesh refinement (AMR) tool to dynamically increase the local definition of the mesh in the vicinity of the interfaces, which separate the phases or in the presence of vortical structures. The method is firstly validated by simulating the entrance of objects into still water surfaces for 2-D and 3-D configurations. Next, the case of tsunami generation from a subaerial landslide is studied and the results are validated by comparison to experimental and numerical measurements. Overall, the model demonstrates its efficiency in the simulation of this type of physics, and a wide versatility in the choice of the domain discretization.Peer ReviewedPostprint (published version

    A strongly-coupled immersed-boundary formulation for thin elastic structures

    Get PDF
    We present a strongly-coupled immersed-boundary method for flow–structure interaction problems involving thin deforming bodies. The method is stable for arbitrary choices of solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled immersed-boundary methods, our method requires the solution of a nonlinear algebraic system at each time step. The system is solved through iteration, where the iterates are obtained by linearizing the system and performing a block-LU factorization. This restricts all iterations to small-dimensional subsystems that scale with the number of discretization points on the immersed surface, rather than on the entire flow domain. Moreover, the iteration procedure we propose does not involve heuristic regularization parameters, and has converged in a small number of iterations for all problems we have considered. We derive our method for general deforming surfaces, and verify the method with two-dimensional test problems of geometrically nonlinear flags undergoing large amplitude flapping behavior

    A fully Eulerian solver for the simulation of multiphase flows with solid bodies: application to surface gravity waves

    Get PDF
    In this paper a fully Eulerian solver for the study of multiphase flows for simulating the propagation of surface gravity waves over submerged bodies is presented. We solve the incompressible Navier-Stokes equations coupled with the volume of fluid technique for the modeling of the liquid phases with the interface, an immersed body method for the solid bodies and an iterative strong-coupling procedure for the fluid-structure interaction. The flow incompressibility is enforced via the solution of a Poisson equation which, owing to the density jump across the interfaces of the liquid phases, has to resort to the splitting procedure of Dodd & Ferrante [12]. The solver is validated through comparisons against classical test cases for fluid-structure interaction like migration of particles in pressure-driven channel, multiphase flows, water exit of a cylinder and a good agreement is found for all tests. Furthermore, we show the application of the solver to the case of a surface gravity wave propagating over a submerged reversed pendulum and verify that the solver can reproduce the energy exchange between the wave and the pendulum. Finally the three-dimensional spilling breaking of a wave induced by a submerged sphere is considered

    Analysis of a constant-coefficient pressure equation method for fast computations of two-phase flows at high density ratios

    Get PDF
    An analysis of a modified pressure-correction formulation for fast simulations of fully resolved incompressible two-phase flows has been carried out. By splitting of the density weighted pressure gradient, the pressure equation is reduced to a constant-coefficient Poisson equation, for which efficient linear solvers can be used. While the gain in speed-up is well documented, the error introduced by the temporal extrapolation of the pressure gradient requires further investigations. In this paper it is shown that the modified pressure equation can lead to unphysical pressure oscillations and large errors. By appropriately combining the extrapolated pressure gradient with a matching volume fraction gradient grid convergence at high density ratios could be recovered. The cases of a one-dimensional front and a sphere translating at uniform velocity were first considered, allowing to decouple the pressure equation from the momentum equation. Subsequently, the case of a rising bubble in an upflow is analysed for which the full set of governing equations is solved. The pressure jump extrapolation error has been found dependent on the density ratio and the CFL number. Ultimately, the gain in the computational time, made possible by the use of fast Poisson solvers, should be weighted by the additional computational time the reduction of the aforementioned error may require

    A Cartesian cut-cell based multiphase flow model for large-eddy simulation of three-dimensional wave-structure interaction

    Get PDF
    A multiphase flow numerical approach for performing large-eddy simulations of three-dimensional (3D) wave-structure interaction is presented in this study. The approach combines a volume-of-fluid method to capture the air-water interface and a Cartesian cut-cell method to deal with complex geometries. The filtered Navier–Stokes equations are discretised by the finite volume method with the PISO algorithm for velocity-pressure coupling and the dynamic Smagorinsky subgrid-scale model is used to compute the unresolved (subgrid) scales of turbulence. The versatility and robustness of the presented numerical approach are illustrated by applying it to solve various three-dimensional wave-structure interaction problems featuring complex geometries, such as a 3D travelling wave in a closed channel, a 3D solitary wave interacting with a vertical circular cylinder, a 3D solitary wave interacting with a horizontal thin plate, and a 3D focusing wave impacting on an FPSO-like structure. For all cases, convincing agreement between the numerical predictions and the corresponding experimental data and/or analytical or numerical solutions is obtained. In addition, for all cases, water surface profiles and turbulent vortical structures are presented and discussed

    Simulation of primary fuel atomization processes at subcritical pressures.

    Get PDF
    This report documents results from an LDRD project for the first-principles simulation of the early stages of spray formation (primary atomization). The first part describes a Cartesian embedded-wall method for the calculation of flow internal to a real injector in a fully coupled primary calculation. The second part describes the extension to an all-velocity formulation by introducing a momentum-conservative semi-Lagrangian advection and by adding a compressible term in the Poisson's equation. Accompanying the description of the new algorithms are verification tests for simple two-phase problems in the presence of a solid interface; a validation study for a scaled-up multi-hole Diesel injector; and demonstration calculations for the closing and opening transients of a single-hole injector and for the high-pressure injection of liquid fuel at supersonic velocity

    A strongly-coupled immersed-boundary formulation for thin elastic structures

    Get PDF
    We present a strongly-coupled immersed-boundary method for flow–structure interaction problems involving thin deforming bodies. The method is stable for arbitrary choices of solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled immersed-boundary methods, our method requires the solution of a nonlinear algebraic system at each time step. The system is solved through iteration, where the iterates are obtained by linearizing the system and performing a block-LU factorization. This restricts all iterations to small-dimensional subsystems that scale with the number of discretization points on the immersed surface, rather than on the entire flow domain. Moreover, the iteration procedure we propose does not involve heuristic regularization parameters, and has converged in a small number of iterations for all problems we have considered. We derive our method for general deforming surfaces, and verify the method with two-dimensional test problems of geometrically nonlinear flags undergoing large amplitude flapping behavior

    Numerical simulation of water impact of solid bodies with vertical and oblique entries

    Get PDF
    The flow problem of hydrodynamic impact during water entry of solid objects of various shapes and configurations is simulated by a two-fluid free surface code based on the solution of the Navier-Stokes equations (NSE) on a fixed Cartesian grid. In the numerical model the free surface is captured by the level set function, and the partial cell method combined with a local relative velocity approach is applied to the simulation of moving bodies. The code is firstly validated using experimental data and other numerical results in terms of the impact forces and surface pressure distributions for the vertical entry of a semi-circular cylinder and a symmetric wedge. Then configurations of oblique water entry of a wedge are simulated and the predicted free surface profiles during impact are compared with experimental results showing a good agreement. Finally, a series of tests involving vertical and oblique water entry of wedges with different heel angles are simulated and the results compared with published numerical results. It is found that the surface pressure distributions and forces predicted by the present model generally agree very well with other numerical results based on the potential flow theory. However, as the current model is based on the solution of the NSE, it is more robust and can therefore predict, for example, the formation and separation of the thin flow jets (spray) from surface of the wedge and associated ventilation phenomena for the cases of oblique water entry when the horizontal velocity is dominant. It is also noted that the potential flow theory can result in over-estimated negative pressures at the tip of the wedge due to its inherent restriction to nonseparated flows. © 2013 Elsevier Ltd. All rights reserved
    corecore