5 research outputs found

    Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis

    Get PDF
    The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time

    Pan-Arctic lead detection from MODIS thermal infrared imagery

    Get PDF
    Polynyas and leads are key elements of the wintertime Arctic sea-ice cover. They play a crucial role in surface heat loss, potential ice formation and consequently in the seasonal sea-ice budget. While polynyas are generally sufficiently large to be observed with passive microwave satellite sensors, the monitoring of narrow leads requires the use of data at a higher spatial resolution. We apply and evaluate different lead segmentation techniques based on sea-ice surface temperatures as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). Daily lead composite maps indicate the presence of cloud artifacts that arise from ambiguities in the segmentation process and shortcomings in the MODIS cloud mask. A fuzzy cloud artifact filter is hence implemented to mitigate these effects and the associated potential misclassification of leads. The filter is adjusted with reference data from thermal infrared image sequences, and applied to daily MODIS data from January to April 2008. The daily lead product can be used to deduct the structure and dynamics of wintertime sea-ice leads and to assess seasonal divergence patterns of the Arctic Ocean

    Enforcing Monotonous Shape Growth or Shrinkage in Video Segmentation

    Full text link

    Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic, 2003–2015

    Get PDF
    The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003–2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated

    Pan-Arctic lead detection from MODIS thermal infrared imagery

    Full text link
    corecore