545 research outputs found

    Helmholtz bright spatial solitons and surface waves at power-law optical interfaces

    Get PDF
    We consider arbitrary-angle interactions between spatial solitons and the planar boundary between two optical materials with a single power-law nonlinear refractive index. Extensive analysis has uncovered a wide range of new qualitative phenomena in non-Kerr regimes. A universal Helmholtz-Snell law describing soliton refraction is derived using exact solutions to the governing equation as a nonlinear basis. New predictions are tested through exhaustive computations, which have uncovered substantially enhanced Goos-Hänchen shifts at some non-Kerr interfaces. Helmholtz nonlinear surface waves are analyzed theoretically, and their stability properties are investigated numerically for the first time. Interactions between surface waves and obliquely-incident solitons are also considered. Novel solution behaviours have been uncovered, which depend upon a complex interplay between incidence angle, medium mismatch parameters, and the power-law nonlinearity exponent

    LECTURES ON NONLINEAR DISPERSIVE EQUATIONS I

    Get PDF
    CONTENTS J. Bona Derivation and some fundamental properties of nonlinear dispersive waves equations F. Planchon Schr\"odinger equations with variable coecients P. Rapha\"el On the blow up phenomenon for the L^2 critical non linear Schrodinger Equatio

    Standing waves in nonlinear Schrödinger equations

    Get PDF
    In the theory of nonlinear Schrödinger equations, it is expected that the solutions will either spread out because of the dispersive effect of the linear part of the equation or concentrate at one or several points because of nonlinear effects. In some remarkable cases, these behaviors counterbalance and special solutions that neither disperse nor focus appear, the so-called standing waves. For the physical applications as well as for the mathematical properties of the equation, a fundamental issue is the stability of waves with respect to perturbations. Our purpose in these notes is to present various methods developed to study the existence and stability of standing waves. We prove the existence of standing waves by using a variational approach. When stability holds, it is obtained by proving a coercivity property for a linearized operator. Another approach based on variational and compactness arguments is also presented. When instability holds, we show by a method combining a Virial identity and variational arguments that the standing waves are unstable by blow-up
    • …
    corecore