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ABSTRACT

Columnar database systems, designed for an optimal OLAP
workload performance, strive for maximum multi-core uti-
lization under concurrent query executions. However, multi-
core parallel plan generated for isolated execution leads to
suboptimal performance during concurrent query execution.

In this paper, we analyze the concurrent workload re-
source contention effects on multi-core plans using three
intra-query parallelization techniques, static, adaptive, and
cost model parallelization. We focus on a plan level com-
parison of selected TPC-H queries, using in-memory multi-
core columnar systems. Excessive partitions in statically
parallelized plans result into heavy L3 cache misses lead-
ing to memory contention, degrading query performance
severely. Overall, adaptive plans show more robustness, less
scheduling overheads, and an average 50% execution time
improvement compared to statically parallelized plans, and
cost model based plans.

1. INTRODUCTION

The ubiquitous presence of multi-core CPUs calls for an
analysis of their optimal utilization by database systems,
under OLAP workloads [28, 25]. Most systems use either
intra-query or inter-query parallelization to maximize multi-
core utilization. Multi-core utilization represents the frac-
tion of actual CPU cores used versus the available cores
during query processing. Inter-query parallelization involves
executing individual queries on each core, as used by e.g.
Postgres. Intra-query parallelization involves parallelization
of a query plan using the exchange operator, to execute on
the available cores, as introduced by the Volcano system
[16], and used in most commercial systems. An issue ig-
nored in most cases is that the performance of an individ-
ual query is strongly affected by the presence of a concur-
rent OLAP workload, which leads to resource contention, as
queries compete for shared resources such as CPU, memory,
and IO bandwidth. Higher resource contention leads to ex-
tended query execution times, thereby increasing the multi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DaMoN’16, June 26-July 01 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4319-0/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2933349.2933350

Martin Kersten
CWI, Amsterdam
martin.kersten@cwi.nl

Alkis Simitsis
HP Labs, Palo Alto, USA
alkis@hpe.com

core utilization, and in turn decreasing the overall query
throughput [4]. A simple solution that could be deployed is
to limit the degree of parallelism of plans.

As run time resource contention is difficult to model, static
and cost model based approaches cannot consider it during
plan generation. Hence, quantifying the effect of a con-
current workload on an individual query’s performance is
difficult [31, 19]. One of the fundamental approaches is to
use workload variation models to analyze their resource con-
tention effect on a sequential query performance [11]. The
resource contention problem becomes even trickier to han-
dle during parallel plan execution, as the contention could
negate the gains due to parallelism, and make identification
of the degree of parallelism difficult. To gain better insights
we categorize different types of workloads in a broad manner
based on inter-query or intra-query parallelization modes,
and analyze how the resource contention affects an individ-
ual parallelized query’s performance.

We evaluate three types of intra-query parallel plan gen-
eration techniques, static [12], adaptive [14], and cost model
[3], under concurrent OLAP workloads, using in-memory
multi-core columnar database systems. Static paralleliza-
tion involves row-id based range partitioning, without ac-
counting for the resource contention. Adaptive paralleliza-
tion is a new feedback based plan generation technique that
performs incremental query parallelization, since many work-
loads use template based repeated queries. Repeated query
invocations introduce more partitions in an already paral-
lelized plan, until a plan with minimum execution time is
identified. When adaptive parallel plan generation happens
in the presence of a concurrent workload, it reflects the im-
pact of resource contention. We compare both these tech-
niques with a cost model based intra-query parallel plan
generation technique.

Our main contributions are as follows.

e We evaluate the performance of parallelized plans, un-
der different types of in-memory concurrent workloads.
More partitions in static plans result into heavy L3
cache misses leading to memory contention. Adaptive
plans with less partitions show up to 50% better per-
formance. Cost model plans with admission control
results into severe degraded performance.

e We categorize workloads based on their average CPU
core idleness (which reflects their multi-core utiliza-
tion), when the concurrent workload server executes in
either inter-query or intra-query parallellization mode.

e We analyze the robustness of parallelized plans under



concurrent workloads, where the select operator dom-
inant plans exhibit more robustness than the join op-
erator dominant plans. Overall adaptive plans show
more robustness than static plans. On other hand,
inter-query parallelization as used by Postgres shows
much degraded performance than the column stores,
but relatively more robust behavior overall.

e We highlight the influence of the operating system’s
default thread scheduling policy on the degree of par-
allelism of parallelized plans.

The paper is structured as follows. In Section 2 we provide
a brief background of the static, cost model, and adaptive
parallelization techniques. In Section 3 we describe the set-
up for the concurrent workload to generate resource con-
tention. We provide a detailed experimental analysis to
understand the effect of resource contention in Section 4.
Related work is described in Section 5. In Section 6 we
summarize the lessons learned.

2. PARALLELIZATION TECHNIQUES

We use two exchange operator based columnar systems,
MonetDB, an open-source operator-at-a-time execution sys-
tem and Vectorwise, a commercial analytic system with pipe-
lined vectorized execution. We implemented the static and
adaptive parallelization techniques in MonetDB, as its source
code was available to us. Plans are represented using an
abstract intermediate language called MonetDB Assembly
Language (MAL) [6], with operator’s implementation in “C”.
Vectorwise on the other hand uses a cost model based par-
allel plan generation. Plans use typical physical algebra op-
erator representations.

2.1 Static parallelization

Static parallelization (SP) already exists, as the default
parallelization technique in MonetDB. It is done in two steps.
First, the largest table in the input serial plan is partitioned
such that the number of partitions is equal to the number
of
cores [12]. Next, the operators c v
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Figure 1: Serial and

In Figure 1, Plan 1 shows a sim-
Parallel plan.

ple serial plan with the selection
on A. Plan 2 shows the parallel plan derived by row-id based
equi-range partitioning of A, with two new select operators.
An ezchange union operator (U) combines the parallelized
operator’s result. Based on the query complexity, the plans
could have complex dependency patterns, and multiple ex-
change union operators. Aggregation is postponed as much
as possible. Static parallelization is simple and fast, but
could be less accurate than the cost model based paralleliza-
tion.

