9 research outputs found

    Subdivision surfaces with creases and truncated multiple knot lines

    Get PDF
    We deal with subdivision schemes based on arbitrary degree B-splines. We focus on extraordinary knots which exhibit various levels of complexity in terms of both valency and multiplicity of knot lines emanating from such knots. The purpose of truncated multiple knot lines is to model creases which fair out. Our construction supports any degree and any knot line multiplicity and provides a modelling framework familiar to users used to B-splines and NURBS systems

    SURFACES REPRESENTATION WITH SHARP FEATURES USING SQRT(3) AND LOOP SUBDIVISION SCHEMES

    Get PDF
    ABSTRACT This paper presents a hybrid algorithm that combines features form bot

    Reconstruction locale et visualisation de nuages de points par surfaces de subdivision

    Get PDF
    National audienceLes surfaces de points, qu'elles soient directement acquises par scanner ou issues de la conversion d'autres modèles, permettent de stocker et de transmettre des objets complexes de manière économique, mais sont mal adaptées aux architectures matérielles existantes qui s'appuient sur une description géométrique à base de surfaces polygonales. Cet article propose une technique permettant d'obtenir une visualisation efficace des surfaces de points, entièrement à l'aide du pipeline de rendu matériel. L'idée centrale présentée ici est d'effectuer une reconstruction surfacique locale par triangulation d'un nuage de points, en générant un agrégat de 2-variétés se recouvrant, et en procurant une continuité visuelle dans les zones de recouvrements à l'aide des surfaces de subdivision

    A Flexible Kernel for Adaptive Mesh Refinement on GPU

    Get PDF
    International audienceWe present a flexible GPU kernel for adaptive on-the-fly refinement of meshes with arbitrary topology. By simply reserving a small amount of GPU memory to store a set of adaptive refinement patterns, on-the-fly refinement is performed by the GPU, without any preprocessing nor additional topology data structure. The level of adaptive refinement can be controlled by specifying a per-vertex depth-tag, in addition to usual position, normal, color and texture coordinates. This depth-tag is used by the kernel to instanciate the correct refinement pattern. Finally, the refined patch produced for each triangle can be displaced by the vertex shader, using any kind of geometric refinement, such as Bezier patch smoothing, scalar valued displacement, procedural geometry synthesis or subdivision surfaces. This refinement engine does neither require multi-pass rendering nor any use of fragment processing nor special preprocess of the input mesh structure. It can be implemented on any GPU with vertex shading capabilities

