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ABSTRACT 

We propose the use of iterated function systems as an isomorphic shape rep

resentation scheme for use in a machine vision environment. A concise descrip

tion of the basic theory and salient characteristics of iterated function systems is 

presented and from this we develop a formal framework within which to embed 

a representation scheme. Concentrating on the problem of obtaining automat

ically generated two-dimensional encodings we describe implementations of two 

solutions. The first is based on a deterministic algorithm and makes simplifying 

assumptions which limit its range of applicability. The second employs a novel 

formulation of a genetic algorithm and is intended to function with general data 

input. 

Keywords: Machine Vision, Shape Representation, Iterated Function Systems, 

Genetic Algorithms. 
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1 INTRODUCTION 

This thesis addresses the problem of finding a suitable shape representation 

scheme for a general purpose machine vision system and advocates the use of 

iterated function systems (IFSs). To explain the motivation for this, we begin in 

this chapter with a discussion of the fundamentals of vision and give a definition 

of what we mean by a general purpose system. This leads to an examination of 

the psychophysical data available on biological vision from which we extract a 

list of properties that could be expected of an artificial system. We then briefly 

review some contemporary representation schemes, and the systems in which they 

have been implemented, making comparisons with the theoretical requirements. 

In the light of the shortcomings of current representations we emphasise the need 

for isomorphic, pictorial representations and hence introduce the idea of IFS en

coding. 

1.1 General Vision 

Arbib and Hanson ( Arbib and Hanson 1988) suggest that the purpose of bi

ological vision is to provide an animal with the information required for it to 

successfully interact with its environment, a definition which can be extended to 

include artificial systems so long as the terms 'interact' and 'environment' are 

given appropriate meanings. The concept of the task environment of a vision 

system has been discussed by Nevatia (Nevatia 1978) who gives a qualitative 
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definition of three distinct environment types based upon the number and com

plexity of objects in a scene, the degree of constraint in the object orientations, 

and the amount of a priori knowledge about the scene. The definitions are as 

follows: 

TYPE 1: The number and specific identities of the objects in a scene are known, 

and their position and orientation are highly constrained. 

TYPE 2: The set of all possible objects is small and known but the identity of 

specific objects in a scene is unknown in advance, with positions and orientations 

only weakly constrained. 

TYPE 3: The number of objects m a scene is large and each is not explicitly 

known. Objects may adopt any physically permissible position and orientation. 

We claim that any general vision system will be required to work in complex 

type three environments such as those presented by natural scenes in the real 

world. However, before we can make any further statements as to the require

ments of a such a system we must consider what is meant by the term 'successful 

interaction'. If we take success to be the attainment of some goal or goals then 

the purpose of vision becomes the interpretation of patterns of light intensities 

and frequencies in order to form a rational plan of action which, according to 

Tsotsos (Tsotsos 1984), is the definition of knowledge acquisition. Hence we ar

rive at a definition of vision as the acquisition of world knowledge from images. 

Bullock (Bullock 1978) suggests the definition of a general vision system as 

one which has abilities as wide as those of the human visual system and which is 

therefore consistent with the idea of a complex type three environment. However, 

adopting Bullock's definition implies that a general artificial system should be 

capable of extracting the same amount of knowledge from a scene as a human 
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by utilising the same information. This in turn implies that the system must be 

able to reason based upon the visual information it receives and thus requires 

an internal representation or model of its environment (Koons and McCormick 

1987). 

Tsotsos ( Tsotsos 1984) borrows terminology from the field of psychology to 

divide the visual process into two stages. The first, called sensation, is the mere 

acquaintance with a fact, such as the detection of a certain intensity pattern or 

some similar intrinsic scene attribute. Perception on the other hand is defined 

as the association of other knowledge with the information provided by sensa

tion. Tsotsos gives the example of an 'edge' which in the context of sensation 

is the presence in an image of one of a set of certain light intensities patterns, 

whilst perceptually it is interpreted as a section of a physical entity (object). 