2.2 Cost model based parallelization

The cost model based plan generation in Vectorwise in-
volves predicting the cost of execution of a plan using an
operator’s input type and estimates about its cardinalities,
to choose a presumably optimal plan. The data size is one of
the biggest deciding factors, but memory hierarchy and ac-
cess pattern, processor characteristics, and concurrent query
execution affect the overall prediction considerably. Parallel
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Figure 2: An adaptively parallelized plan execution
sequence for TPC-H Q14.

plan is generated from an optimal serial plan using the ex-
change operator based partitioning scheme. A combination
of branch and prune and dynamic programming techniques
are used in the search strategy for the parallel plan.

Both static and cost model based techniques are subop-
timal since the run-time resource variation can not be ac-
counted for. Next we describe the technique that takes into
account the resource contention during parallel plan gener-
ation.

Execution Time (Seconds)

2.3 Adaptive parallelization

Adaptive parallelization (AP) [14] is a new parallelization
technique developed in MonetDB, inspired from the obser-
vation that most systems use a relatively small number of
parameterized query templates repeatedly. For a more de-
tailed description of AP, we refer the interested reader in
[14]. Here we provide the core idea behind AP.

AP uses execution feedback to incrementally parallelize a
query plan with each successive query invocation. A paral-
lel plan P1 is generated from a previous plan PO, by paral-
lelizing the most expensive operator from P0. The AP in-
frastructure stores previously executed plans along with the
profiled information such as the operator execution time and
resource claims. Under concurrent workload the execution
feedback reflects the resource contention making adaptive
parallel plans more robust.

Figure 2 shows an AP plan execution sequence in action
where the X axis represents the consecutive invocations (it-
erations) of the same query. In the current setup, for feasi-
bility purposes, we repeatedly use the same query, though
most systems re-use query templates. Each vertical bar in
the graph represents the plan execution time correspond-
ing to a particular invocation. The Oth invocation corre-
sponds to a serial plan execution, while the 1st invocation
corresponds to the plan derived by parallelizing the most
expensive operator from the Oth invocation plan. With con-
secutive invocations more operators in consecutive plans get
parallelized leading to an execution time improvement until
a global minimum is reached (the 19th iteration). More par-
allelization afterwards leads to a performance degradation.
In an ideal scenario, each successive plan provides better
performance than its predecessor. In practice, the execution
skew due to introduction of only two partitions in successive
iterations prevents it, and prolongs the convergence.
Convergence: Depending on the query complexity the
number of iterations taken by AP to converge could vary.
For the ease of the experimental set-up, we use a fixed num-
ber of iterations, i.e., 250 iterations which covers all possible
query convergences. The convergence algorithm and various
convergence scenarios are discussed in detail in [14]. For ex-
ample, the TPC-H query Q14 shows minimal execution time
at the 19th iteration (see Figure 2). However, the conver-
gence runs for other queries could vary between 50 to 100
iterations.
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Figure 3: The workload set-up.

Global minimum: The speed-up of a plan is measured
with respect to its serial execution. A plan is the global
minimum plan if its speed-up is better than all other minimal
plans observed earlier during the global minimum search.
We find the global minimum execution time during multiple
experiments and consider their average as the final global
minimum time.

3. WORKLOAD SET-UP

In this section we describe the concurrent analytical work-
load set-up to generate resource contention for shared re-
sources such as the CPU cores, to analyze its impact on a
parallelized query.

3.1 Client setup

The concurrent workload consists of 32 clients connected
to a MonetDB execution instance (S1 in Figure 3). As our
experimental platform uses 32 CPU cores (Hyperthreaded),
the number of clients are limited to 32 to ensure each CPU
core has at least 1 connection. We do not aim to test the scal-
ability aspect at present. The clients repeatedly fire TPC-H
queries (scale factor 10) from one of the three query mix
batches as shown in Table 1. The intention is not to mea-
sure throughput, but to keep the system always busy. The
long queries execute in more than 1 second, where the slow-
est query executes in around 10 seconds. In contrast the
short queries execute in less than 1 second.

The batch Bl consists of 32 same queries that matches
the query under analysis. The batch B2 has a mix of eight
short and eight long queries, and the batch B3 has ten long
queries. There could be many other possible batch configu-
rations [10], however the aim here is to show that the broad
workload categorization also provides good insights into the
resource contention effect on individual parallelized queries.

Table 1: Query mix batches.
(BT | B2 [ B3
[ Same | Random [ RandomLong |

3.2 Server setup

We use two MonetDB execution instances S1 and S2 (see
Figure 3), for the ease of experimental setup. The MonetDB
execution instance (S1) for concurrent client connections is
executed in either sequential (Inter-query) or statically
parallelized (Intra-query) mode.

In sequential (SQ) mode, S1 executes a query per core
such that with 32 clients, 32 queries execute on 32 cores (hy-
perthreaded), leading to inter-query parallelization. With
this set-up we try to imitate database systems such as Post-
gres, which try to maximize multi-core utilization by exe-
cuting a single query per core.

In statically parallelized (SP) mode, S1 does an intra-
query partitioned parallel execution, such that depending
on the number of row-id based range partitions, a query
could get parallelized to execute on all the available cores.

As a result during the concurrent workload of 32 clients, 32
queries execute in SP mode on all the available cores.

Depending on S1’s execution mode and the query mix
type (B1 / B2 / B3), 6 workloads are possible as listed
in Table 3. Our aim is to analyze the resource contention
effect of these workloads on a single query’s (Q) parallelized
performance.