    Unifying Geometry and Mesh Adaptive Refinement Using Loop Subdivision

    Get PDF
    RÉSUMÉ Cette thèse présente une nouvelle approche pour le raffinement de trois types de maillages : courbes, surfaces triangulaires et maillages tétraédriques tridimensionnels. Cette approche utilise des représentations par subdivisions afin de définir, modifier, analyser et visualiser des modèles géométriques de topologie arbitraire pour les applications de simulation numérique. Les représentations par subdivisions sont générées à l’aide des subdivisions de Loop. Après avoir étudié les inconvénients du manque de flexibilité dans le contrôle des niveaux de détails et du manque de précision dans les représentations de modèles géométriques utilisant les subdivisions itératives, approximatives et non-uniformes pour se rapprocher des modèles simulés, nous introduisons une nouvelle méthode de subdivision adaptative pour le raffinement de maillages. Cette méthode de raffinement à un seul niveau a été développée afin de supporter les subdivisions adaptatives pour les trois types de maillages. Cette méthode évite le stockage par hiérarchie et les problèmes d’assemblage rencontrés durant la génération des maillages multi-résolutions par subdivisions, surtout pour les maillages tétraédriques. La mise en œuvre de subdivisions pour les maillages adaptatifs tétraédriques amène deux innovations : la configuration de forme de fractionnement des tétraèdres et l’amélioration de la paramétrisation des surfaces de subdivision. La combinaison naturelle de ces deux innovations permet la génération par subdivision de maillages multi-résolutions tétraédriques dont les surfaces frontières sont exactement sur les limites de subdivision. Notre recherche contient cinq parties. Premièrement, nous développons un schéma de Loop pour la subdivision des solides, lequel permet d’intégrer le fractionnement topologique des arêtes avec le lissage géométrique des surfaces frontières. Deuxièmement, nous fusionnons les raffinements adaptatifs avec les techniques de subdivision, ce qui permet la subdivision adaptive complète du maillage tout en ayant les surfaces frontières projetées sur les limites de subdivision. Troisièmement, nous étudions et comparons des techniques existantes de paramétrisation des surfaces de subdivision, ce qui permet d’obtenir directement la limite de subdivision de toutes positions arbitraires sur les surfaces de subdivision de Loop. Quatrièmement, nous construisons les règles de création des sommets fixes et des arêtes vives du schéma de subdivision de Loop pour les modèles solides, ce qui permet de préserver les caractéristiques anguleuses des surfaces frontières des maillages tétraédriques. Finalement, nous utilisons un critère de qualité des maillages pour valider nos résultats et nous présentons la performance des calculs en ce qui a trait à la modélisation des solides.----------ABSTRACT In this thesis, we present a new refinement approach on three types of meshes: curves, triangular surfaces and 3D tetrahedral meshes. This approach utilizes subdivision-based representations to create, modify, analyze and visualize geometric models with arbitrary topology for numerical simulation applications. The subdivision-based representations are generated by utilizing Loop subdivisions. After studying the disadvantage of lack of flexibility in controlling LODs (Level Of Details) and accuracy in representing geometric models by using the non-uniform approximating subdivision iterations to approach simulated models, we introduce adaptive subdivisions in our refinement work. We develop a single-level refinement method to support adaptive subdivisions on the three types of meshes. This single-level method eliminates the hierarchy storage and the stitching issues encountered during the generation of multi-resolution subdivision meshes, especially 3D tetrahedral meshes. The implementation of adaptive tetrahedral mesh subdivisions brings up two innovations: the configuration of tetrahedron split patterns and the improvement in subdivision surface parameterizations. The natural combination of these two innovations fulfills generating multi-resolution subdivision tetrahedral meshes, whose boundary surfaces lie exactly on their subdivision limits. Our research work includes five parts. Firstly, we develop the Loop-based solid subdivision scheme, which permits integrating edge-based topological splits with geometrical smoothing on boundary surfaces. Secondly, we merge subdivision techniques with adaptive refinements with, which permits whole meshes to be adaptively subdivided and boundary meshes to be projected to their subdivision limits. Thirdly, we study and compare the existing subdivision surface parameterization techniques, which eventually permits obtaining the limit subdivision of any arbitrary position on Loop subdivision surfaces. Fourthly, we complete vertex and edge crease creation rules of the Loop-based solid subdivision scheme, which permits preserving sharp features on boundary surfaces of 3D tetrahedral meshes. Finally, we use a mesh quality evaluator to validate our results and we evaluate system performance in the context of solid modeling

    Surface Remeshing and Applications

    Get PDF
    Due to the focus of popular graphic accelerators, triangle meshes remain the primary representation for 3D surfaces. They are the simplest form of interpolation between surface samples, which may have been acquired with a laser scanner, computed from a 3D scalar field resolved on a regular grid, or identified on slices of medical data. Typical methods for the generation of triangle meshes from raw data attempt to lose as less information as possible, so that the resulting surface models can be used in the widest range of scenarios. When such a general-purpose model has to be used in a particular application context, however, a pre-processing is often worth to be considered. In some cases, it is convenient to slightly modify the geometry and/or the connectivity of the mesh, so that further processing can take place more easily. Other applications may require the mesh to have a pre-defined structure, which is often different from the one of the original general-purpose mesh. The central focus of this thesis is the automatic remeshing of highly detailed surface triangulations. Besides a thorough discussion of state-of-the-art applications such as real-time rendering and simulation, new approaches are proposed which use remeshing for topological analysis, flexible mesh generation and 3D compression. Furthermore, innovative methods are introduced to post-process polygonal models in order to recover information which was lost, or hidden, by a prior remeshing process. Besides the technical contributions, this thesis aims at showing that surface remeshing is much more useful than it may seem at a first sight, as it represents a nearly fundamental step for making several applications feasible in practice

    Sharp features on multiresolution subdivision surfaces

    No full text
    In this paper we describe a method for creating sharp features and trim regions on multiresolution subdivision surfaces along a set of user-defined curves. Operations such as engraving, embossing, and trimming are important in many surface modeling applications. Their implementation, however, is non-trivial due to computational, topological, and smoothness constraints that the underlying surface has to satisfy. The novelty of our work lies in the ability to create sharp features anywhere on a surface and in the fact that the resulting representation remains within the multiresolution subdivision framework. Preserving the original representation has the advantage that other operations applicable to multiresolution subdivision surfaces can subsequently be applied to the edited model. We also introduce an extended set of subdivision rules for Catmull-Clark surfaces that allows the creation of creases along diagonals of control mesh faces.
    corecore