
HAL Id: inria-00260825
https://hal.inria.fr/inria-00260825

Submitted on 5 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible Kernel for Adaptive Mesh Refinement on
GPU

Tamy Boubekeur, Christophe Schlick

To cite this version:
Tamy Boubekeur, Christophe Schlick. A Flexible Kernel for Adaptive Mesh Refinement on GPU.
Computer Graphics Forum, Wiley, 2008, 27 (1), pp.102–114. �10.1111/j.1467-8659.2007.01040.x�.
�inria-00260825�

https://hal.inria.fr/inria-00260825
https://hal.archives-ouvertes.fr


EARLY DRAFT. Final version published in Computer Graphics Forum, volume 27, number 1, pages 102–114, 2008

A Flexible Kernel for Adaptive Mesh Refinement on GPU
Tamy Boubekeur Christophe Schlick

LaBRI - INRIA - University of Bordeaux

Abstract
We present a flexible GPU kernel for adaptive on-the-fly refinement ofmeshes with arbitrary topology. By simply
reserving a small amount of GPU memory to store a set of adaptive refinement patterns, on-the-fly refinement is
performed by the GPU, without any preprocessing nor additional topology data structure. The level of adaptive
refinement can be controlled by specifying a per-vertex depth-tag, in addition to usual position, normal, color
and texture coordinates. This depth-tag is used by the kernel to instanciatethe correct refinement pattern, which
will map a refined connectivity on the input coarse polygon. Finally, the refined patch produced for each triangle
can be displaced by the vertex shader, using any kind of geometric refinement, such as Bezier patch smoothing,
scalar valued displacement, procedural geometry synthesis or subdivision surfaces. This refinement engine does
neither require multi-pass rendering nor any use of fragment processing nor special preprocess of the input mesh
structure. It can be implemented on any GPU with vertex shading capabilities.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Picture/Image Generation]: Display Algo-
rithms - I.3.5 [Computational Geometry and Obejct Modeling]: Object Hierarchies - I.3.1 [Hardware Architec-
ture]: Graphics Processors

1. Introduction

For a wide range of applications, image synthesis techniques
leverage the amount of information required for creating re-
alistic animated pictures. In particular, for real-time render-
ing, the application has just to provide a set of polygons de-
scribing the geometry of a scene, and the graphics hardware
will automatically produce a coherent grid of pixels through
the usual rasterization pipeline. However, the bandwidth bot-
tleneck between the application and the graphics hardware
limits the size of geometric description that can be transmit-
ted for real-time rendering, and thus also limits the realism
of the rendered pictures.

On-the-fly geometry synthesis addresses this issue by al-
lowing an additional level of abstraction in the graphics
pipeline. For interactive applications, geometry synthesis is
usually cast as amesh refinement process. Rather than enu-
merating the huge number of polygons that would be re-
quired to get an accurate discrete approximation of a com-
plex shape, mesh refinement techniques split the surface rep-
resentation into acoarse polygonal mesh combined with a
continuous displacement function. Then, at rendering time,
mesh refinement basically performs two successive opera-
tions on the coarse mesh: atessellationstep followed bydis-
placementone.

During the first step, a refined mesh topology is generated
at a target level-of-detail, simply by splitting each coarse
polygon into a set of finer ones, without any actual geomet-
ric modification. Then, during the second step, each newly
inserted vertex is translated to its final position, obtained by
sampling the continuous displacement function. Many exist-

(a) CPU (b) GPU

Figure 1: By using only a dynamic coarse mesh (1246 trian-
gles) animated on the CPU (left), our GPU kernel generates
an adaptive frame-by-frame tessellation and displacement
(right), and provides an extremely detailed rendering (1.1M
triangles at 263 FPS).

ing computer graphics techniques can be expressed under
this paradigm, such as spline-based or wavelet-based sur-
face representation, subdivision surfaces, hierarchical height
fields, etc. The key feature that makes this process work well,
is that the continuous displacement function can usually be
defined by providing a very small amount of data compared
to the size of the huge refined mesh. Examples of such ad-
ditional data include subdivision masks for smooth surface
generation, bitmap textures for displaced meshes, or a bunch
of numerical data for procedural geometry synthesis.

However, performing a full GPU implementation of this
two-step process remains a problem with current devices.



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

While graphics hardware offers a flexiblevertex shader
stage that allows an efficient implementation of the displace-
ment step, the lack of geometry creation on GPU makes the
implementation of the tessellation step really tricky. Last
generation devices, launched at the end of 2006, embed a
geometry shaderstage [Bly06] which has been specifically
designed for geometry upscale. Unfortunately, even if the
geometry shader clearly represents a step in the right direc-
tion, it does not provide the ultimate high-level flexible solu-
tion demanded by many applications. One of its main limita-
tion, is that the geometry shader cannot output (i.e. generate)
more than a fixed amount of floating point numbers (1024 in
the original specification), which means that only about 2
or 3 levels of refinement can be applied on each coarse tri-
angle. If deeper refinement is required, multi-pass geometry
shading has to be employed, which obviously reduces over-
all performances.

The lack of flexible geometry synthesis on GPU, has led
some researchers to cast the mesh refinement problem as a
general purpose computation problem, using a GP-GPU ap-
proach [GPG06]: by converting the coarse mesh as a stan-
dard rectangular image, the tessellation step becomes a sim-
ple image upscaling operator, and the displacement step can
be implemented in thefragment shaderstage. However, such
an approach induces several strong restrictions. First, it re-
quires an additional preprocessing step to convert the mesh
into an adapted image format. Second, it involves intensive
use of multi-pass rendering and fragment shading, while the
vertex shading stage is greatly under-exploited, as it only has
to process a few full-screen quads. Third, the whole process
has potentially to be restarted for each frame in the case
of dynamic meshes. Fourth, additional hardware pipelines
(e.g. physics simulation hardware) are not directly compat-
ible with such an approach, since no object space geometry
is really produced. And last, multiresolution and adaptivity
cannot be easily handled by such a process.

