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ABSTRACT

The melting of sea ice is correlated to increases in sea surface

temperature and associated climatic changes. Therefore, it is

important to investigate how rapidly sea ice floes melt. For

this purpose, a new TempoSeg method for multitemporal seg-

mentation of multiyear ice floes is proposed. The microwave

radiometer is used to track the position of an ice floe. Then,

a time series of MODIS images are created with the ice floe

in the image center. A TempoSeg method is performed to seg-

ment these images into two regions: Floe and Background.

First, morphological feature extraction is applied. Then, the

central image pixel is marked as Floe, and shape-constrained

best merge region growing is performed. The resulting two-

region map is post-filtered by applying morphological oper-

ators. We have successfully tested our method on a set of

MODIS images and estimated the area of a sea ice floe as a

function of time.

Index Terms— Classification, segmentation, region

merging, multiyear sea ice floes, shape analysis.

1. INTRODUCTION

The sea ice cover has a significant effect on the Earth’s cli-

mate system. It limits the exchange of heat, moisture, and

momentum across the ocean-sea ice-snow-atmosphere inter-

face. Therefore, sea ice is both an active participant of the

Earth’s climate and a sensitive climate indicator [1]. It thus is

very important to monitor sea ice evolution and develop meth-

ods for automated analysis of satellite measurements. In this

paper, our objective is to determine how rapidly a multiyear

ice floe can melt.

Most of the existing techniques for automatic ice floe

tracking from Synthetic Aperture Radar or optical remote

sensing imagery employ adaptive, or dynamic thresholding

for distinguishing ice from water [2, 3]. In [4], Yu applied

iterative region growing to the segmentation of sea ice im-

agery from the RADARSAT-2 data. A watershed transform

was performed, followed by labeling of the resulting homo-

geneous regions and region merging to obtain an accurate

segmentation map.

In our study, two sensors onboard the NASA Aqua satel-

lite have been used: Advanced Microwave Scanning Ra-

diometer - Earth Observing System (AMSR-E) and Moderate-

Resolution Imaging Spectroradiometer (MODIS). AMSR-E

data was used to manually track the position of the ice floe

of interest. Based on this information, a time series of the

reprojected MODIS images was created with the ice floe in

the central part of every image. These measurements made

it possible to estimate both an area and a perimeter of a mul-

tiyear Arctic sea ice floe as a function of time using a new
multitemporal segmentation (TempoSeg) method. The

proposed TempoSeg method is based on shape-constrained

best merge region growing and proceeds as follows:

First, a feature extraction by applying morphological op-

erators is applied. Every pixel is considered as a separate

region. The central image region is assigned to the class

Floe, while all other regions are assigned to the class Back-
ground. Second, hierarchical step-wise optimization segmen-

tation [5] is performed, by iteratively merging two adjacent

regions with the smallest Dissimilarity Criterion (DC). When

any Background region is merged with the Floe region, the

resulting region is assigned to the class Floe. The algorithm

is converged for a given image when the image is segmented

into two regions: Floe and Background. Finally, a morpho-

logical post-filtering of the resulting map is applied.

The important contribution of this work consists in includ-

ing multitemporal, geometrical and shape analysis for com-

puting a DC between two regions. Moreover, this method is

applied on several images processed sequentially.

The outline of the paper is as follows. In the next sec-

tion, the data set used for experiments is described. Section 3

presents the proposed TempoSeg segmentation method. Ex-

perimental results are discussed in Section 4. Finally, conclu-

sions are drawn in Section 5.

2. DATA SET

In this study, we analyzed two months of AMSR-E and

MODIS measurements. These sensors are onboard the Aqua

satellite, which has a polar orbit enabling several measure-
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Fig. 1. (a) Reprojected MODIS I(227-1435) image. (b) Tem-
poSeg segmentation map of I(227-1435) (floe area = 24104

pixels). (c) Reprojected MODIS I(286-2045) image. (d) Seg-

mentation map of I(286-2045) (floe area = 19315 pixels).

ments per day over the Earth’s polar regions. Our target

of interest is a multiyear sea ice floe, which left the Arctic

main sea ice pack in December 2007, continuously moved

according to the Arctic ocean currents and melted in June

2009.

To track the position of the ice floe of interest during its

lifetime, the AMSR-E data at 89 GHz mapped to a polar stere-

ographic grid at 6.25 km spatial resolution were used. These

data have been extracted from the “AMSR-E/Aqua Daily L3

6.25 km 89 GHz Brightness Temperature Polar Grids” prod-

uct distributed by the National Snow and Ice Data Center.

In accordance with these measurements, a time series of the
MODIS images was built with the ice floe of interest.

In order to get the most accurate segmentation results, it is

the best to use the highest MODIS spatial resolution band at

250 m. Among the two high-resolution bands of the MODIS

data, we used band 1 (0.620 - 0.670 μm) because it provided

the best contrast between the sea ice and the ocean water.

