393,829 research outputs found

    Advantages of 3D time-of-flight range imaging cameras in machine vision applications

    Get PDF
    Machine vision using image processing of traditional intensity images is in wide spread use. In many situations environmental conditions or object colours or shades cannot be controlled, leading to difficulties in correctly processing the images and requiring complicated processing algorithms. Many of these complications can be avoided by using range image data, instead of intensity data. This is because range image data represents the physical properties of object location and shape, practically independently of object colour or shading. The advantages of range image processing are presented, along with three example applications that show how robust machine vision results can be obtained with relatively simple range image processing in real-time applications

    Machine vision for space telerobotics and planetary rovers

    Get PDF
    Machine vision allows a non-contact means of determining the three-dimensional shape of objects in the environment, enabling the control of contact forces when manipulation by a telerobot or traversal by a vehicle is desired. Telerobotic manipulation in Earth orbit requires a system that can recognize known objects in spite of harsh lighting conditions and highly specular or absorptive surfaces. Planetary surface traversal requires a system that can recognize the surface shape and properties of an unknown and arbitrary terrain. Research on these two rather disparate types of vision systems is described

    A Generative Model for Parts-based Object Segmentation

    Get PDF
    The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th

    Self-Replication and Self-Assembly for Manufacturing

    Get PDF
    It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. We describe a computational simulation of nanoscale machines floating in a virtual liquid. The machines can bond together to form strands (chains) that self-replicate and self-assemble into user-specified meshes. There are four types of machines and the sequence of machine types in a strand determines the shape of the mesh they will build. A strand may be in an unfolded state, in which the bonds are straight, or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with free machines in the soup. The child strands fold into the encoded polygonal shape, and then the polygons drift together and bond to form a mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the simulation, by simply changing the sequence of machine types in the seed

    Iterated function systems and shape representation

    Get PDF
    We propose the use of iterated function systems as an isomorphic shape representation scheme for use in a machine vision environment. A concise description of the basic theory and salient characteristics of iterated function systems is presented and from this we develop a formal framework within which to embed a representation scheme. Concentrating on the problem of obtaining automatically generated two-dimensional encodings we describe implementations of two solutions. The first is based on a deterministic algorithm and makes simplifying assumptions which limit its range of applicability. The second employs a novel formulation of a genetic algorithm and is intended to function with general data input. Keywords: Machine Vision, Shape Representation, Iterated Function Systems, Genetic Algorithms

    On the efficacy of cinema, or what the visual system did not evolve to do

    Get PDF
    Spatial displays, and a constraint that they do not place on the use of spatial instruments are discussed. Much of the work done in visual perception by psychologists and by computer scientists has concerned displays that show the motion of rigid objects. Typically, if one assumes that objects are rigid, one can then proceed to understand how the constant shape of the object can be perceived (or computed) as it moves through space. The author maintains that photographs and cinema are visual displays that are also powerful forms of art. Their efficacy, in part, stems from the fact that, although viewpoint is constrained when composing them, it is not nearly so constrained when viewing them. It is obvious, according to the author, that human visual systems did not evolve to watch movies or look at photographs. Thus, what photographs and movies present must be allowed in the rule-governed system under which vision evolved. Machine-vision algorithms, to be applicable to human vision, should show the same types of tolerance

    The investigation of the characterisation of flotation froths and design of a machine vision system for monitoring the operation of a flotation cell ore concentration

    Get PDF
    Electrical and Electronic EngineeringThis dissertation investigates the application of digital image processing techniques in the development of a machine vision system that is capable of characterising the froth structures prevalent on the surface of industrial flotation cells. At present, there is no instrument available that has the ability to measure the size and shape of the bubbles that constitute the surface froth. For this reason, research into a vision based system for surface froth characterisation has been undertaken. Being able to measure bubble size and shape would have far reaching consequences, not only in enhancing the understanding of the flotation process but also in the control and optimization of flotation cells
    corecore