In this paper, we propose an alternative approach, that
we call adaptive refinement kernel(ARK ), based on three
key features. First, a flexible control of the adaptive level-
of-detail is obtained by a simple and genericdepth-tagging
process. Second, a set ofadaptive refinement patterns(ARP)
is employed to allow crack-free adaptive multiresolution re-
finement. And third, a specific single-pass vertex program,
calledadaptive refinemement shader(ARS), performs both
tessellation and displacement steps involved in mesh refine-
ment. By combining all three ingredients, we obtain a flexi-
ble kernel for adaptive on-the-fly mesh refinement on GPU.

This kernel does not involve any preprocessing of input
coarse meshes, as it directly processes the basic mesh rep-
resentation used in low-level APIs, such as polygon soups
or indexed triangle sets, without requiring additional high-
level data structures (e.g. half-edge representation). With
our kernel, the final mesh is never generated on the CPU,
never transmitted on the graphics bus, and even never explic-

itly stored on the GPU. All the refinement is performed by
our single-pass generic vertex program, which totally frees
the fragment shaders for including additional visual enrich-
ments. This kernel is particularly well-suited for dynamic
meshes which are deformed on a frame-to-frame basis (an-
imation of characters, physics simulation, etc.) and for pro-
cedural shapes that usually include high frequency features
and require fine tessellation at rendering time.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work, Section3 describes our new
adaptive refinement kernel, Section4 shows some applica-
tions of the ARK, Section5 gives results and performances
of our system and Section6 concludes and proposes some
directions for future work.

2. Previous Work
Existing mesh refinement methods can basically be divided
in two main categories: eitherdirect or indirect refinement.

Direct Refinement:This first category includes pure geom-
etry synthesis approaches, where the input coarse mesh is di-
rectly refined in object-space, without additional conversion
steps. Multi-scale rendering of numerical models of terrains
are maybe the most classical examples of on-the-fly direct
refinement [AH05], but the involved algorithms are usually
limited to height-field configurations. Another well-studied
topic includes all the techniques that target an efficient GPU
implementation of subdivision surfaces [ZS00], as pioneered
by Pulli and Segal [PS96]. These techniques use a memory-
efficient depth-first algorithm in order to refine an arbitrary
triangle mesh. They precompute a set of tabulated basis
functions for a prefixed refinement depth, one for each possi-
ble configuration of the one-ring neighborhood. At rendering
time, this table is used for each coarse triangle according to
its one-ring neighborhood. A uniform triangle refinement at
a prefixed depth is then performed, and the generated ver-
tices are projected on the limit surface. Such a refinement
is specific to each subdivision scheme, and can benefit from
low level implementations, using either SIMD instructions
of modern CPUs [BS02] or programmable GPUs [BS03].
Specific hardware has also been proposed in order to reduce
the bandwidth between CPU and GPU [BKS00,dRBAB02].

In our previous work, we have proposed the idea of
barycentric interpolation to perform uniform mesh refine-
ment [BS05]. A vertex program has been designed to replace
each coarse triangle by a precomputed tessellated triangle,
which is then displaced according to a procedural function.
This system allows efficient implementation ofCurved PN
Trianglesand their extensions [VPBM01, CK03b, CK03a,
BRS05] (which use triangular Bézier patches to reproduce a
“visually” smooth surface) as well as other alternative proce-
dural mesh refinement techniques. However, as all the other
techniques using a direct refinement approach, this solution
cannot easily perform adaptive refinement.

Indirect Refinement: This second approach casts mesh re-
finement as a kind of image processing algorithm [BW06].



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 2: Architecture of our adaptive refinement kernel
(ARK). For each coarse polygon to refine, we first transmit
its geometric attributes as well as the displacement function
attributes to the adaptive refinement shader (ARS). Second,
a drawing call is performed, that selects the correct adaptive
refinement pattern (ARP) according to the desired level-of-
detail. All the triangles included in the selected ARP (im-
plemented as a vertex buffer object) are then translated by
barycentric interpolation from the polygon attributes, and
warped according the displacement attributes. Finally, the
set of refined triangles are rasterized and passed to the frag-
ment shaders for rendering on screen.

Before the introduction of recent unified architectures, frag-
ment processing was much more flexible than vertex pro-
cessing. Thus, several algorithms have been proposed that
consider meshes as textures rather than geometry. Basically,
these methods work in three steps: first the input mesh is
converted on CPU to an image-based representation. For in-
stance, Shiue et al. [SJP05] start with a two-step subdivi-
sion of the initial mesh on the CPU (basically to sufficiently
separate vertices with extraordinary valence), and then, un-
fold each original vertex with its two-ring neighborhood in
a 1D texture. Similarly, Bunnell [Bun05] breaks the original
surface into small pieces, projecting them on 2D textures.
With such an approach, the "geometric" texture can then be
upscaled, by using a render-to-texture function and replac-
ing the usual image filtering kernel by the mesh subdivision
one. This is done recursively until reaching a given depth or
an error bound. Finally, upscaled images are converted back
to geometry, rasterized and rendered on screen. These algo-
rithms works well for small refinement depth, but inherit the
intrinsic limitations of GP-GPU approaches: they require a
conversion of the input model to a specific format and em-
ploy intensive multi-pass rendering. When the input is not a
mesh but an object with a global parameterization, such as
NURBS or T-Spline surfaces, the indirect method proposed
by Guthe et al. [GBK05, GBK06] is more efficient, as the
parameterization already acts as image coordinates.

Adaptivity and Local Control: Including adaptivity within
mesh refinement can strongly improve the overall perfor-
mance, by reducing the number of polygons in areas clas-
sified as less important (e.g. flat areas, far areas, partially
hidden areas). Multiresolution mesh representation [Hop96]
is based on this notion. Kähler et al. [KHS03] have proposed
an interesting curvature-based approach for CPU adaptive
mesh tessellation. Nevertheless, adaptive refinement meth-
ods are not easily amenable to GPU implementation, due to
their highly dynamic adjacency information.

Local control of a given mesh refinement process
has been frequently solved by including additional per-
[vertex/edge/face] boolean or scalar tags, which can be used
to edit the shape (e.g. crease, tension, bias, etc) of the re-
fined surface around the tagged simplex [BS95, BMZB01,
BRS05]. Here, we introduce a similar tagging scheme, but
this one is not intended to control the geometry but rather
the topology of the refined mesh. This per-vertex tagging
scheme is then used to generate adaptive tessellation of
the coarse polygons, by employing a similar principle of
barycentric interpolation as our previous work [BS05].