To achieve that we use a dedicated MonetDB instance

(S2) (see Figure 3) to execute Q in AP or SP mode, in
the presence of the concurrent workload executing on S1.
For an AP execution a client connected to S2 repeatedly
executes the same query Q for 250 iterations. Both AP and
SP execution in S2 works on in-memory data without any
disk IO (hot runs).
Why use separate S1 and S2 instances? Separate in-
stances of the servers S1 and S2 allows us better instru-
mentation abilities for measuring the hardware events for
the parallelized query (Q) under analysis. The MonetDB
profiler does not use per client based connection, but has a
global view of the entire execution engine. Separating S1
and S2 instances allows isolating Q’s profiler statistics from
the statistics of the 32 concurrent queries.

Separate execution instances however does not affect the
resource contention impact from S1 on S2, as the resources
such as caches, memory, and CPU cores are shared globally.
MonetDB does not use a dedicated buffer manager, but uses
a memory mapped based buffer management infrastructure.
Hence, the operating system handles buffer management,
thread scheduling etc. at the holistic system level.

3.3 Query set (Q)

MonetDB query plans tend to be complex due to data
flow dependencies of multiple operators, represented in Mon-
etDB Assembly Language (MAL). Hence, we identify a sub-
set of TPC-H queries (see Table 2) to support adaptive par-
allelization, to analyze the concurrent workload’s resource
contention effect on them. The scale factor 10 is used as
it provides sufficient insights about the resource contention
effect. We focus on the in-memory data. The current im-
plementation supports a single group-by attribute queries.
Hence, we modify some of the existing TPC-H queries to
suit this need. Since the performance of both SP and AP
is analyzed using the same set of queries, the comparison is
fair. Table 2: Query set (Q) categorization

[Stmple [ Q6 [ Qi1 | ]
[ Complex [ Q4 [ Q8 [ Q9 [ Q19 | Q22|

3.4 Vectorwise setup

During Vectorwise experiments we use a single database
instance (10GB), on which 32 concurrent clients execute
queries using one of the workloads as shown in Table 3. The
query Q is invoked on the same instance unlike MonetDB, so
that Vectorwise plan generation resource allocation scheme
could take into account the load, in terms of the number of
concurrent clients. MonetDB plan generation does not take
into account the run-time clients, hence having two instances
S1 and S2, does not affects its plan generation.

3.5 Infinite loop workload

The workload consists of a CPU core hogging program
such as a while(1); loop, executing on individual CPU cores
on the 2 socket machine, thereby keeping them 100 % busy.
The workload allows us to have a fine grained control over
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Figure 4: Effect of degree of parallelism on query execution under concurrent workload a) MonetDB static
parallelization on a 2 socket machine (10GB data). b) 4 socket machine (100GB data). c) Vectorwise cost
model parallelization on a 2 socket machine (10GB data). d) Best execution time for MonetDB vs. Vectorwise

using execution times from 4a and 4c.

Table 3: % CPU core idleness for MonetDB and Vectorwise workloads(To be read as - ServerExecutionMode_QueryMix).
Note.* - Different queries have different CPU core idleness, hence not shown.

[ Sequential_Same | Sequential Random | Sequential RandomLong | Parallel_ Same | Parallel_Random

[ Parallel RandomLong |

(15 % (M) *(V) | 22% (M) 27% (V) | 26% (M) 12.6% (V)

[ 0% (M) *(V) | 13%(M) 27% (V) | 0% (M) 10.6% (V) |

the number of busy cores at any instant. We observe the
execution time of all queries on a 32 threaded statically
parallelized MonetDB database instance, while the concur-
rent Infinite Loop workload is active. We do not enumerate
cores in any specific order (like logical CPU order, socket /
core/ HT order), but let the operating system use its default
scheduling policy.

4. EXPERIMENTS

Our experimental setup consists of a machine with Intel
Xeon E5-2650@2.00 GHz with two sockets (8 cores each),
for a total of 32 threads (Hyperthreads). Cache sizes are
L1=32KB, L2=256KB, L3=20MB with a memory of 256 GB
and Fedora 20 operating system. For some experiments
we use a 4 socket machine with Intel Xeon E5-4657Lv2@
2.40GHz, 96 threads (Hyperthreads - 24 threads / socket),
L1=32KB, L2=256KB, L3=30MB, and 1TB memory with
Fedora 20 operating system.

Unless otherwise mentioned all experiments use a 2 socket
machine with hot execution run (no disk IO) on in-memory
data (10GB). We repeat the experiments four times and re-
port the average. We use perf tools to measure hardware
events that reflect the resource contention impact on a sub-
set of the queries. For the rest of the queries we use their
response time as a measure to reflect the resource contention
impact.

We explore the following questions in the context of dif-
ferent concurrent workloads.

1. How the number of partitions influence plan paralleliza-
tion ?

2. Which plans perform better and exhibit more robustness?
3. Where does time go during resource contention?

4. Which is better, inter-query or intra-query paralleliza-
tion?

4.1 How the number of partitions influence stat-

ically parallelized plans?

As statically parallelized plans in MonetDB are relatively
simple to generate, if they are made resource contention
aware, they could offer an easy solution to the plan par-
allelization problem. In this section we analyze if a heuristic
optimizer can generate better parallel plans under concur-
rent workload, by tuning parameters such as the number of
partitions.

The optimizer controls the number of partitions by con-
trolling the number of threads. Hence, using fewer threads
leads to a different plan with fewer partitions. The hypoth-
esis is that this plan might show better concurrent workload
execution performance, as it puts less pressure on the shared
resources such as CPU cores and memory bandwidth due
to fewer partitions. NUMA effects could also play a role.
Hence, we test the hypothesis using 2 socket and 4 socket
machines.

4.1.1 2 Socket NUMA

Figure 4a shows MonetDB query execution times for vary-
ing degree of parallelism, under the Parallel Random con-
current workload, on the 2 socket NUMA machine. It nul-
lifies our earlier hypothesis as irrespective of the number of
threads in use, the minimal time occurs at 16 or 32 threads,
where physical cores are 16, and 32 includes hyper-threads.
Similar observations are made for other type of workloads.

