1,751 research outputs found

    Real-time Deep Dynamic Characters

    Get PDF

    Real-time human performance capture and synthesis

    Get PDF
    Most of the images one finds in the media, such as on the Internet or in textbooks and magazines, contain humans as the main point of attention. Thus, there is an inherent necessity for industry, society, and private persons to be able to thoroughly analyze and synthesize the human-related content in these images. One aspect of this analysis and subject of this thesis is to infer the 3D pose and surface deformation, using only visual information, which is also known as human performance capture. Human performance capture enables the tracking of virtual characters from real-world observations, and this is key for visual effects, games, VR, and AR, to name just a few application areas. However, traditional capture methods usually rely on expensive multi-view (marker-based) systems that are prohibitively expensive for the vast majority of people, or they use depth sensors, which are still not as common as single color cameras. Recently, some approaches have attempted to solve the task by assuming only a single RGB image is given. Nonetheless, they can either not track the dense deforming geometry of the human, such as the clothing layers, or they are far from real time, which is indispensable for many applications. To overcome these shortcomings, this thesis proposes two monocular human performance capture methods, which for the first time allow the real-time capture of the dense deforming geometry as well as an unseen 3D accuracy for pose and surface deformations. At the technical core, this work introduces novel GPU-based and data-parallel optimization strategies in conjunction with other algorithmic design choices that are all geared towards real-time performance at high accuracy. Moreover, this thesis presents a new weakly supervised multiview training strategy combined with a fully differentiable character representation that shows superior 3D accuracy. However, there is more to human-related Computer Vision than only the analysis of people in images. It is equally important to synthesize new images of humans in unseen poses and also from camera viewpoints that have not been observed in the real world. Such tools are essential for the movie industry because they, for example, allow the synthesis of photo-realistic virtual worlds with real-looking humans or of contents that are too dangerous for actors to perform on set. But also video conferencing and telepresence applications can benefit from photo-real 3D characters, as they can enhance the immersive experience of these applications. Here, the traditional Computer Graphics pipeline for rendering photo-realistic images involves many tedious and time-consuming steps that require expert knowledge and are far from real time. Traditional rendering involves character rigging and skinning, the modeling of the surface appearance properties, and physically based ray tracing. Recent learning-based methods attempt to simplify the traditional rendering pipeline and instead learn the rendering function from data resulting in methods that are easier accessible to non-experts. However, most of them model the synthesis task entirely in image space such that 3D consistency cannot be achieved, and/or they fail to model motion- and view-dependent appearance effects. To this end, this thesis presents a method and ongoing work on character synthesis, which allow the synthesis of controllable photoreal characters that achieve motion- and view-dependent appearance effects as well as 3D consistency and which run in real time. This is technically achieved by a novel coarse-to-fine geometric character representation for efficient synthesis, which can be solely supervised on multi-view imagery. Furthermore, this work shows how such a geometric representation can be combined with an implicit surface representation to boost synthesis and geometric quality.In den meisten Bildern in den heutigen Medien, wie dem Internet, BĂŒchern und Magazinen, ist der Mensch das zentrale Objekt der Bildkomposition. Daher besteht eine inhĂ€rente Notwendigkeit fĂŒr die Industrie, die Gesellschaft und auch fĂŒr Privatpersonen, die auf den Mensch fokussierten Eigenschaften in den Bildern detailliert analysieren und auch synthetisieren zu