3. Adaptive Refinement Kernel

3.1. Overview

Theadaptive refinement kernel(ARK) presented in this pa-
per offers the following properties:

• Standard geometry structures used by rendering APIs
(polygon soups or indexed triangle sets) can be employed
as-is, without any preprocessing (e.g. global or local pa-
rameterization) nor any additional data structures often re-
quired by refinement techniques (e.g. half-edge structure).

• Only the coarse mesh is transmitted from the CPU to the
GPU. The only required additional data is a simple per-
vertex scalar attribute, calleddepth-tag, that indicates the
level-of-detail desired in the vicinity of each vertex. Note
that this depth-tagging may be generated either automati-
cally or under user supervision.

• As mesh refinement is performed on-the-fly, on a frame-
by-frame and triangle-by-triangle basis, arbitrary level-of-
detail can be obtained, even for animated meshes.

• The whole two-stage adaptive mesh refinement (tessella-
tion and displacement) is performed on the GPU, by a
single-pass vertex program, which totally frees the frag-
ment shaders for additional visual enrichments.

The workflow architecture used by our ARK is described
in Figure2. The key idea is to precompute all the possible
refinement configurations of one single triangle, for various
per-vertex depth-tags, and encode them using barycentric
coordinates. Each possible configuration is called anadap-
tive refinement pattern(ARP) and is stored, once for all on
the GPU, as a vertex buffer object. Then, at rendering time,
the attributes of each polygon of the coarse mesh, as well as
the attributes of the displacement function are uploaded to



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 3: Examples of depth-tag configurations (color code) and adaptive refined topology generated on the GPU.Left: Initial
coarse mesh transmitted from CPU to GPU.Middle: Adaptive refinement using distance-based depth-tagging.Right: Adaptive
refinement using curvature-based depth-tagging.

the GPU and the adequate ARP is chosen according to the
depth-tags. Finally, the vertex program simultaneously in-
terpolates the vertices of the current coarse polygon, and the
displacement function, by using the barycentric coordinates
stored at each node of the ARP. The first interpolation gener-
ates the position of the node on the polygon (i.e. tessellation
step) and the second one translates it to its final position (i.e.
displacement step).

3.2. Depth-tagging

On the CPU-side, the application specifies the usual per-
vertex attributes of the mesh (position, normal, color, etc)
as well as a specific one: thevertex depth-tagthat indicates
the level-of-detail desired in the vicinity of each vertex. The
depth-tagging process can either be performed once for all
for static meshes, or dynamically recomputed at each frame
for animated meshes.

Once this vertex depth-tagging has been set, it is em-
ployed at rendering time to adaptively refined each coarse
polygon, according to a set of precomputed configurations.
More precisely, the depth-tags will be used for selecting a
per-edge tessellation rate. To ensure crack-free refinement,
the tessellation must be consistent on the two side of a
given edge. Thus a consistentedge depth-tagis computed
simply by taking the arithmetic mean of the two adjacent
vertex depth-tags. Moreover, to easily manage general non-
triangulated meshes, a centroid split is performed for each
coarse polygon withn vertices to get a set ofn triangles. The
depth-tag of the centroid, calledface depth-tagis computed
as the mean of then surrounding edge depth-tags.

Such a tagging approach is very generic, as the tag val-
ues can be set according to any metric. In this article, we
do not propose new metrics, but rather show how to set the
depth-tag according to any existing one. For instance, Fig-
ure 3 shows a static tagging generated by using a modified
version of the curvature estimator proposed by Rusinkiewicz

[Rus04], as well as a dynamic tagging generated by using a
simple camera-to-vertex distance metric.

3.3. Adaptive Refinement Patterns

According to the classification of Shiue et al. [SJP05], our
technique can be considereds as a patch-based refinement.
It is derived from our previousRefinement Patternstech-
nique [BS05]. To emphasize the difference between both
techniques, we propose to rename our previous work asUni-
form Refinement Patterns(URP). Figure4 presents the prin-
ciple of the URP technique. The tessellation and displace-
ment steps are computed on a single-pass vertex program, by
a simple barycentric interpolation of a URP, which is a fixed
tessellated triangle encoded as barycentric coordinates.

Basically, at rendering time, the attributes of each coarse
triangle are uploaded to the GPU and the URP is drawnin-
stead of the coarse polygon. The barycentric coordinates
stored at each node of the URP are used to interpolate the
per-vertex attributes (e.g. positions, normals) of the coarse
triangle, and to output each refined vertex in thegraphic con-

Figure 4: Principle of Uniform Refinement Patterns. (a)
Coarse mesh stored on CPU. (b) Uniform Refinement Pat-
tern (URP) stored as a vertex buffer object on GPU, where
each node is stored as barycentric coordinates. (c) Final re-
fined mesh rendered on screen. The URP is used to tessellate
all triangles at a uniform level-of-detail. In this example, the
URP is a tessellated triangle encoded as a single degener-
ated strip, composed of 8 different regular parts (each part
has a different color).



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 5: Left: The matrix of adaptive refinement patterns,
with barycentric coordinates as positions, stored as vertex
buffer objects on GPU.Right: Two different ARPs with dif-
ferent support sizes for the adaptive topology of a triangle.
The largest support offers better transitions between the dif-
ferent edge resolutions, but requires more vertices.

textof the currently processed coarse triangle. This virtually
generates vertices on GPU and can be seen as a procedural
instanciationmethod for refinement purpose, or as arefine-
ment mapping..

The URP technique strongly reduces the CPU-GPU bot-
tleneck, as only the coarse mesh is transmitted, while the
GPU synthesizes the high-resolution mesh on a per-triangle
basis. This approach is particularly well-suited for dynamic
objects that cannot be refined and stored on the GPU once
for all, as well as for procedural displacement textures, that
usually require highly tessellated meshes. In this case, the
URP technique enables to stream more geometry toward the
screen than could even be stored on the CPU or the GPU.