This behavior could be explained by the fraction of the idle
CPU cores available during the concurrent workload. When
the Parallel Random workload is used, each CPU core has
an average idleness of 13% (see Table 3), which is available
for the parallelized query to progress. The default operating
system scheduling policy (CFS) ensures a load balanced
fair share from all the CPU cores to the parallelized query.
Hence, a 16 or 32 threaded execution (with 16 or 32 parti-
tions) performs better than a fewer threaded execution. The
queries which show better performance for 32 threads get
benefited from the hyper-threads. Change of thread priori-
ties in the Linux scheduler could alter this behavior, however
we do not explore it, as we use out of the box settings.

4.1.2 4 Socket NUMA

Figure 4b shows that when the same experiment is re-
peated on the 4 socket NUMA machine on a 100GB dataset,
the results are quite different. No explicit NUMA aware data
partitioning is used as MonetDB uses memory mapped stor-
age [13]. Execution with up to 48 threads uses the physical
threads (12 threads on each socket with numactl [2] process
and memory affinity), whereas 72 and 96 threaded execution
also uses the hyper-threads. The behavior of each query is
quite different as depending on the query complexity and
NUMA access, different execution pattern is observed. For
most queries around 96 threads leads to the minimal execu-
tion time, except for Q22, which shows a distinct different




behavior. Deciding exact number of partitions to give best
execution is difficult[?], so partitions equal to total number
of hyper-threaded cores could be a reasonable heuristic in
the multi-socket machines.

4.1.3 Number of partitions and cost model plans

Figure 4c repeats the experiment for Vectorwise cost model
based execution on the 2 socket machine with 10GB dataset.
The first observation is irrespective of the number of threads
the query execution time does not change much. We did
not anticipate this behavior, because in an isolated execu-
tion setting with increasing number of threads we did see
the query execution time improving with increasing threads
up to 8 threads, and then staying almost constant. We do
not plot this graph due to the space constraints. The scal-
ing problems beyond 8 cores in isolated execution could be
explained by [3], due to exchange operator scalability, lock
synchronization issues, etc. Vectorwise’s cost model based
parallelization approach takes into account the load on the
system in terms of the number of clients. Hence, heavy con-
current workload leads to an almost sequential execution as
only a single core gets allocated for the queries under anal-
ysis. Hence, change of number of threads does not change
the execution time.

Figure 4d shows the best execution time obtained using
varying number of threads in MonetDB is much better than
the Vectorwise time, which indicates cost model plan gen-
eration using resource allocation control might not lead to
best performance under heavy concurrent workload.

We saw the influence of the number of partitions on the
parallelized execution. The operating system’s thread schedul-
ing policy also has an important role to play in this setup.
The micro-experiment we describe next gives more insight.

4.1.4 CPU core idleness and OS scheduling

As the concurrent parallelized queries execute on all CPU
cores, controlling each CPU core’s idleness is not possible,
which makes the operating system’s scheduling role analysis
difficult. The next micro-experiment allows us a fine grained
control over each CPU core’s idleness, using a concurrent
workload called, Infinite Loop, described in Section 3.5.

Figure 5 plots the execution time (Y-axis) for query 9,
while varying the number of 100% busy CPU cores (X-axis)
for the Infinite Loop workload. Query 9 is the longest run-
ning query in Q, hence is expected to show the largest per-
formance variations with CPU resource share variations.

Figure 5 shows as the num- o 4
ber of exclusive busy cores for & 3
the Infinite Loop workload are in- g 2
creased, Q9 execution time in- = 8

creases by around 0.6 seconds.

0 8 162432
Though the cores are made 100% # Busy cores
busy in a stepped manner, the op-
erating system does ensure some Figure 5: Q9 with
quanta of resources on even the 100%  busy  cores
busy cores. Hence, the busy cores when concurrent
also contribute towards the par- workload = Infinite

allel query execution. The idle Loop.

cores contribution depends on the type of the query (CPU /
memory bound). When 24 cores are busy, we observe that
the operating system changes its scheduling policy and does
load balancing such that now all the cores are busy. How-
ever, the cores are not 100% busy, thereby introducing some
idleness on each of them.

When 32 cores are made 100% busy, since there are no

more spare resources available, we do see all cores 100% busy
again. However, the share of CPU resources allocated to
Q9’s execution does not change after the 24 busy core case.
Hence, the query execution time does not change when 32
cores are made 100% busy. Some other queries do show an
increase in execution time when all 32 cores are made busy.
We also overload each of the CPU cores with multiple CPU
core hogging programs to observe its effect on the query
execution time. However, we get similar results as shown in
Figure 5.
Summary: We observe on a 2 socket machine the operat-
ing system ensures a load balanced fair CPU resource share
guarantee for the parallelized query execution under CPU
bound concurrent workload. It ensures the best result is
obtained when the number of threads equals physical cores
(16) or the number of hardware contexts (32). In a 4 socket
NUMA setting depending on the query complexity, different
execution times are observed, largely due to remote mem-
ory accesses. However, for many queries when partitions
equals either physical cores (48) or the number of hardware
context (96), the best execution time is observed. Overall,
hyper-threads benefit some queries. Vectorwise shows scal-
ability issues beyond 8 threads during isolated execution,
while showing much degraded performance during concur-
rent execution.

4.2 Static vs. adaptive vs. cost model paral-
lelization

In this section we analyze how different plans compare
from execution performance and robustness perspective. We
showed that in MonetDB under different degree of paral-
lelism, the static plans with partitions equal to the number
of hardware context provide the best execution time during
concurrent workload. However, these plans are not opti-
mal, as all parallelizable operators in it use a fixed degree
of parallelism. In contrast adaptive parallelized (AP) plan’s
operators are parallelized individually using the execution
feedback, thereby allowing each parallelizable operator to
have a different degree of parallelism, which helps during
concurrent workload. We expect the cost model plans to
show performance in between static and adaptive plans due
to degree of parallelism decision based on the cost model.