'vVe therefore arrive at the conclusion that a general vision system cannot sim

ply label sensation but must perceive the objects contained in a scene by the 

interpretation of image data using model based reasoning. 

It is known that the information contained in an image underconstrains scene 

interpretation and that in general the problem is intractable (Tsotsos 1987). How

ever, biological visual systems demonstrate that good approximate solutions are 

attainable, and hence it might be assumed that the best way to proceed in de

signing a machine vision system would be to model it as closely as possible on its 

biological counterpart. However, it is not certain that biological systems present 

the only possible solution to the vision problem, or even that they are the best. 

Further, because of the disparity between the structure and complexity of the 

human brain and current serial computers, it is entirely possible that the vision 
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processmg ability of the former cannot be efficiently mimicked by the latter. De

spite this, it seems justified to examine the way biological systems operate, specif

ically the human visual system, with the aim of distilling some basic principles 

(\Veisstein and Maguire 1978, Aviad and Lozinskii 198.5, Koons and McCormick 

1987). 

1.2 Biological Vision 

Some properties of human visual information representation have been ob

served by Kosslyn and Schwartz (Kosslyn and Schwartz 1978). They concentrated 

attention on what they called 'visual images' or the kind of mental pictures we 

use when imagining objects or scenes that are not currently available for scrutiny. 

The suggestion is that such visual images are spatial representations in short term 

memory that are not simply retrieved but are in some way constructed from more 

fundamental representations in long term memory using conceptual knowledge. In 

addition it is suggested that this visual imagery portrays information in an im

plicit pictorial way and not in an explicit symbolic form. It is further suggested 

that these visual images can be interpreted by processes similar to those used on 

real images and thus act as an isomorphic representation, which is to say, "one 

in which the laws and relationships governing the real world objects are inherent 

m the data structures and operations of the representation" (Fischler 1978). 

The evidence on which Kosslyn and Schwartz based these conclusions was 

the result of a series of experiments on the extraction of information from visual 

images. The claim that visual images are not retrieved as a whole but are con

structed partwise using conceptual knowledge and more abstract representations 

is supported by the increased time taken to imagine a scene as the complexity 
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of the scene increases. If each visual image was stored as a whole then the time 

required to extract it would be the access time of the representation library, and 

would not depend on the image content. However, Kosslyn and Schwartz cite 

evidence that this is not observed, and that subjects take longer to generate a 

complex scene, implying a construction process. That this construction process 

proceeds by combining objects or scene parts according to knowledge of permissi

ble configurations is evidenced by the fact that we find it easy to imagine scenes 

that we have not previously witnessed from just a simple verbal description. 

Kosslyn and Schwartz demonstrated the spatial nature of visual images by 

showing that they are bounded as if contained within some display matrix and 

that if the images are expanded they will overflow the matrix limits. For example, 

subjects were asked to imagine objects of various sizes viewed from a distance 

and to visualise the change in the size of the image as it was brought closer. 

They were then asked to estimate the distance to the object when it began to 

overflow, that is, when all parts of the object were no longer clearly visible. The 

findings were that larger objects seemed to overflow at greater distances, and 

that the angle subtended by each visual image at overflow was constant - both 

of which are consistent with the idea that the images are spatial entities that are 

contained within a finite space. Koons and McCormick (Koons and McCormick 

1987) cite similar results but give the additional information that the images are 

approximately circular in extent, are three dimensional, and occupy a visual angle 

of around twenty five degrees. Data concerning the time taken to expand, con

tract or rotate visual images leads to the conclusion that they are transformed 

gradually and pass through intermediate positions as if a given image is being 

successively refined. Again Koons and McCormick give the quantitative informa-
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tion that visual Images are rotated at a rate of between 55 and 60 degrees per 

second. 