Unfortunately, providing only uniform refinement is a ma-
jor drawback for most applications, as it is almost impossible
to avoid either over-tessellated or under-tessellated meshes,
even in the easy case of a moving camera in a static scene.
So, we propose here to extend our previous approach by stor-
ing on the GPU a set ofadaptive refinement patterns(ARP).
Basically, the idea is to precompute all the different topolog-
ical configurations of a refined polygon both for regular and
irregular situations, and to encode their nodes in the barycen-
tric space. Then, at rendering time, the low-level API can
select the correct ARP, according to the depth-tag configura-
tion of the coarse polygon.

3.3.1. ARP for Triangular Meshes

For triangular meshes, it is possible to encode all configu-
rations up to an upper bound of the refinement depth. Since
different tessellation rates may appear for different edges of
a triangle, the set of ARPs is implemented as a matrix ofl3

patterns, withl being the deepest refinement level allowed
(left part of Figure5). This matrix is precomputed and up-
loaded to the GPU once for all. The quality ofadaptivityfor

a given refinement scheme is usually rated with its support
size [Kob00]. The larger is the support, the “smoother” will
be the transition between two different tessellation rates, but
additional vertices are required (see right part Figure5).

Our system thus allows any kind of adaptive transition,
as soon as its support fits in the area of the coarse trian-
gle. Possible adaptive refined topologies range fromborder-
split patterns tovariational angle-maximizingone. In most
cases, simpleborder-splittopologies as the one presented at
the upper-right corner of Figure5 offer good results. Note
that the APRs might be harder to convert into triangles strips
(lossless topology compression) than regular ones. Thus, an
automaticstripping is performed using the STRIPE algo-
rithm [ESV96, RBA05]. The pseudo-code of the algorithm
used on the CPU-side for triangular meshes is presented be-
low:
� �
GLuint ARPPool[MaxDepth][MaxDepth][MaxDepth];

void precomputeARPs () {

generateAndStripARPs (ARPPool);

sendARPVertexBufferToGPU ();

bindVertexBuffer ();

sendARPIndexBuffersToGPU (ARPPool);

}

void render (Mesh M) {

if (dynamic)

for each Vertex V of M do

V.tag = computeRefinementDepth (V);

for each CoarseTriangle T of M do {

sendToGPU (T.attributes);

bindIndex(ARPPool[T.v0.tag][T.v1.tag][T.v2.tag]);

drawElement ();

}

}
� �

3.3.2. ARP for General Polygonal Meshes

While the memory footprint remains low when storing re-
finement patterns for triangles, it becomes a problem for
more general polygons. If no care is taken, the number of dif-
ferent configurations to store may quickly become imprac-
tical when the tessellation levelℓ increases. Indeed, as each
edge of the polygon includes its own tessellation rate defined
by its depth-tag, the number of different tessellation patterns
is ℓ3 for a triangle,ℓ4 for a quadrangle and more generallyℓn

for a polygon withn vertices or edges. One possibility which
strongly reduces the total number of configurations is to use
constrained depth-tagging, for which the variation among

Figure 6: ARP factorization for non-triangular patterns.



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 7: Adaptive refinement of a deformable genius-4
shape. The refinement provided by the ARK is not restricted
to a particular topology, nor manifold conditions.

the depth-tags for each polygon is clamped to one level up
or one level down. Unfortunately, constrained depth-tagging
requires additional non-trivial work on the CPU-side, which
may have to be repeated for each frame, in the case of dy-
namic tagging.

We propose a alternative solution for efficient encoding
and processing of the set of ARP without requiring any lim-
itation on the vertex depth-tag configurations, and only in-
volving very limited CPU overhead. This solution is illus-
trated on Figure6. Let us take the general case where the
CPU has to manage a polygon withn vertices. First, each
couple of adjacent vertex depth-tag(δk,δk+1) is converted
into an average edge depth-taḡδk by computing the arith-
metic mean. An average face depth-tagδ̄ is also computed
from the set ofδ̄k. This double averaging acts as smooth-
ing process of the initial vertex depth-tags, which will nat-
urally soften abrupt variations of the tessellation rate. Sec-
ond, the polygon is split into a set ofn triangles by linking
each pair of adjacent vertices to the centroid of the poly-
gon. The depth-tag of each inner edge of these triangles is
set toδ̄ . This guarantees that each triangle only contains two
not-so-different depth-tags̄δ andδ̄k because they have been
smoothed by double averaging. The inner part of the trian-
gle (green area on Figure6) will be uniformly tessellated at
the rate provided by the face depth-taḡδ , while the outer
part strip will generate a crack-free junction between level
δ̄ and levelδ̄k. As will be deeper explained in Section5,
all the (very reduced) number of possible configurations for
this adaptive triangle strip are concatenated at the end of the
uniform tessellation of the inner part of the triangle, and the
whole data is stored on the GPU as a single index buffer.
Each specific configuration can thus be simply retrieved by
providing an offset in that buffer.

Basically, with our solution, one single strip of tessellated
triangles at the outline of the initial coarse polygon is used
to manage the crack-free junction between different adaptive
levels, while most area of the polygon is tessellated accord-
ing to the face depth-tag. In other words, we solve the adap-
tivity problem on a per-polygon basis, which can thus be
done without complex high-level data structures to encode
the neighboring topology for each polygon. For pathological
cases wherēδ andδ̄k differ too much, two border strips in-
stead of one may be employed to create smoother transition
between coarse and fine tessellation, and thus better avoid
elongated triangles. Finally, note that since all ARPs are pre-

computed and uploaded once for all on the GPU, rendering
one polygon with uniform tessellation, and one with adap-
tive tessellation, takes exactly the same time, for a equiva-
lent tessellation rate. This is far from being true with existing
adaptive mesh refinement techniques.

3.4. Adaptive Refinement Shaders
Our kernel uses a specific single-pass vertex program called
Adaptive Refinement Shaders(ARS), that successively per-
forms the tessellation and the displacement steps. During the
tessellation step, the coordinates of the currentARPare used
to generate a barycentric interpolation of the standard per-
vertex attributes (position, normal, etc). Then, during the dis-
placement step, the resulting vertices are displaced using ad-
ditional attributes (e.g. textures for displacement mapping).