H-H ] |
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Isolated execution: As a base-
line reference, we use isolated ex-
ecution comparison (see Figure
7a), where a single query executes
in the system without any con-
current workload. Most queries
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in AP compared to SP and cost Figure 6: Adaptive
model plans. As a worst case, parallelized execution
Q19 even shows a much degraded normalized with stat-
performance in AP. It results ically parallelized ex-
from the presence of some non- ecution when concur-
parallelizable operators. On the rent workload = Par-
other hand Q9 takes more time allel Random.
in MonetDB static parallelization
due to multiple joins on relatively large table’s attributes, as
only the lineitem table is partitioned in static parallelization.
As most techniques show a comparable performance dur-
ing isolated execution, we next analyze their performance
during concurrent workload.

Normalized AP execution




Time (sec)

Vectorwise Cost Model Parallelization 1 155 6.7 7.4 7.75 orwise Cost Model [18 1112 12.3 7.4 16 235
5 | MonetDB Static Parallelization | 5 | 5 | MonetDB Static [ L5 o
MonetDB Adaptive Parallelization ] MonetDB Adaptive []
4 L4 - L4 - L4 - -
3 3 3 3 -
2 F2 2 F2 -
' N ) H H H|_|H N |
0 o HH 0 ill HH 0
4 6 8 9 14 19 22 4 6 8 9 14 19 22 4 6 8 9 14 19 22 4 6 8 9 14 19 22

TPC-H Queries TPC-H Queries

(a) (b)

TPC-H Queries TPC-H Queries

(c) (d)

Figure 7: a) Isolated execution. Query execution when concurrent workloads are b) Parallel Random c)

Parallel RandomLong d) Parallel Same.
4.2.1 Performance

Adaptively parallelized plans perform better than the static
and cost model based parallel plans, during concurrent work-
load due to optimal multi-core utilization.

Figure 6 gives an overview of the performance gains in
AP compared to SP when the Parallel Random concurrent
workload is used. For better readability the AP execution
time is normalized with respect to SP, such that, when SP
execution of Q19 is 1 second, the AP execution is 0.6 sec-
onds. While the simple queries benefit the most as is evi-
dent from Q6 and Q14 which show around 90% improvement
(Green), on an average AP shows 50% improvement com-
pared to SP for most queries. To gain better insights about
individual query’s performance we do an operator level anal-
ysis of some of these query plans using Figures 7a to 7d.
Query 8: Figure 7b shows that when Parallel Random
workload is used, Q8 performs better in AP than in SP. The
query plan contains join as the most dominant operator.
Plan analysis shows that the number of tuple reconstruction
and join operators in the SP plan are an order of magnitude
more compared to the AP plan. In many column stores
tuple reconstruction operators are implemented as join op-
erators, so they do random look-ups. Too many join and
tuple reconstruction operators executing concurrently in SP
plan cause costly random memory access and lead to mem-
ory bandwidth pressure. The AP plan performs better as it
has a smaller number of join and tuple reconstruction opera-
tors. Vectorwise execution shows the highest time, however
the performance is comparable to SP execution, except Q19.
Query 19: Figure 7b shows that when Parallel Random
workload is used, Q19 appears to perform better in AP than
in SP. However, a comparison with AP from the isolated ex-
ecution (see Figure 7a) shows AP execution times do not
change much. AP performance looks better as SP execu-
tion is three times more expensive compared to its isolated
execution.

The cause is that Q19 has the select operators as the domi-
nant operators, whose parallelization during AP invocations
results into the addition of new exchange union operators
for combining their results. Based on the input selectivity
the exchange union operator becomes an expensive opera-
tor after a few invocations, and gets pushed higher in the
plan. However, the data flow dependencies due to a system
specific non-parallelizable operator does not allow it and pre-
vents further parallelization of Q19 plan. The SP plan does
not faces this problem as it uses static partitions, which en-
sure the presence of exchange union operators much higher
(i.e., later) in the plan.

Although AP performance does not change under concur-

rent workloads, SP shows a degraded performance as a result
of resource contention due to the presence of more operators,
as in Q8. We provide a detailed quantitative analysis of the
resource contention effect on Q19 SP execution using a sub-
set of hardware event measurements, in the Section 4.3.1.
In cost model plans we are not able to explain why Q19
takes the highest time. It seems though that within a database,
different queries could behave differently under concurrent
workload.
Summary: We observe that the AP plans has better re-
sponse time than the SP, and cost model plans. The SP
plans have too many operators working on fixed sized parti-
tions, which creates scheduling and resource contention over-
head under concurrent workload. Since in AP the old plan
is mutated into a new plan by partitioning the most expen-
sive operator’s data, only a few operators get parallelized,
where the generated partitions are dynamically sized. Some
AP plans could however perform lower than the SP plans
due to the presence of inherently non-parallelizable opera-
tors. Cost model plans show worst performance in most
cases due to their almost sequential execution.

4.2.2 Robustness

Robustness is the ability of the database system to per-
form well under a variety of conditions including adverse
run-time conditions due to data volume, data skew, and
resource contention [31, 17]. Our focus is on the robust
query processing during resource contention arising due to
shared CPU cores. We consider a query plan to be ro-
bust if it gives minimal variations in the execution time
under changing run-time conditions [18]. We analyze the
query execution robustness by comparing its SP / AP iso-
lated execution against the concurrent workload execution
for Parallel Random (CPU core idleness = 13%) and Paral-
lel_ RandomLong (CPU core idleness = 0) workload. Over-
all, the SP plans show more rapid degradation than the AP
plans during concurrent workload.