können. Ein Teilaspekt der Anaylse von menschlichen Bilddaten und damit Bestandteil der Thesis ist das Rekonstruieren der 3D-Skelett-Pose und der OberflĂ€chendeformation des Menschen anhand von visuellen Informationen, was fachsprachlich auch als Human Performance Capture bezeichnet wird. Solche Rekonstruktionsverfahren ermöglichen das Tracking von virtuellen Charakteren anhand von Beobachtungen in der echten Welt, was unabdingbar ist fĂŒr Applikationen im Bereich der visuellen Effekte, Virtual und Augmented Reality, um nur einige Applikationsfelder zu nennen. Nichtsdestotrotz basieren traditionelle Tracking-Methoden auf teuren (markerbasierten) Multi-Kamera Systemen, welche fĂŒr die Mehrheit der Bevölkerung nicht erschwinglich sind oder auf Tiefenkameras, die noch immer nicht so gebrĂ€uchlich sind wie herkömmliche Farbkameras. In den letzten Jahren gab es daher erste Methoden, die versuchen, das Tracking-Problem nur mit Hilfe einer Farbkamera zu lösen. Allerdings können diese entweder die Kleidung der Person im Bild nicht tracken oder die Methoden benötigen zu viel Rechenzeit, als dass sie in realen Applikationen genutzt werden könnten. Um diese Probleme zu lösen, stellt die Thesis zwei monokulare Human Performance Capture Methoden vor, die zum ersten Mal eine Echtzeit-Rechenleistung erreichen sowie im Vergleich zu vorherigen Arbeiten die Genauigkeit von Pose und OberflĂ€che in 3D weiter verbessern. Der Kern der Methoden beinhaltet eine neuartige GPU-basierte und datenparallelisierte Optimierungsstrategie, die im Zusammenspiel mit anderen algorithmischen Designentscheidungen akkurate Ergebnisse erzeugt und dabei eine Echtzeit-Laufzeit ermöglicht. Daneben wird eine neue, differenzierbare und schwach beaufsichtigte, Multi-Kamera basierte Trainingsstrategie in Kombination mit einem komplett differenzierbaren Charaktermodell vorgestellt, welches ungesehene 3D PrĂ€zision erreicht. Allerdings spielt nicht nur die Analyse von Menschen in Bildern in Computer Vision eine wichtige Rolle, sondern auch die Möglichkeit, neue Bilder von Personen in unterschiedlichen Posen und Kamera- Blickwinkeln synthetisch zu rendern, ohne dass solche Daten zuvor in der RealitĂ€t aufgenommen wurden. Diese Methoden sind unabdingbar fĂŒr die Filmindustrie, da sie es zum Beispiel ermöglichen, fotorealistische virtuelle Welten mit real aussehenden Menschen zu erzeugen, sowie die Möglichkeit bieten, Szenen, die fĂŒr den Schauspieler zu gefĂ€hrlich sind, virtuell zu produzieren, ohne dass eine reale Person diese Aktionen tatsĂ€chlich ausfĂŒhren muss. Aber auch Videokonferenzen und Telepresence-Applikationen können von fotorealistischen 3D-Charakteren profitieren, da diese die immersive Erfahrung von solchen Applikationen verstĂ€rken. Traditionelle Verfahren zum Rendern von fotorealistischen Bildern involvieren viele mĂŒhsame und zeitintensive Schritte, welche Expertenwissen vorraussetzen und zudem auch Rechenzeiten erreichen, die jenseits von Echtzeit sind. Diese Schritte beinhalten das Rigging und Skinning von virtuellen Charakteren, das Modellieren von Reflektions- und Materialeigenschaften sowie physikalisch basiertes Ray Tracing. Vor Kurzem haben Deep Learning-basierte Methoden versucht, die Rendering-Funktion von Daten zu lernen, was in Verfahren resultierte, die eine Nutzung durch Nicht-Experten ermöglicht. Allerdings basieren die meisten Methoden auf Synthese-Verfahren im 2D-Bildbereich und können daher keine 3D-Konsistenz garantieren. DarĂŒber hinaus gelingt es den meisten Methoden auch nicht, bewegungs- und blickwinkelabhĂ€ngige Effekte zu erzeugen. Daher prĂ€sentiert diese Thesis eine neue Methode und eine laufende Forschungsarbeit zum Thema Charakter-Synthese, die es erlauben, fotorealistische und kontrollierbare 3D-Charakteren synthetisch zu rendern, die nicht nur 3D-konsistent sind, sondern auch bewegungs- und blickwinkelabhĂ€ngige Effekte modellieren und Echtzeit-Rechenzeiten ermöglichen. Dazu wird eine neuartige Grobzu- Fein-CharakterreprĂ€sentation fĂŒr effiziente Bild-Synthese von Menschen vorgestellt, welche nur anhand von Multi-Kamera-Daten trainiert werden kann. Daneben wird gezeigt, wie diese explizite Geometrie- ReprĂ€sentation mit einer impliziten OberflĂ€chendarstellung kombiniert werden kann, was eine bessere Synthese von geomtrischen Deformationen sowie Bildern ermöglicht.ERC Consolidator Grant 4DRepL