Note that since all ARPs are encoded in the barycen-
tric space, refinement shaders are totally independent of the
topology of the patterns. So, the same shader is used, what-
ever the given ARP. Here is an example in GLSL [KBR04]
of a refinement (vertex) shader which performs a simple pro-
cedural refinement with linear tessellation:
� �
const uniform vec3 p0, p1, p2, n0, n1, n2;

float displace (vec3 p) {...}

void main (void) {

// Tessellation by barycentric interpolation

float u = gl_Vertex.y;

float v = gl_Vertex.z;

float w = gl_Vertex.x; // 1-u-v

gl_Vertex = vec4 (p0*w + p1*u + p2*v, gl_Vertex.w);

gl_Normal = n0*w + n1*u + n2*v;

// User Defined Displacement

float d = displace (gl_Vertex.xyz);

gl_Vertex += d * gl_Normal;

// Shading and Output

...

}
� �

Note that the barycentric coordinates may be used for non-
linear interpolation (e.g. quadratic interpolation for normals
[VPBM01]). Moreover, in addition to vertex displacement,
the same process can further be used to interpolate any other
per-vertex attribute during the refinement process. Finally, as
the refinement is totally performed on a per-polygon basis,
meshes with arbitrary genius and even non-manifold can be
directly processed (see Figure7).

4. Refinement Zoo

In this section, we present various examples of on-the-fly
mesh refinement algorithms which have been implemented
with our kernel.

4.1. Bézier Smoothing

Curved PN Triangles [VPBM01] are an efficient alterna-
tive to usual subdivision surfaces. This method generates



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 8: Left: Coarse mesh (1246 triangles on CPU).Mid-
dle: Adaptive interpolated smoothing by Curved PN Trian-
gles (1.1M generated triangles on GPU).Right: Sharp fea-
tures, tension and bias control with Scalar Tagged PN Tri-
angles (similar number of generated triangles on GPU).

an interpolated “visually” smooth refinement over an arbi-
trary mesh just by taking into account positions and normals
stored at each triangle vertex. The basic idea is to define a
cubic displacement field and a quadratic normal field, each
of them being defined by a simple triangular Bézier patch.
Scalar Tagged PN Triangles [BRS05] improve this scheme
by allowing accurate control of sharp creases, local tension
and bias with additional vertex attributes. The computation
of the corresponding Bézier control points can be done on
CPU and transmitted to the GPU as additional vertex at-
tributes. But, as the involved computation is very light and
does not involve specific data structures, the whole process
can be implemented on the vertex shader. Figure8 shows
two results obtained with our GPU implementation of these
techniques. It should be noted that compared to benchmarks
provided by our graphics device manufacturer, the framerate
we obtain shows that the ARK totally saturates the GPU ver-
tex processing horsepower, which means that no bottleneck
appears neither on CPU nor on the graphics bus.

Figure 9: Real-time displacement mapping.Top Left:
Coarse mesh streamed from CPU (1914polygons).Bottom
Left: Displacement map stored on GPU.Right: Displaced
Adaptive PN Triangles, generated on the fly in real-time by
our GPU Kernel (3.6M polygons). This final rendering (58
FPS) includes the use of displacement map with our kernel
on the vertex shader, as well as normal, color and shadow
maps on the fragment shader (data courtesy Cyberware).

Figure 10: Few examples of complex shapes defined by a
simple mesh with an high frequency procedural displace-
ment. Deep refinement can be reached efficiently.

4.2. Displacement Mapping
Recent graphics hardware allows vertex-texture fetches
[Fer05]. This means thatdisplaced subdivision surfaces
[LMH00] can be easily implemented by storing the displace-
ment in a floating point texture, and accessing it in the sec-
ond stage of the refinement shader. However, GPU evalua-
tion of subdivision surfaces can be expensive on the vertex
shader because it requires complex computation for vertices
with high valency (see Section6). Fortunately, in the work of
Lee et al. [LMH00], the subdivision process is only used for
smoothly sampling a base domain for vertex displacement,
while the final geometric continuity is expressed by the dis-
placement and not the subdivision. In most cases, Curved
PN Triangles [VPBM01] provide a smooth enough base do-
main compared to genuine subdivision surfaces, with the ad-
ditional benefit that no local neighborhood has to be trans-
mitted to the vertex shader to achieve the refinement of a
given coarse triangle. Figure9 gives an example of the ren-
dering of suchDisplaced PN Triangles.

4.3. Procedural Refinement
Geometry synthesis by procedural refinement is clearly one
of the best examples that enlightens the strength of our ARK.
These techniques often define a very coarse mesh, with com-
plex displacement functions, potentially requiring a very
high tessellation rate to correctly sample all high frequency
features. Figure10 shows several examples of such refine-
ment, which only require to transmit a small set of user-
defined parameters to define the corresponding procedural
displacement function.

4.4. Adaptive Terrain Rendering
While dedicated systems exists for efficiently adaptive ren-
dering of terrains [AH05,LC03], the ARK allows very sim-
ple adaptive refinement of height-field models. We use a ba-
sic ground made of few hundreds polygons as a coarse mesh,
and upload an high resolution height-field as a floating point
texture to the GPU memory. Then, at rendering time, we tag
the vertices of the coarse ground using a view-dependent dis-
tance metric. Finally, the coarse ground is adaptively tessel-
lated on-the-fly by the ARK and displaced using vertex tex-
ture fetch from the height-field texture (see Figure11).

4.5. Animated Mesh Refinement
Animated meshes are another important application that
could significantly benefit from our ARK. Indeed, as mesh
refinement is performed on-the-fly, without storage and



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Figure 11: This terrain has been rendered at an average
framerate of 44 FPS (6M tri.), by using a single height-map
texture to displace the refined tessellation. The refinement
is driven by a view-dependent depth-tagging.Top: Topology
for input ground, uniform and adaptive on-the-fly refinement
with the ARK.Bottom: Final adaptive real-time rendering.

without specific per-object precomputation, an animated
mesh just requires a frame-by-frame update of its depth-tag
configuration, in addition to usual vertex position update by
the application. An adequate adaptive refinement will then
be generated at each frame. Figure12 presents two frames
of a face animation sequence with dynamic adaptive refine-
ment. The depth-tagging is based on a local curvature es-
timation performed frame-by-frame, while the refinement
process uses smoothing by Curved PN Triangles over the
coarse mesh.