Select operator: First we compare the AP execution of
the queries where the select operators are dominant. Queries
4, 6, and 19 get minimally affected when Parallel Random
workload is used (see Figure 7b), while they slow down by
around a factor of two under Parallel RandomLong work-
load (see Figure 7c). Select operators involve either a point
select or a range select operation on sequential data. As the
Parallel Random workload has average CPU core idleness
= 13%, the select operators get sufficient CPU resources to
execute, compared to the Parallel RandomLong workload
which has 0% average CPU core idleness.

Join operator: During AP execution the queries 8, 9, and
22 where the join operators are dominant, execute around 2



and 3 times slower for Parallel Random and

Parallel RandomLong workloads respectively. The join op-
erators are expensive compared to the select operators as
they do random memory access keeping the CPU cores busy.
As the average core idleness changes from 13% to 0% across
the two workloads, their execution degrades due to insuffi-
cient CPU resources.

During the Parallel Random and the Parallel RandomLong
workload the SP execution of the complex queries (4, 19, 8,
9, and 22) show a slowdown of 3.5 and 5 respectively, while
the simple queries (6 and 14) slowdown 7 and 10 fold. The
lack of CPU resources to execute many concurrent operators
and the memory bandwidth pressure due to concurrent ac-
cess, as we illustrate in the Section 4.3.1 is one of the main
reasons for their rapid performance degradation. However,
as the SP queries have too many select and join operators,
isolating the exact reason for the degraded performance per
operator level is difficult to access.

In Vectorwise cost model plans, we are not able to find any

concrete relation between the isolated execution and the ex-
ecution under Parallel Random and Parallel RandomLong
workload. Since the execution is expected to be almost se-
quential due to the heavy load, the queries could show at
least 16 times degraded performance compared to their iso-
lated execution (16 is the number of physical cores). How-
ever, we do not observe that. Our observations of isolated
query executions show that the cost model parallelized plans
have varying degree of parallelism, unlike static paralleliza-
tion. This gives rise to varying CPU core idleness, compared
to MonetDB concurrent workloads, thereby making the per-
formance under different workloads much less robust.
Query 14: AP execution of Q14 represents a special case for
the Parallel Random and the Parallel RandomLong work-
loads. Its plan contains a mix of both the select and the
join operators as the dominant operators, unlike the other
queries which we analyzed earlier in this section. The join
operators however work on much less data as it gets filtered
by the select operators, making them overall less expensive.
The number of select and join operators in the AP plan
is much less than the SP plan, as a result Q14 gets mini-
mally affected under both the Parallel Random and Paral-
lel RandomLong workloads. Smaller number of operators
allow Q14 to progress with less CPU resources, incurs mini-
mal memory bandwidth pressure, while exhibiting a robust
behavior across the workload changes.
Summary: We observe that in AP and SP the query exe-
cution robustness under resource contention is strongly in-
fluenced by parameters such as the number of operators, the
type of operators, and the available CPU resources. As the
select operators are cheaper than the join operators, plans
where the select operators are dominant show more robust
behavior compared to the plans with join operators. Over-
all, the AP plans are more robust than the SP plans. Cost
model plan’s are much less robust and their robustness is
difficult to quantify.

Having seen the performance and the robustness compar-
ison of the parallelization techniques, we investigate next
how the resource contention affects them.

4.3 Where does time go during resource con-
tention?

Resource contention could be broadly classified into soft-
ware contention and hardware contention.
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between Parallel RandomLong (ParRndLng) and
Infinite Loop workload reflects the resource con-
tention impact on Statically b) Adaptively paral-
lelized queries in MonetDB.

The software contention arises due to the overheads in
managing the shared resources such as the operating system
scheduler, the lock contention manager, etc. We focus on
the query scheduling overheads as the read only workload
minimizes the lock contention. The query scheduling over-
head is the time a query waits until it gets scheduled on
100% busy CPU cores.

The hardware contention includes data sharing conflicts
resulting into (data / instruction) cache thrashing, page
fault handling, TLB invalidation, context switching, etc. [9]
and the CPU contention conflicts resulting into pipeline in-
validation, internal units access stalls, etc. [26].

To understand where time goes during resource contention,
the parallelized query execution time under concurrent work-
load could be dissected into the query’s isolated execution,
the software, and the hardware contention overhead. The
difference between Parallel RandomLong workload and the
Infinite Loop workload execution indicates the hardware con-
tention due to the Parallel RandomLong workload. The dif-
ference between Infinite Loop workload and isolated execu-
tion indicates query scheduling overhead. Both workloads
have 0% CPU core idleness, however differ in their work.
Software contention overhead: The query scheduling
overhead indicates software contention overhead. The hard-
ware contention is negligible as indicated by the difference
between the Infinite Loop workload and the Isolated execu-
tion, as illustrated next.

As the instruction footprint of a while loop program in the
Infinite workload is minimal, only a few CPU units such as
the ones that deal with the instruction execution logic are
busy, while the rest are idle. Lack of data access activity re-
sults into no cache or memory level contention as confirmed
from the observations in Table 4. It shows minimal differ-
ence in query execution hardware event measures under the
the Infinite Loop workload and the Isolated execution, for
the SP execution of Q9.

Table 4: Contention measure for Q9’s statically paral-
lelized execution under the Infinite Loop workload.

Isolated | Infinite Loop
L1 Miss % 6.6 6.5
L3 Miss % 66 58
Instructions/Cycle .35 .41
StalledCycles/Instr | 2.32 2.02

Figure 8a shows that during the SP execution the sim-
ple queries (Q6 and Q14) have minimal scheduling overhead
compared to the complex queries. The SP plans have too




many operators compared to the AP plans which gets re-
flected in their corresponding scheduling overheads. For ex-
ample, Q4 and Q19 show considerable scheduling overhead
in SP execution (see Figure 8a) compared to their AP exe-
cution (see Figure 8b).