Level 1B calibrated and geolocated MODIS swath data re-

projected onto a polar stereographic grid was the main data

source. The geolocation uncertainty is ∼50 m [6].

All swath images did not provide opportunities to quantify

the ice floe areas either due to extensive cloud cover, limited

solar illumination, or weakness of contrast between the mul-

tiyear ice floe and the surrounding young ice. We selected for

our analysis M = 40 images with spatial dimensions of 500

× 500 pixels, acquired on 18 different days during the two-

months period from mid-August to mid-October 2008 (from

the 227th day to the 286th day of 2008). Fig. 1(a, c) and 2(a)

show three images from the considered set. We denote each

image by Im(D-T ) = {im(x, y) ∈ Z
+, x = [1..H], y =

[1..W ]},m = [1..M ], where D and T mean the day and the

(a) (b)

(c) (d)

Fig. 2. Image I(249-1715): (a) Reprojected MODIS im-

age. (b) Segmentation map when no shape constraints and

no post-filtering were applied (floe area = 23822 pixels). (c)

TempoSeg segmentation map before post-filtering (floe area

= 22903 pixels). (d) TempoSeg final segmentation map (floe

area = 22853 pixels).

time when it was recorded, H and W are height and width of

each image, respectively (in our case, H = W = 500). For

instance, the image I1(227-1435) was acquired on the day

227 at 14:35.

3. PROPOSED METHOD

The proposed TempoSeg segmentation method is based on

shape-constrained best merge region growing procedure. It

consists of the following steps:

Input: At the input, M 1-band images Im(D − T ) =
{im(x, y) ∈ Z

+, x = [1..H], y = [1..W ]},m = [1..M ] in-

cluding the Floe are given. The goal is to obtain for each

image Im a segmentation map Sm = {sm(x, y) ∈ [0, 1], x =
[1..H], y = [1..W ]}, where each pixel has label 1 if it belongs

to the Floe, and 0 otherwise. The following parameters must

be initialized: maximum number of pixels representing the

floe NmaxF , maximum height HmaxF , maximum width

WmaxF of the flow, respectively, and its rectangularity at

the previous time moment Rect0F .

We define a height Height(R) and a width Width(R) of

the region R as the height and the width of the Minimum Area

Rectangle (MAR) of an arbitrary orientation including R. A

region rectangularity Rect(R) is computed as a ratio of the

region area (i.e. number of pixels) and the area of the MAR

enclosing R (i.e. Height(R) ·Width(R)).

Feature extraction: In order to enhance the difference

between the intensity values of the Floe and the rest of the

image, each image Im is filtered to remove small objects, as

described in the following:
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1. Morphological h-minima transform is applied to Im,

which suppresses all minima in the image whose depth is less

than a scalar h [7], resulting in an image I1m.

2. H-maxima transform is applied to I1m, which sup-

presses all maxima whose height is less than h, resulting in

an image I2m [7].

3. Geodesic opening by reconstruction I3m = γ(I2m) of

the current image is obtained by reconstructing the image

erosion ε(I2m) under I2m, using a disk with radius r as the

structuring element (SE) [7]. This operation removes bright

objects with a thinner support than the given SE, while pre-

serving shapes of other objects.

4. Geodesic closing by reconstruction I4m = ϕ(I3m) is

performed in the similar way, with a disk of radius r as a

SE [7].

The obtained image I4m is combined with the original

image Im, resulting in a 2-band image Im = {im(x, y) ∈
Z
2, x = [1..H], y = [1..W ]}.

Hierarchical optimization: The segmentation by hierar-

chical shape-constrained optimization of each image Im is se-

quentially performed as follows:

1. m = 1.

2. Consider the image Im. Initialize the algorithm by

assigning a new region label for each pixel. The one-pixel

region situated in the center of the image [with coordinates

(H/2+1, W/2+1)] gets a Floe class label L(RF ) = 1. All

other regions get a class label L(Rj) = 0, j = [1..W ×
H], j �= F .

3. Calculate the DC between all pairs of spatially adjacent

regions {Rj , Rk}, considering an eight-connectivity neigh-

borhood and using the following algorithm (see Fig. 3):

• Compute the square root of band sum mean squared

error (BSMSE1/2) criterion, which is based on mini-

mizing the increase of mean squared error between the

region mean image and the original image data. The

BSMSE1/2 between regions Rj and Rk with region

mean vectors uj = (uj1, uj2)
T and uk = (uk1, uk2)

T

and region sizes (number of pixels) nj and nk, respec-

tively, is defined as

DC(Rj , Rk) = BSMSE
1
2 (Rj , Rk) =[

njnk

(nj + nk)

2∑
b=1

(ujb − ukb)
2

]1/2

. (1)

• If either L(Rj) = 1 or L(Rk) = 1, i.e., one of the

regions represents a floe, proceed as follows:

a) If (nj + nk) > NmaxF , DC(Rj , Rk) = ∞
(the upper maximum value of float).