5. Implementation and Performance
Our implementation runs under Linux, using OpenGL and
GLSL. All tests have been performed on an nVidia GeForce
8800 GTX with 768MB of memory, on an Intel P4 2.4GHz
with 1GB of memory.

GPU Implementation of ARP: The ARP is the central
structure of our system. In order to tightly reach the max-
imum performance at rasterization time, the ARP is en-
coded as anindexed vertex bufferof degenerated triangle

Figure 12: Dynamic refinement of an animated mesh.Left:
Frame 1.Right: Frame 12. The coarse mesh is animated
on the CPU, and the GPU maintains an adaptive refinement
driven by dynamic tracking of curvature modifications.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  200  400  600  800  1000  1200  1400  1600  1800

F
P

S

Input Coarse Mesh Triangles

Uniform Refinement
Adaptive Refinement

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  200  400  600  800  1000  1200  1400  1600  1800

F
P

S

Input Coarse Mesh Triangles

Uniform Refinement
Adaptive Refinement

Figure 13: Comparison between the frame rate obtained
with uniform mesh refinement (URP) and our new adaptive
refinement (ARP). For the largest coarse meshes (1800 on-
CPU triangles), more that two million triangles are gener-
ated on-the-fly by the vertex shader. Note that our method is
between one and three orders of magnitude faster than the
equivalent CPU-based adaptive refinement.

strips [SWND05], directly on the GPU memory. Moreover,
because we use dyadic refinement, each refinement level is
actually a superset of the previous one, so we can further
reduce the global memory footprint by separating the geom-
etry from the topology. Avertex bufferis used to encode all
the geometry by storing the set of barycentric coordinates
for the nodes that belong to the deepest uniform ARP. Then
the topology of any given ARP is encoded by using anin-
dex buffer, as an indexed strip over this maximum configu-
ration. So, at rendering time, when the application selects a
given ARP for refining a coarse triangle, the only action per-
formed by the API is to bind the corresponding index buffer
and set the correct offset, while always keeping the same
vertex buffer, which guarantees cache-friendly access.

Regarding memory usage, on the CPU side, the only
memory overhead comes from the storage of the set of ARP
identifiers. This overhead is extremely small and totally in-
dependent of the current 3D scene. For instance, if the max-
imum refinement level is set to 10 (which offers a maximum
refinement of 1024x1024 sub-triangles for each coarse tri-
angle), the precomputation (all ARP generation) time is less
than half a second for, the main memory overhead is less
than 4kB. On GPU side, the memory overhead required to
store the set of ARP at this resolution is about 26MB.

For uniform refinement patterns, we already mentioned
that in the case of deep refinements, rendering performances
were very close to the one obtained with static meshes (i.e
refined during a preprocessing step and stored on the GPU)
[BS05]. We have observed a similar behavior for our new
adaptive refinement kernel.

Note that in restricted conditions, with 16-bit precision
(e.g. PDAs), our ARP encoding allows a maximum refine-



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

ment level of 256×256 for each coarse triangle. At the other
extremum, with a modern GPU and very high resolution dis-
plays, we have experimented real-time performance when
using up to 2048× 2048 tessellation for each coarse trian-
gle. Even higher resolutions can easily be reached, since the
ARK fully runs in object space.

Figure13 presents the rendering frame rate obtained for
various models. The measure integrates the tessellation step
and a simple procedural displacement step for an animated
mesh. A dynamic adaptive refinement has been performed
frame-by-frame, based on an approximated local curva-
ture estimation, combined with a view-dependent refinement
bound. Compared to our previous URP technique, our new
ARP scheme offers a gain ranging from 250 to 460% de-
pending on the model, while providing the same final image
quality. This can be explained by a finer gradation of the
tessellation, avoiding rendering of unnecessary small trian-
gles (e.g. flat areas, far areas). In many cases, the quality
is even better, since the aliasing of over-tessellated meshes
(more than one triangle for a pixel) is strongly reduced. In
extreme cases, the gain can even reach one order of mag-
nitude, when the depth-tagging is static and the input mesh
is very coarse (see Figure10, for instance). Compared to
our optimized CPU implementation of adaptive refinement,
our GPU refinement kernel improves the frame rate between
one and three orders of magnitude, depending on the overall
complexity of the refinement.

Figure14 shows the frame rate obtained for a target re-
fined mesh made of 1M triangles, under variousinput size vs
refinement depthratios. It clearly appears that coarse meshes
with high refinement depth totally outperforms medium
meshes with low refinement depth, for the same total num-
ber of triangles. This comes from the fact that for the lat-
ter, transmission of input polygons attributes becomes a bot-
tleneck on the graphics bus. At the other extreme of the
spectrum, when the target shape can be described by a very
coarse mesh with deep refinement, the ARK runs in an op-

Figure 14: This diagram shows frame rate measures for a
target refined mesh resolution of 1M triangles under various
input size vs refinement depth ratio.

timal context and completely saturates the GPU vertex pro-
cessing horsepower.

Limitations: The technique presented here has essentially
two main limitations. First, the refinement depth must be
sufficient to avoid the bottleneck involved in the transfer
of the per-vertex attributes. Second, on elder graphics hard-
ware, vertex texture fetch is slow, which limits applications
such as terrain rendering and displacement mapping. Fortu-
nately, this restriction has recently disappeared with the in-
troduction ofunified shader architectureson graphics hard-
ware. For instance, the terrain render application at Figure
11, which uses intensively texture acces from vertex shader,
runs at about 2 FPS on an nVidia Geforce 6800 and 44 FPS
on an nVidia Geforce 8800 (unified shader architecture), for
an average refinement depth of 8, which produces about 6M
polygons.

Another concern may be the question whether the depth
tagging should be better performed on the GPU instead of
the CPU. This could be done by using a preliminary ren-
dering pass that would store vertex depth-tags in a texture.
However, this would involve a strong limitation on the kind
of depth-tagging that can be implemented, as many useful in-
formation may only be available for the application running
on the CPU. Moreover, as the depth-tagging is performed on
the coarse mesh, the computation overhead remains negligi-
ble, particularly in the case of deep refinements.