Hardware contention overhead: The hardware contention

impact of the Parallel RandomLong workload on a paral-
lelized query execution is very high. The workload’s high
data access activity gives rise to heavy contention for the
shared L3 cache, resulting into a large number of L3 cache
misses, as could be seen in Table 5 for Q19’s SP execution.
It also results into heavy CPU level contention in terms of
the high number of stalled instructions. We use Q19 to pro-
vide a perspective of the resource contention impact in terms
of hardware performance events. For the other queries we
use increased response time as a reflection of the resource
contention impact.

In contrast the hardware contention for the Infinite Loop
workload is negligible. We assume the query scheduling
overhead for both the workloads is similar, though we expect
Parallel_RandomLong workload’s query scheduling overhead
to be relatively more than the Infinite Loop workload’s over-
head, as the concurrent queries use more time quanta dur-
ing their schedule. Hence, the difference between the Paral-
lel RandomLong and the Infinite Loop workload execution
indicates the hardware contention overhead.

The contention overhead during AP execution (see Figure
8b) is much less compared to the SP execution (see Fig-
ure 8a) as fewer range partitioned operators execute in AP
plans compared to SP plans. Fewer operators induce less
scheduling overhead, and less cache thrashing.

Having established the approximate resource contention
overheads in SP and AP execution in a holistic manner, we
now focus on the analysis of an individual query’s SP and
AP execution.

4.3.1 Workload specific resource contention

We analyze the effect of the workload specific resource
contention on the query execution by comparing the
Parallel_ RandomLong (see Figure 7c) and the Parallel Same
(see Figure 7d) workloads. Since the average idleness per
CPU core is zero! for both the workloads, one hypothesis is,
the query execution time for both should be similar. How-
ever, since that is not the case, it hints at the possibility of
workload specific effects on the query execution. We explain
it in the context of Q19.

Table 5: Contention for Q19’s statically Parallelized
execution under different concurrent workloads.

Isolated | ParRandLng | ParSame
L1 Miss % 11 15 18
L3 Miss % 4 46 73
Instructions/Cycle 1.16 .21 .16
StalledCycles/Instr | .5 4.12 5.76
iCache Misses 142079 86415 79934

Query 19: The SP execution is two times slower for the
Parallel_Same workload, compared to the

Parallel RandomLong workload, while AP execution for both
the workloads does not show much variation. The SQL level

LAn exception is Q4 and Q8 in Parallel_Same workload,
where average idleness is 10% and not 0%. It explains why
Q4 and Q8 show much less degradation compared to other
queries, where average idleness is 0%.
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Figure 9: Query execution under Parallel Random
(ParRnd) workload in Vectorwise degrades between
2 to 19 times compared to isolated parallel execu-
tion. Please note that the Y axis uses a log scale.

analysis of Q19 shows the where clause contains a union of
the results of the three sub-queries. Each of the sub-query
has a range based selection predicate on the same lineitem
table attribute with an overlapping range. The generated
plan for this query takes care of maximizing sharing of the
selection predicates, so that the redundant work is avoided.

When Parallel_Same workload is used, since the concur-
rent workload involves the same query, and since the query
has shared predicates, it leads to access to the same base
data. Since MonetDB uses memory mapped storage, these
data files get shared mapping in the memory. However, stor-
ing and loading of the intermediates as they are not shared
across queries generate memory bandwidth pressure. Ta-
ble 5 quantifies the contention impact on Q19 and provides
insight for its slow down.

It shows the percentage of the L3 cache misses is very high
(73%). Very high value of L3 cache misses also indicates the
pressure on the memory bandwidth. The processor pipeline
is heavily stalled during the cache misses resolution, result-
ing in its very low utilization as seen from the Instructions
per Cycle and Stalled Cycles per Instruction values. Low
value of instruction cache misses compared to the isolated
execution indicates the instruction cache sharing. However,
any gains due to it are subdued by the dominance of the L3
cache thrashing.

In comparison, when the Parallel RandomLong workload
is used, the concurrent workload contains a mix of queries
accessing different base tables. The workload also has mul-
tiple instances of Q17. Q17 contains a selection predicate on
the same attribute of the lineitem table as in Q19. Hence,
we expect some possible sharing at the memory mapped
level. In [1] the authors show a matrix of TPC-H query shar-
ing, where Q19 shares maximum data with other queries.
Due to the random workload the intermediates generated
are however of different sizes unlike the Parallel Same work-
load thereby generating less L3 cache misses (46%), leading
to a better performance. CPU utilization is also relatively
more compared to the Parallel Same workload.

4.3.2 Vectorwise resource contention

Figure 9 shows Vectorwise resource contention under dif-
ferent workloads. The parallelized queries under
Parallel Random workload (Yellow) are the slowest. With
respect to the isolated execution the minimum slowdown
is 2 times (Q4,Q6) and maximum is 19 (Q9). The perfor-
mance degradation is due to resource contention and alloca-
tion scheme in Vectorwise, where the queries get resources
such as CPU cores based on the existing system load. The
first query gets all the available CPU cores and the sub-
sequent queries get less cores based on a certain heuristic.
In the existing scenario where the concurrent workload con-
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Summary: Vectorwise parallel query execution under heavy
concurrent workload of random TPC-H queries shows a degra-
dation by around 19 times compared to the isolated paral-

lelized execution. In a similar setup, the MonetDB queries

show a slow down by around four times. The observations

suggest that a hard core heuristic on admission control as

used by Vectorwise need not be always optimal under a

heavy concurrent workload.

4.4 Inter-query vs. intra-query

Systems such as Postgres execute a single query per core.
During inter-query parallelization, to maximize multi-core
utilization multiple such queries are executed concurrently.
On the other hand, most systems such as MonetDB, Vector-
wise, Tableau, and SQL Server[7, 30] use intra-query paral-
lelization, using the exchange operator [16], where a single
query executes on multiple cores. We use the following setup
to understand which technique performs better.

