2,800 research outputs found

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Fronthaul evolution: From CPRI to Ethernet

    Get PDF
    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Understanding the Computational Requirements of Virtualized Baseband Units using a Programmable Cloud Radio Access Network Testbed

    Full text link
    Cloud Radio Access Network (C-RAN) is emerging as a transformative architecture for the next generation of mobile cellular networks. In C-RAN, the Baseband Unit (BBU) is decoupled from the Base Station (BS) and consolidated in a centralized processing center. While the potential benefits of C-RAN have been studied extensively from the theoretical perspective, there are only a few works that address the system implementation issues and characterize the computational requirements of the virtualized BBU. In this paper, a programmable C-RAN testbed is presented where the BBU is virtualized using the OpenAirInterface (OAI) software platform, and the eNodeB and User Equipment (UEs) are implemented using USRP boards. Extensive experiments have been performed in a FDD downlink LTE emulation system to characterize the performance and computing resource consumption of the BBU under various conditions. It is shown that the processing time and CPU utilization of the BBU increase with the channel resources and with the Modulation and Coding Scheme (MCS) index, and that the CPU utilization percentage can be well approximated as a linear increasing function of the maximum downlink data rate. These results provide real-world insights into the characteristics of the BBU in terms of computing resource and power consumption, which may serve as inputs for the design of efficient resource-provisioning and allocation strategies in C-RAN systems.Comment: In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC), July 201

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF
    • 

    corecore