Refinement Kernel vs Geometry Shader:DirectX 10 tech-
nology [Bly06] has introduced a newgeometry shader(GS)
stage in the hardware rendering pipeline. The first graphics
devices including these functionalities have been launched at
the end of 2006. Even if the GS can obviously be used to per-
form mesh refinement, its features are quite different from
the way we have structured our ARK. The main limitiation
when using the GS to perform mesh refinement is that the
level of geometry upsampling is hardware limited and fixed.
For instance, only 1024 floating point numbers can be output
with current specifications [Bly06]. This is far from being
able to tessellate up to 2048×2048 triangles per coarse poly-
gon for instance, as with our ARK. Multi-pass GS rendering
may be employed to reach deeper refinement, but it would
obviously strongly reduce overall performance. In practice,
as mentioned by hardware manufacturer [Gre06], it is not
even possible to reach the single pass upper bound, without
observing a huge performance degradation.

Even without the limit of geometry upsampling, imple-
menting adaptive mesh refinement with the GS would also
require to correctly manage crack-free junctions between
different tessellation rates. With our precomputed ARPs, this
problem is solved once for all and stored, while the GS
would have to generate consistent topologies on-th-fly and
thus require complex shader code. Notice that, as the GS
implements a superset of the vertex shader functionalities,
the solution provided by the ARPs can straightforwardly be
implemented on the GS.



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

Actually, we consider that the GS stage represents a com-
plement to the ARK, rather than an alternative. By combin-
ing both approaches, one may generate more complex refine-
ment in a two stage process. First, at the VS stage, the ARK
tessellates and displaces a base domain (e.g. apply Bézier
smoothing on very coarse meshes) and then additional ver-
tices are inserted at the GS stage (e.g. local extrusion to cre-
ate hairy objects). We can also imagine using the GS for low
refinement depth where the ARK is less efficient, and then
switch to ARK to get high refinement depth when needed.

6. Conclusion

We have presented a simple and efficient GPU kernel for
adaptive geometry synthesis by mesh refinementbased on
a generic depth-tagging process, that makes it suitable for
any refinement control that can be expressed on a per-vertex
basis (e.g. curvature, view-dependent LOD, area of interest
penalty, local estimation of displacement variation, etc). We
have introducedAdaptive Refinement PatternsandAdaptive
Refinement Shaders, and have shown that their combination
allows the implementation of various kind of dynamic re-
finement, with almost no modification of the rendering loop
at application level. The CPU processing is reduced to the
transmission of (dynamic) coarse meshes to the GPU, even-
tually combined with additional dynamic data for driving the
refinement.

The kernel allows very deep adaptive refinement, using
a single-pass vertex program. It does not impose any con-
version of input mesh (such as local or global parameteriza-
tion) and allows further on-GPU geometric processing, since
it consistently performs geometry synthesis in object space.
The solution is more efficient and even more flexible than
prior software-based methods. In practice, the benefit of the
ARK is proportional to the depth of the adaptive refinement.
The kernel permits to “saturate” the GPU with geometry to
draw, and with its intrinsic CPU-to-GPU streaming princi-
ple, it is possible to draw a refined surface almost indepen-
dently of the amount of available memory, either on CPU or
GPU (the ultimate limitation is represented by the storage on
GPU of the set of ARP required for the chosen depth).

Our refinement kernel exhibits an interesting collabora-
tion between the CPU and GPU (the global analysis at coarse
resolution is let to the CPU for depth-tagging, while lo-
cal fast refinement is performed on the GPU, driven by
these tags). This corresponds to the idea of shared rendering
workload between powerful multi-core CPUs and GPUs, as
stated by Pharr [Pha06]. Future graphics hardware and API
developers seek for refinement methods based on generic
barycentric interpolation, as mentioned by Sloan [Slo06].
Thus this paper can also be considered as a first step, per-
forming a software emulation of such future on-boardre-
finement shaderstage.

Figure 15: Refinement of Loop subdivision surface with the
ARK. From left to right: the input coarse triangle (with its
neighbors in dashed lines), the synthetized piece of subdi-
vision surface at depth 2 (1-16 refinement) and 4 (1-256).

Future work: As future work, we would like to explore
single-pass refinement of subdivision surfaces using the
ARK. As already mentioned above, genuine subdivision sur-
faces are very different to mesh smoothing techniques based
on Bézier patches, as the refinement of each coarse polygon
is usually implemented in a recursive procedure depending
on its one-ring (or even two-ring neighborhood). We are cur-
rently working on two single-pass approaches to this prob-
lem:

• exact subdivision surface rendering: as stated by
Stam [Sta99], an exact evaluation of limit surfaces at arbi-
trary parameter is possible by tilling the parameter values
domain in a set of triangular patches and performing an
eigen analysis of the so-defined parameterisation. Unfor-
tunately, in the case of a triangle indexing an extraordinary
vertex, the implementation requires a huge amount of ad-
ditional data for each triangle, which is no more compat-
ible with efficient rendering. So, we are developing a hy-
brid CPU-GPU implementation which delays a large part
of the computation on the ARK, keeping the horsepower
of modern multi-core CPUs for non regular cases. Fig-
ure 15 gives a preliminary example of our current work
on a Loop subdivision with our kernel.

• approximate subdivision surface rendering: we are also
developing approximations of subdivision surfaces for in-
teractive applications, which can be implemented effi-
ciently with the ARK, reaching real-time performances
for millions of polygons output while being visually very
similar to exact subdivision surfaces. See [BS07] for the
first results.

References

[AH05] A SIRVATHAM A., HOPPEH.: GPU Gems 2. Addison-
Wesley, 2005, ch. Terrain rendering using GPU-based geometry
clipmaps.

[BKS00] BISHOFF S., KOBBELT L., SEIDEL H.-P.: Towards
hardware implementation of loop subdivision.ACM SIG-
GRAPH//Eurographics Graphics Hardware(2000).

[Bly06] BLYTHE D.: The direct3d 10 system.ACM Siggraph
(2006).

[BMZB01] B IERMANN H., MARTIN I., ZORIN D., BERNAR-
DINI F.: Sharp features on multiresolution subdivision surfaces.
Pacific Graphics(2001).



