11 research outputs found

    Sharing Data and Work Across Concurrent Analytical Queries

    Get PDF
    Today's data deluge enables organizations to collect massive data, and analyze it with an ever-increasing number of concurrent queries. Traditional data warehouses (DW) face a challenging problem in executing this task, due to their query-centric model: each query is optimized and executed independently. This model results in high contention for resources. Thus, modern DW depart from the query-centric model to execution models involving sharing of common data and work. Our goal is to show when and how a DW should employ sharing. We evaluate experimentally two sharing methodologies, based on their original prototype systems, that exploit work sharing opportunities among concurrent queries at run-time: Simultaneous Pipelining (SP), which shares intermediate results of common sub-plans, and Global Query Plans (GQP), which build and evaluate a single query plan with shared operators. First, after a short review of sharing methodologies, we show that SP and GQP are orthogonal techniques. SP can be applied to shared operators of a GQP, reducing response times by 20%-48% in workloads with numerous common sub-plans. Second, we corroborate previous results on the negative impact of SP on performance for cases of low concurrency. We attribute this behavior to a bottleneck caused by the push-based communication model of SP. We show that pull-based communication for SP eliminates the overhead of sharing altogether for low concurrency, and scales better on multi-core machines than push-based SP, further reducing response times by 82%-86% for high concurrency. Third, we perform an experimental analysis of SP, GQP and their combination, and show when each one is beneficial. We identify a trade-off between low and high concurrency. In the former case, traditional query-centric operators with SP perform better, while in the latter case, GQP with shared operators enhanced by SP give the best results

    In-memory caching for multi-query optimization of data-intensive scalable computing workloads

    Get PDF
    In modern large-scale distributed systems, analytics jobs submitted by various users often share similar work. Instead of optimizing jobs independently, multi-query optimization techniques can be employed to save a considerable amount of cluster resources. In this work, we introduce a novel method combining in-memory cache primitives and multi-query optimization, to improve the efficiency of data-intensive, scalable computing frameworks. By careful selection and exploitation of common (sub) expressions, while satisfying memory constraints, our method transforms a batch of queries into a new, more efficient one which avoids unnecessary recomputations. To find feasible and efficient execution plans, our method uses a cost-based optimization formulation akin to the multiple-choice knapsack problem. Experiments on a prototype implementation of our system show significant benefits of worksharing for TPC-DS workloads

    Reactive and Proactive Sharing Across Concurrent Analytical Queries

    Get PDF
    Today an ever increasing amount of data is collected and analyzed by researchers, businesses, and scientists in data warehouses (DW). In addition to the data size, the number of users and applications querying data grows exponentially. The increasing concurrency is itself a challenge in query execution, but also introduces an opportunity favoring synergy between concurrent queries. Traditional execution engines of DW follows a query-centric approach, where each query is optimized and executed independently. On the other hand, workloads with increased concurrency have several queries with common parts of data and work, creating the opportunity for sharing among concurrent queries. Sharing can be reactive to the inherently existing sharing opportunities, or proactive by redesigning query operators to maximize the sharing opportunities. This demonstration showcases the impact of proactive and reactive sharing by comparing and integrating representative state-of-the-art techniques: Simultaneous Pipelining (SP), for reactive sharing, which shares intermediate results of common sub-plans, and Global Query Plans (GQP) for proactive sharing, which build and evaluate a single query plan with shared operators. We visually demonstrate, in an interactive interface, the behavior of both sharing approaches on top of a state-of-the-art storage engine using the original prototypes. We show that pull-based sharing for SP eliminates the serialization point imposed by the original push-based approach. Then, we compare, through a sensitivity analysis, the performance of SP and GQP. Finally, we show that SP can improve the performance of GQP for a query mix with common sub-plans

    How to Stop Under-Utilization and Love Multicores

    Get PDF
    Designing scalable transaction processing systems on modern hardware has been a challenge for almost a decade. Hardware trends oblige software to overcome three major challenges against systems scalability: (1) Exploiting the abundant thread-level parallelism provided by multicores, (2) Achieving predictively efficient execution despite the variability in communication latencies among cores on multisocket multicores, and (3) Taking advantage of the aggressive micro-architectural features. In this tutorial, we shed light on the above three challenges and survey recent proposals to alleviate them. First, we present a systematic way of eliminating scalability bottlenecks based on minimizing unbounded communication and show several techniques that apply the presented methodology to minimize bottlenecks in major components of transaction processing systems. Then, we analyze the problems that arise from the non-uniform nature of communication latencies on modern multisockets and ways to address them for systems that already scale well on multicores. Finally, we examine the sources of under-utilization within a modern processor and present insights and techniques to better exploit the micro-architectural resources of a processor by improving cache locality at the right level