b) Otherwise, if (nj + nk) > K ·NmaxF ,
0 < K < 1, perform shape analysis. The parame-

ter K controls the scale at which a shape analysis

 
    DC 

Compute DC=BSMSE1/2(Rj, Rk) 

L(Rj)=1 or L(Rk)=1 
    no yes 

    no yes 

    yes 

DC = 0.5·DC 

no 

 (nj + nk) > NmaxF 

 (nj + nk) > K·NmaxF 
    no 

(Height(Rjk) > HmaxF) or 
(Width(Rjk) > WmaxF)  

yes 

DC = ∞ 
|Rect(Rjk)-RectF

m-1| < 
|Rect(Rf)-RectF

m-1| 

    no yes 

DC = 2·DC 

Fig. 3. Flowchart of computing a DC between two regions

Rj and Rk. Rjk = Rj ∪Rk, and f ∈ {j, k}, L(Rf ) = 1.

is started.

Let Rjk = Rj ∪Rk, and f ∈ {j, k}, L(Rf ) = 1.

• If (Height(Rjk) > HmaxF ) or

(Width(Rjk) > WmaxF ), then

DC(Rj , Rk) = ∞.

• Otherwise, if

|Rect(Rjk)−Rectm−1
F |< |Rect(Rf )−Rectm−1

F |,
then DC(Rj , Rk) = 0.5DC(Rj , Rk),
else DC(Rj , Rk) = 2DC(Rj , Rk).

The idea behind this rectangularity condition is based

on an assumption that the time interval between ac-

quisitions of two consecutive images is typically short

enough, so that the rectangularity values of the Floe re-

gion within these two images are similar.

4. Find the smallest DC value DCmin.

5. Merge a pair of spatially adjacent regions with DC =
DCmin. If one of the merged regions has a class label 1, a

new region gets a class label 1, and its rectangularity value

Rect(Rf ) is recomputed.

6. If the image is segmented into two regions Floe and

Background, go to step 7. Otherwise, update the DC values

between the new region and all regions spatially adjacent to

it, and return to step 4.

7. Update parameters:

• RectmF = 0.5(Rectm−1
F +RectmF ).

• If m > 1:
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NmaxF = min[NmaxF , 1.05max(nm−1
F , nm

F )].

HmaxF = min[HmaxF ,

1.2max(Height(Rm−1
F ), Height(Rm

F ))].

WmaxF = min[WmaxF ,

1.2max(Width(Rm−1
F ),Width(Rm

F ))].

8. m = m+ 1. Go to step 2.

Post-filtering: Each segmentation map Sm is post-filtered

by applying the following morphological operators [7]:

• Opening with a disk of radius ro as a SE.

• Area opening to remove all small Floe regions that may

appear after morphological opening.

• Closing using a disk with radius (ro + 2) as a SE.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed TempoSeg approach to the set of 40

MODIS images described in Section 2. Based on the visual

analysis of the first image in a time series I1(227−1435) (see

Fig. 1(a)), we initialized the parameters NmaxF = 27000,

HmaxF = 250, WmaxF = 170 and Rect0F = 0.71 (com-

pare to the floe characteristics we estimated by applying Tem-
poSeg: n1

F = 24104, Height(R1
F ) = 232, Width(R1

F ) =
145, Rect1F = 0.72). Other parameters were empirically set

as h = 30, r = 15, K = 0.8 and ro = 4.

Fig. 1(b, d) and 2(b-d) show some of the obtained segmen-

tation images. From these images, it is possible to see that the

proposed approach succeeded in accurately segmenting the

ice floe of interest from the rest of the image. Fig. 2 demon-

strates the improvement in segmentation results when includ-

ing shape analysis into best merge region growing (compare

Fig. 2(c) versus Fig. 2(b)) and when applying morphological

post-filtering (compare Fig. 2(d) versus Fig. 2(c)).

Fig. 4 depicts graphs of the Floe area and perimeter as a

function of time. As expected, during the two-month period

at the end of the summer season, both area and perimeter are

decreasing over time. Some variability such as the local min-
ima and maxima of the curves are a consequence of either a

partial cloud cover over the Floe (minima) in some images, or

weakness of contrast between the multiyear ice and the neigh-

boring young ice floes (maxima).

5. CONCLUSIONS

We have designed a new TempoSeg method for multitempo-

ral segmentation of multiyear sea ice floes from the MODIS

data. The proposed technique is based on shape-constrained

best merge region growing, and it segments each image from

a time series into Floe and Background regions. We have

applied this method to a set of MODIS images acquired in

August-October 2008 and successfully estimated both an area

and a perimeter of the floe of interest over the given time pe-

riod.

(a)

(b)

Fig. 4. (a) Ice floe area (number of pixels) as a function of

time: Before post-filtering averaged for every day (blue); Af-

ter post-filtering (green); After post-filtering averaged for ev-

ery day (red). (b) Ice floe perimeter as a function of time,

averaged for every day.
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