6 research outputs found

    HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service

    Get PDF
    Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12) new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS) uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services

    Investigation of HAPs Propagation Channel for Wireless Access in a Tropical Region at Ka-Band

    Get PDF
    In the last few years, High Altitude Platforms (HAPs) have attracted considerable effort due to their ability to exploit the advantages of satellite and terrestrial-based systems. Rain attenuation is the most dominant atmospheric impairment, especially at such frequency band. This paper addresses the modelling of rain attenuation and describes a propagation channel model for HAPs at Ka-band to provide efficient and robust wireless access for tropical regions. The attenuation due to rain is modeled based on three years measured data for Johor Bahru to estimate the actual effect of rain on signals at Ka band. The radio propagation channel is usually characterized as a random multipath channel. Specifically, a statistical derivation of probability distribution function for Rayleigh and Rician fading channels are presented. The model consists of multiple path scattering effects, time dispersion, and Doppler shifts acting on the HAPs communication link. Simulation results represent the fading signal level variations. Results show perfect agreement between simulation and theoretical, thereby conforming to the multipath structures. The information obtained will be useful to system engineers for HAPs link budget analysis in order to obtain the required fade margin for optimal system performance in tropical regions

    CINR Performance of Downlink Mobile WiMAX IEEE 802.16e Deployed Using Coexistence Cellular Terrestrial and HAPS

    Get PDF
    Deploying WiMAX through High Altitude Platform Station (HAPS) system is a new means of wireless delivery method and thus attracting much the attention in a telecommunication society. However delivering WiMAX through the terrestrial network has already been started a few years ago. Therefore, we need to look at the scenario of coexistence system both of HAPS and terrestrial in delivering WiMAX services. This paper evaluates the performance of coexistence system between cellular HAPS and terrestrial for the downlink scenario when they are transmitting WiMAX mobile 802.16e services. Our evaluation is based on the performance simulation of coexistence model using two methods. First method is a footprint exchange between the two systems.The second method is a combination of footprint exchange and HAPS footprint enhancement. The proposed methodsare then evaluated by computer simulation in terms of carrier to interference plus noise ratio (CINR) performance. In general, both methods resulting performance enhancement in CINR quality compared with coexistence deployment with normal scenario of the cell configuration used by HAPS and terrestrial. The method of combining footprint exchange and HAPS footprint enhancement is able to improve CINR more than 10 dB compared with the normal footprint configuration for all users location inside the coverage

    成層圏飛翔体通信における無線通信路及びその性能に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:甲2383号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新447

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    corecore