    Data-intensive Scheduling

    Get PDF
    In many modern data management scenarios, we encounter tasks, operations or computational phases that are data-intensive where the sheer volume of data proves to be overwhelming to handle and becomes a performance bottleneck. For data-intensive tasks, the bottleneck is data loading, where the cost of loading data into memory is more significant than the cost of actual computation. For data-intensive shuffling, the bottleneck is data transfer, where intermediate data are scattered and shuffled for further processing. This thesis addresses two data-intensive scheduling problems: (1) multi-processor scheduling for data-intensive tasks to reduce redundant data loading; (2) reducer scheduling for data-intensive shuffling to reduce redundant data communication. For data-intensive tasks, we focus on workloads with precedence constraints of data dependencies, which are common in various applications such as data analytics and ETL processing. These workloads are often known in advance, are presented as directed acyclic graphs (DAG), and are data-intensive and sensitive to cache misses. We solve the problem of scheduling DAGs of data-intensive tasks on multiple processors or machines, in order to minimize execution time. To do so, we propose scheduling algorithms that take cache misses into account. Simulations and an experimental evaluation using a Spark cluster demonstrate the advantages of our solutions in terms of workload completion time. For data-intensive shuffling, we focus on MapReduce-style processing. Communication overhead is incurred in the Shuffle stage which sends intermediate results from mappers to reducers. We solve this problem: given a collection of mapper outputs (intermediate key-value pairs) and a partitioning of this collection among the reducers, which node should each reducer run on to minimize data transfer? We reduce two natural formulations of this problem to optimization problems for which polynomial solutions exist. We show that our techniques can cut communication costs by 50 percent or more compared to Hadoop’s default reducer placement, which leads to lower network utilization and faster MapReduce job runtimes

    Scaling Up Concurrent Analytical Workloads on Multi-Core Servers

    Get PDF
    Today, an ever-increasing number of researchers, businesses, and data scientists collect and analyze massive amounts of data in database systems. The database system needs to process the resulting highly concurrent analytical workloads by exploiting modern multi-socket multi-core processor systems with non-uniform memory access (NUMA) architectures and increasing memory sizes. Conventional execution engines, however, are not designed for many cores, and neither scale nor perform efficiently on modern multi-core NUMA architectures. Firstly, their query-centric approach, where each query is optimized and evaluated independently, can result in unnecessary contention for hardware resources due to redundant work found across queries in highly concurrent workloads. Secondly, they are unaware of the non-uniform memory access costs and the underlying hardware topology, incurring unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show how these scalability and performance impediments can be solved by exploiting sharing among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data placement strategies in the execution engine. Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and work across concurrent queries at run-time into two categories: reactive sharing, which shares intermediate results across common query sub-plans, and proactive sharing, which builds a global query plan with shared operators to evaluate queries. We integrate the original research prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and show how and when each technique benefits performance. Our most significant finding is that reactive and proactive sharing can be combined to exploit the advantages of both sharing techniques for highly concurrent analytical workloads. Regarding NUMA-awareness, we identify, implement, and compare various combinations of task scheduling and data placement strategies under a diverse set of highly concurrent analytical workloads. We develop a prototype based on a commercial main-memory column-store database system. Our most significant finding is that there is no single strategy for task scheduling and data placement that is best for all workloads. In specific, inter-socket stealing of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data across sockets involves an overhead. For this reason, we implement algorithms that adapt task scheduling and data placement to the workload at run-time. Our experiments show that both sharing and NUMA-awareness can significantly improve the performance and scalability of highly concurrent analytical workloads on modern multi-core servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting faster processing of big data analytical applications, fully exploiting the hardware resources of modern multi-core servers, and for more responsive user experience

    Sharing Data and Work Across Concurrent Analytical Queries

    No full text
    Today’s data deluge enables organizations to collect massive data, and analyze it with an ever-increasing number of concurrent queries. Traditional data warehouses (DW) face a challenging problem in executing this task, due to their query-centric model: each query is optimized and executed independently. This model results in high contention for resources. Thus, modern DW depart from the querycentric model to execution models involving sharing of common data and work. Our goal is to show when and how a DW should employ sharing. We evaluate experimentally two sharing methodologies, based on their original prototype systems, that exploit work sharing opportunities among concurrent queries at run-time: Simultaneous Pipelining (SP), which shares intermediate results of common sub-plans, and Global Query Plans (GQP), which build and evaluate a single query plan with shared operators. First, after a short review of sharing methodologies, we show that SP and GQP are orthogonal techniques. SP can be applied to shared operators of a GQP, reducing response times by 20%-48 % in workloads with numerous common sub-plans. Second, we corroborate previous results on the negative impact of SP on performance for cases of low concurrency. We attribute this behavior to a bottleneck caused by the push-based communication model of SP. We show that pull-based communication for SP eliminates the overhead of sharing altogether for low concurrency, and scales better on multi-core machines than push-based SP, further reducing response times by 82%-86 % for high concurrency. Third, we perform an experimental analysis of SP, GQP and their combination, and show when each one is beneficial. We identify a trade-off between low and high concurrency. In the former case, traditional query-centric operators with SP perform better, while in the latter case, GQP with shared operators enhanced by SP give the best results. 1
    corecore