    {HiFECap}: {M}onocular High-Fidelity and Expressive Capture of Human Performances

    Get PDF
    Monocular 3D human performance capture is indispensable for many applicationsin computer graphics and vision for enabling immersive experiences. However,detailed capture of humans requires tracking of multiple aspects, including theskeletal pose, the dynamic surface, which includes clothing, hand gestures aswell as facial expressions. No existing monocular method allows joint trackingof all these components. To this end, we propose HiFECap, a new neural humanperformance capture approach, which simultaneously captures human pose,clothing, facial expression, and hands just from a single RGB video. Wedemonstrate that our proposed network architecture, the carefully designedtraining strategy, and the tight integration of parametric face and hand modelsto a template mesh enable the capture of all these individual aspects.Importantly, our method also captures high-frequency details, such as deformingwrinkles on the clothes, better than the previous works. Furthermore, we showthat HiFECap outperforms the state-of-the-art human performance captureapproaches qualitatively and quantitatively while for the first time capturingall aspects of the human.<br

    Fast Simulation of Skin Sliding

    Get PDF
    Skin sliding is the phenomenon of the skin moving over underlying layers of fat, muscle and bone. Due to the complex interconnections between these separate layers and their differing elasticity properties, it is difficult to model and expensive to compute. We present a novel method to simulate this phenomenon at real--time by remeshing the surface based on a parameter space resampling. In order to evaluate the surface parametrization, we borrow a technique from structural engineering known as the force density method which solves for an energy minimizing form with a sparse linear system. Our method creates a realistic approximation of skin sliding in real--time, reducing texture distortions in the region of the deformation. In addition it is flexible, simple to use, and can be incorporated into any animation pipeline

    Deep Physics-aware Inference of Cloth Deformation for Monocular Human Performance Capture

    Get PDF
    Recent monocular human performance capture approaches have shown compelling dense tracking results of the full body from a single RGB camera. However, existing methods either do not estimate clothing at all or model cloth deformation with simple geometric priors instead of taking into account the underlying physical principles. This leads to noticeable artifacts in their reconstructions, such as baked-in wrinkles, implausible deformations that seemingly defy gravity, and intersections between cloth and body. To address these problems, we propose a person-specific, learning-based method that integrates a finite element-based simulation layer into the training process to provide for the first time physics supervision in the context of weakly-supervised deep monocular human performance capture. We show how integrating physics into the training process improves the learned cloth deformations, allows modeling clothing as a separate piece of geometry, and largely reduces cloth-body intersections. Relying only on weak 2D multi-view supervision during training, our approach leads to a significant improvement over current state-of-the-art methods and is thus a clear step towards realistic monocular capture of the entire deforming surface of a clothed human

    SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes

    Full text link
    Neural implicit surface representations have emerged as a promising paradigm to capture 3D shapes in a continuous and resolution-independent manner. However, adapting them to articulated shapes is non-trivial. Existing approaches learn a backward warp field that maps deformed to canonical points. However, this is problematic since the backward warp field is pose dependent and thus requires large amounts of data to learn. To address this, we introduce SNARF, which combines the advantages of linear blend skinning (LBS) for polygonal meshes with those of neural implicit surfaces by learning a forward deformation field without direct supervision. This deformation field is defined in canonical, pose-independent space, allowing for generalization to unseen poses. Learning the deformation field from posed meshes alone is challenging since the correspondences of deformed points are defined implicitly and may not be unique under changes of topology. We propose a forward skinning model that finds all canonical correspondences of any deformed point using iterative root finding. We derive analytical gradients via implicit differentiation, enabling end-to-end training from 3D meshes with bone transformations. Compared to state-of-the-art neural implicit representations, our approach generalizes better to unseen poses while preserving accuracy. We demonstrate our method in challenging scenarios on (clothed) 3D humans in diverse and unseen poses.Comment: project page: https://xuchen-ethz.github.io/snarf/. v3 update: correct bone index in Fig.
    • 

    corecore