1,266 research outputs found

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Evaluation studies of robotic rollators by the user perspective: A systematic review

    Get PDF
    Background: Robotic rollators enhance the basic functions of established devices by technically advanced physical, cognitive, or sensory support to increase autonomy in persons with severe impairment. In the evaluation of such Ambient Assisted Living solutions, both the technical and user perspectives are important to prove usability, effectiveness, and safety, and to ensure adequate device application.Objective: The aim of this systematic review is to summarize the methodology of studies evaluating robotic rollators with focus on the user perspective and to give recommendations for future evaluation studies.Methods: A systematic literature search up to December 31, 2014 was conducted based on the Cochrane Review methodology using the electronic databases PubMed and IEEE Xplore. Articles were selected according to the following inclusion criteria: Evaluation studies of robotic rollators documenting human-robot interaction, no case reports, published in English language.Results: Twenty-eight studies were identified that met the predefined inclusion criteria. Large heterogeneity in the definitions of the target user group, study populations, study designs, and assessment methods was found across the included studies. No generic methodology to evaluate robotic rollators could be identified. We found major methodological shortcomings related to insufficient sample descriptions and sample sizes, and lack of appropriate, standardized and validated assessment methods. Long-term use in habitual environment was also not evaluated.Conclusions: Apart from the heterogeneity, methodological deficits in most of the identified studies became apparent. Recommendations for future evaluation studies include: clear definition of target user group, adequate selection of subjects, inclusion of other assistive mobility devices for comparison, evaluation of the habitual use of advanced prototypes, adequate assessment strategy with established, standardized and validated methods, and statistical analysis of study results. Assessment strategies may additionally focus on specific functionalities of the robotic rollators allowing an individually tailored assessment of innovative features to document their added value

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    A novel human-machine interface for guiding : the NeoASAS Smart Walker

    Get PDF
    In an aging society it is extremely important to develop devices, which can support and aid the elderly in their daily life. This demands tools that extend independent living and promote improved health. In this work it is proposed a new interface approach integrated into a walker. This interface is based on a joystick and it is intended to extract the user’s movement intentions. The interface is designed to be userfriendly, simple and intuitive, efficient and economic, meeting usability aspects and focused on a commercial implementation, but not being demanding at the user cognitive level. Preliminary sets of experiments were performed which showed the sensibility of the joystick to extract navigation commands from the user. These signals presented a higher frequency component that was attenuated by a Benedict-Bordner g-h filter. The presented methodology offers an effective cancelation of the undesired components from joystick data, allowing the system to extract in real-time voluntary user’s navigation commands. Based on this real-time identification of voluntary user’s commands, an approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.(undefined

    Environment Feedback for Robotic Walking Support System Control

    Get PDF
    2007 IEEE International Conference on FrB4.4 Robotics and Automation, Roma, Italy, 10-14 April 2007 / Proceedings of 2007 IEEE International Conference on Robotics and Automatio

    The future of UAS: standards, regulations, and operational experiences [workshop report]

    Get PDF
    This paper presents the outcomes of "The Future of UAS: Standards, Regulations and Operational Experiences" workshop, held on the 7th and 8th of December, 2006 in Brisbane, Queensland, Australia. The goal of the workshop was to identify recent international activities in the Unmanned Airborne Systems (UAS) airspace integration problem. The workshop attracted a broad cross-section of the UAS community, including: airspace and safety regulators, developers, operators and researchers. The three themes of discussion were: progress in the development of standards and regulations, lessons learnt from recent operations, and advances in new technologies. This paper summarises the activities of the workshop and explores the important outcomes and trends as perceived by the authors

    Assistive mobility devices focusing on smart walkers : classification and review

    Get PDF
    In an aging society it is extremely important to develop devices, which can support and aid the elderly in their daily life. This demands means and tools that extend independent living and promote improved health. Thus, the goal of this article is to review the state of the art in the robotic technology for mobility assistive devices for people with mobility disabilities. The important role that robotics can play in mobility assistive devices is presented, as well as the identification and survey of mobility assistive devices subsystems with a particular focus on the walkers technology. The advances in the walkers’ field have been enormous and have shown a great potential on helping people with mobility disabilities. Thus it is presented a review of the available literature of walkers and are discussed major advances that have been made and limitations to be overcome

    A Service Robot for Navigation Assistance and Physical Rehabilitation of Seniors

    Get PDF
    The population of the advanced countries is ageing, with the direct consequence that an increasing number of people will have to live with sensitive, cognitive and physical disabilities. People with impaired physical ability are not confident to move alone, especially in crowded environment and for long journeys, highly reducing the quality of their life. We propose a new generation of robotic walking assistants whose mechanical and electronic components are conceived to optimize the collaboration between the robot and its users. We will apply these general ideas to investigate the interaction between older adults and a robotic walker, named FriWalk, exploiting it either as a navigational or as a rehabilitation aid. For the use of the FriWalk as a navigation assistance, the system guides the user securing high levels of safety, a perfect compliance with the social rules and non-intrusive interaction between human and machine. To this purpose, we developed several guidance systems ranging from completely passive strategies to active solutions exploiting either the rear or the front motors mounted on the robot. The common strategy at the basis of all the algorithms is that the responsibility of the locomotion belongs always to the user, both to increase the mobility of elder users and to enhance their perception of control over the robot. This way the robot intervenes only whenever it is strictly necessary not to mitigate the user safety. Moreover, the robotic walker has been endowed with a tablet and graphical user interface (GUI) which provides the user with the visual indications about the path to follow. Since the FriWalk was developed to suit the needs of users with different deficits, we conducted extensive human-robot interaction (HRI) experiments with elders, complemented with direct interviews of the participants. As concerns the use of the FriWalk as a rehabilitation aid, force sensing to estimate the torques applied by the user and change the user perceived inertia can be exploited by doctors to let the user feel the device heavier or lighter. Moreover, thanks to a new generation of sensors, the device can be exploited in a clinical context to track the performance of the users' rehabilitation exercises, in order to assist nurses and doctors during the hospitalization of older adults
    corecore