T. Boubekeur & C. Schlick / A Flexible Kernel for Adaptive Mesh Refinement on GPU

[BRS05] BOUBEKEUR T., REUTER P., SCHLICK C.: Scalar
tagged pn triangles.Eurographics (Short Papers)(2005).

[BS95] BLANC C., SCHLICK C.: X-splines: A spline model de-
signed for the end-user.ACM SIGGRAPH(1995).

[BS02] BOLZ J., SCHRODER P.: Rapid evaluation of catmull-
clark subdivision surfaces.3D Web Technology(2002).

[BS03] BOLZ J., SCHRODER P.: Evaluation of subdivision sur-
faces on programmable graphics hardware, 2003.

[BS05] BOUBEKEUR T., SCHLICK C.: Generic mesh refinement
on gpu. ACM SIGGRAPH/Eurographics Graphics Hardware
(2005).

[BS07] BOUBEKEUR T., SCHLICK C.: Approximation of sub-
division surface for interactive applications.To appear in ACM
SIGGRAPH Sketch Program(2007).

[Bun05] BUNNELL M.: Adaptive Tesselation of Subdivision Sur-
faces w/ Displacement Mapping. nVidia, 2005, ch. GPU Gems 2.

[BW06] BOKELOH M., WAND M.: Hardware accelerated multi-
resolution geometry synthesis.ACM I3D (2006).

[CK03a] CHUNG K., K IM L.-S.: Adaptive tessellation of pn tri-
angle with modified bresenham algorithm.SOC Design Confer-
ence(2003).

[CK03b] CHUNG K., K IM L.-S.: A pn triangle generation unit
for fast and simple tesselation hardware.IEEE International
Symposium on Circuits and Systems(2003).

[dRBAB02] DEL RIO A., BOO M., AMOR M., BUGUERA J.:
Hardware implementation of the subdivision loop algorithm.
ACM SIGGRAPH/Eurographics Graphics Hardware(2002).

[ESV96] EVANS F., SKIENA S. S., VARSHNEY A.: Optimizing
triangle strips for fast rendering.IEEE Visualization(1996).

[Fer05] FERNANDO R.: Shader model 3. nVidia, 2005.

[GBK05] GUTHE M., BALÁZS Á., KLEIN R.: Gpu-based trim-
ming and tessellation of nurbs and t-spline surfaces.ACM Trans-
actions on Graphics 24, 3 (2005).

[GBK06] GUTHE M., BALÁZS Á., KLEIN R.: Gpu-based ap-
pearance preserving trimmed nurbs rendering.Journal of WSCG
14 (2006).

[GPG06] GPGPU: General-purpose computation using graphics
hardware. http://www.gpgpu.org, 2006.

[Gre06] GREEN S.: Next generation games with direct3d 10.
Game Developer Conference(2006).

[Hop96] HOPPE H.: Progressive meshes.ACM SIGGRAPH
(1996).

[KBR04] KESSENICHJ., BALDWIN D., ROST R.: The opengl
shading language. http://www.opengl.org, 2004.

[KHS03] KÄHLER K., HABER J., SEIDEL H.-P.: Dynamically
refining animated triangle meshes for rendering.The Visual Com-
puter (2003).

[Kob00] KOBBELT L.: Sqrt(3) subdivision. ACM SIGGRAPH
(2000).

[LC03] LARSEN B. D., CHRISTENSENN. J.: Real-time terrain
rendering using smooth hardware optimized level of detail.Jour-
nal of WSCG(2003).

[LMH00] L EE A., MORETON H., HOPPEH.: Displaced subdi-
vision surfaces.ACM SIGGRAPH(2000).

[Pha06] PHARR M.: Interactive rendering in the post-gpu era.
Keynote at the 2006 Eurographics/SIGGRAPH Conference on
Graphics Hardware(September 2006).

[PS96] PULLI K., SEGAL M.: Fast rendering of subdivision sur-
faces.Eurographics Workshop on Rendering(1996).

[RBA05] REUTER P., BEHR J., ALEXA M.: An improved adja-
cency data structure for fast triangle stripping.Journal of Graph-
ics Tools 10(2005).

[Rus04] RUSINKIEWICZ S.: Estimating curvatures and their
derivatives on triangle meshes.Symposium on 3D Data Process-
ing, Visualization, and Transmission(2004).

[SJP05] SHIUE L.-J., JONES I., PETERSJ.: A realtime gpu sub-
division kernel.ACM Siggraph(2005).

[Slo06] SLOAN P.-P.: Direct3d 10 and beyond.Keynote at the
2006 Eurographics/SIGGRAPH Conference on Graphics Hard-
ware(September 2006).

[Sta99] STAM J.: Evaluation of loop subdivision surfaces. ACM
SIGGRAPH Course Notes, 1999.

[SWND05] SHREINER D., WOO M., NEIDER J., DAVIS T.:
OpenGL(R) Programming Guide: The Official Guide to Learn-
ing OpenGL(R), Version 2. Addison-Wesley Professional, 2005.

[VPBM01] VLACHOS A., PETERSJ., BOYD C., MITCHELL J.:
Curved PN triangles.ACM I3D (2001).

[ZS00] ZORIN D., SCHRODERP.: Subdivision for modeling and
animation.ACM SIGGRAPH Courses Notes(2000).

Appendix A: Low level API extensions
The presented kernel can be integrated at the driver level, in any
standard graphics API such as OpenGL, without any additional
hardware capabilities. In this case, the control interfaceis a reduced
set of functions:

• glARKinit(GLuint maxLevel): builds the set of ARP
(special indexed vertex buffers) on GPU, and stores the corre-
sponding identifiers, indexed by depth-tags.

• glEnable(GL_ARK): when activated, the ARK refinement
will replace any triangle drawing call by the correspondingARP.

• glDisable(GL_ARK): restore usual OpenGL behavior;
• glDepthTag1i(GLuint d): set the current vertex depth-tag

state (for upcoming vertices).

The fixed pipeline would provide a simple linear refinement, which
can then be tuned by setting user specific adaptive refinement
shaders. With this set of functions plus some additional commod-
ity callbacks, the use of the ARK is totally transparent to pro-
grammers (direct port of existing source code). Alternatively, finer
control of refinement can be provided through specific functions
(drawARP() for instance) in order to mix refined and regular draw-
ing calls without switching the mode.