Setup: In this experiment, we compare the inter-query par-
allelization performance of Postgres with Vectorwise and
MonetDB on 10GB data-set. Both Vectorwise and Mon-
etDB are used in sequential execution to serve the 32 concur-
rent clients firing random queries (SeqRnd workload). The
query Q under analysis is also executed in the sequential
mode. We use Postgres version 9.4 and configure the pa-
rameters such as shared buffer size using pgtune tool rec-
ommendations. Postgres forks 32 server processes to serve
the 32 concurrent clients firing continuous random queries.
The client that fires query Q under analysis thus becomes
the 33rd concurrent connection.

Performance: Figure 10a plots the execution performance
of queries when executed in isolation vs under concurrent
workload execution (SeqRnd), for the three database sys-
tems (P- Postgres, M- MonetDB, V- Vectorwise). Postgres
performance in both isolated and under concurrent workload
is always much lower than the corresponding MonetDB or
Vectorwise performance. The much degraded performance
of Postgres isolated execution is a result of its tuple-at-a-
time execution engine architecture, which is not optimized
for in-memory execution, unlike MonetDB and Vectorwise.
An interesting observation is under concurrent workload all
Postgres queries always show around two times degradation
than its isolated execution. This indicates that though Post-
gres shows much degraded performance, still it shows a rel-
atively robust behavior under concurrent execution.

Robustness: To test Postgres robustness behavior further,
we conduct another experiment where 31 and 64 clients fire
random queries under SeqRnd workload (see Figure 10b).
When 31 clients fire random queries, the query Q under
analysis is fired by the 32nd client. The aim of this experi-
ment is to understand when resource of one core is available,
whether the query Q gets full core for its execution and be-
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Figure 10: a) 1(30)stgres’s (P) isolated and iflt)er-query
parallelization comparison with MonetDB’s (M) and
Vectorwise’s (V) sequential isolated execution and
sequential execution under Sequential Random (Se-
qRnd) workload (32 clients). b) Postgres with vary-
ing concurrent clients under SeqRnd workload.

haves similar to isolated execution, since all the 31 clients
are busy with 31 cores. However, the results from Figure 10b
do not indicate that. When 32 clients are active the CPU
core idleness is always 0%, while when only 31 concurrent
clients are active some idleness across random CPU cores is
observed. Hence, the execution performance of queries when
31 clients are active is slightly better than when 32 clients
are active. This indicates, possible sharing of 31 cores among
31 available clients due to lack of explicit core affinity, which
prevents a dedicated single core allocation to the 32nd client
for the query Q under analysis. Hyper-threading also plays
its role.

The execution time decreases by two and five times un-

der 32 and 64 concurrent workload (SeqRnd), compared to
isolated execution. This verifies the earlier hypothesis that
Postgres execution degrades robustly with increased number
of concurrent clients.
Summary: Both MonetDB and Vectorwise inter-query par-
allelized execution shows between 5 to 30 times better per-
formance than Postgres under concurrent workload. In con-
trast the intra-query adaptive parallelized execution of Mon-
etDB under Parallel Random workload shows between 10 to
50 times improvement compared to Postgres’s inter-query
parallelized concurrent execution. However, Postgres offers
a much robust execution compared to others.

S. RELATED WORK

A lot of past work deals with identifying the correct multi-
programming level (MPL) and modelling of query interac-
tions [4, 22, 24]. A scheduling based approach is also used
to model different possible query mix interactions [29].

Identifying the resource contention effect on an individ-
ual query performance has been explored in the context of
sequential query execution, in the context of pipelined paral-
lelism. Authors in [21] explore the tradeoffs of work sharing
vs pipe-lined parallelism in multi-core systems in sequential
query execution. In [19] authors analyze contention in chip
multi-processors at different CPU cache levels.

In [5] the authors compare the behavior of three columnar
systems under concurrent TPC-H and SSB queries, while
scaling up the concurrent clients. It shows the response time
increases linearly as the concurrent clients increase. Authors
also show that throughput decreases after reaching a peak
as the number of concurrent clients increase. Our work uses
the response time as the performance metrics with in depth
analysis from multi-core parallelization perspective. The au-



thors in [27] analyze the work / data sharing using simul-
taneous pipeline and global query plan techniques, however,
do not discuss the parallelization aspect.

State of the art systems such as Hyper [23] use morsel
driven work stealing based runtime adaptive parallelism.
Here controlling the number of partitions is equivalent to
controlling the size of a morsel, allowing the degree of par-
allelism variations of an individual query elastically. Hyper,
however, is not available for a direct comparison in our setup.

In [15] the authors propose a new mechanism to mini-
mize resource utilization and to maximize performance and
predictability while deploying query plans on multi-core sys-
tems. They propose resource activitiy vectors to character-
ize individual database operator’s behavior. A new deploy-
ment algorithm uses these vectors with dataflow information
from the query plan for the optimal assignment of the rela-
tional operators to the cores. In [8] the authors introduce
a new scheduling mechanism for multi-core systems where
instead of CPU core oriented scheduling focus, they pro-
pose on-chip memory focused scheduling. Here threads are
scheduled across cores based on their data objects usage of
the on-chip memory. In [20] the authors propose Callisto,
a resource management layer for parallel runtime systems.
The authors illustrate how Callisto eliminates most of the
scheduler-related interference between concurrent jobs, and
allows jobs to claim otherwise-idle cores.

6. CONCLUSION

We compared three intra-query parallelization techniques
(static, adaptive and cost model), under different in-memory
multi-core columnar system, concurrent workloads.

On the TPC-H query set under evaluation under concur-
rent workload, the adaptively parallelized plans show more
robustness and an execution time improvement of an aver-
age 50% compared to the statically parallelized plans. Static
parallelization suffers due to too many partitions, which
leads to severe resource contention amongst the competing
threads. It leads to a large number of L3 cache misses, re-
sulting into the memory bandwidth contention. Cost model
based parallelization shows the highest time as the queries
are allocated minimal CPU cores due to heavy concurrent
workload. Intra-query parallelization always provides best
response time than inter-query parallelization, under con-
current workload.
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