Evidence for the isomorphic nature of the representation was obtained by 

Kosslyn and Schwartz by asking subjects to mentally scan between different pairs 

of points on a visualised map. The findings were that as the distance between 

the pairs of points increased so did the scan time. A second test involved the 

use of schematic drawings of faces consisting of a pair of either dark or light eyes 

at varying distances above a mouth. Subjects were shown a specific drawing and 

asked to visualise it, with the focus of attention on the mouth. When asked the 

question of whether the eyes were light or dark, the response time was found to 

correlate strongly with the distance of the eyes above the mouth. If the subjects 

were asked to shrink the image before being asked the question then response 

times decreased, with the opposite effect being observed if the image was first 

expanded. Kosslyn and Schwartz interpreted this as the subjects scanning up

wards from the mouth to the eyes to retrieve the required information, evidence 

both of the implicit nature of the representation and also, because of the direct 

relationship between distance and scanning time, isomorphism. 

Finally, that visual images can be interpreted by other processes is supported 

by findings cited by Kosslyn and Schwartz concerning the visualisation of small 

image parts. It is found that information relating to small parts of a visual image 

take longer to recover than that for larger parts, regardless of how highly each of 

these parts is associated with the imagined object, implying a search of the visual 

Image. From their review of the psychophysical data of the human visual system 

Koons and McCormick conclude that: "The internal representation of imagery 

uses operations closely related to those operations used in the external or primary 

perceptual system." 
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Weisstein and l'vlaguire (Weisstein and Maguire 1978) have analyzed the high 

level activity of the human visual system by examining the conditions under 

which visual illusions such as false contours, perceived occlusion, and apparent 

connectedness occur. They conclude that these phenomena are due to high level 

processes overriding, filtering or enhancing low-level data and consequently that 

feedback and top-down control are both present. 

1.3 General System Properties 

With the working definition that a general vision system must have the same 

abilities as the human system, and assuming that it is permissible to try and 

imitate its operation, we can identify the following properties that are required of 

a shape representation scheme based on the psychophysical data of the previous 

section: 

1. reconstruction of spatial representations form more abstract forms; 

11. models isomorphic with real world objects; 

111. a conceptual partwise description of objects and scenes; 

1 v. the ability to manipulate representations usmg processes analogous to those 

in the real world; 

v. the ability to create new models for previously unseen objects. 

The need for spatial, isomorphic representations has been discussed by Fis

chler (Fischler 1978) who emphasises their intrinsic information content. That is, 

isomorphic representations contain more information than is made explicit. Fis

chler gives the example of representing knowledge about the distance between 
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towns in a given regiOn. A common non-isomorphic approach is to tabulate the 

data as a mileage chart which explicitly gives the distance between each pair of 

towns, and has the advantage of giving quick access to the required information. 

However, an isomorphic representation such as a scale map of the region not 

only contains the mileage information, although in a form which requires access 

by making measurements on the map, but also data on the distribution of the 

towns, such as which is farthest north. Such extra information cannot be derived 

from the non-isomorphic representation and would need to be entered as a sep

arate piece of knowledge. This is the fundamental problem with non-isomorphic 

representations and as Fischler notes, "one cannot practically make explicit all of 

the knowledge needed to create a system capable of general purpose vision". 

Pentland (Pentland 1986, 1987) has discussed the use of partwise models 

based upon 'lump of clay' primitives which give rough descriptions of object sub

parts and their relative orientations whilst avoiding excessive detail, the basis 

for this approach being the observation that humans use large scale structures 

as a guide to perception and often overlook small features. Whilst also observing 

that the partwise description must be isomorphic both metrically and structurally 

with the object it models, Pentland asserts that the representation must allow 

the recognition of objects and learn how to describe new objects. 

The need for reasoning based on isomorphic models is described by Hayes 

(Hayes 1985) who suggests that the correct approach to implementing a repre

sentation system is that of 'Naive Physics' whereby the system is given 'common 

sense' knowledge of general applicability. Further, Hayes argues that the often 

used approach of assuming restricted environments or 'toy worlds' whilst produc

ing working systems does not yield any information as to the requirements of 

a general vision system and, as Bullock (Bullock 1978) points out, is thus not 
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expandable to real world problems. Hayes proposes that a common sense rep

resentation of knowledge should have breadth, in that it covers the full range 

of physically observable properties such as rigidity, colour, reflectivity etc. whilst 

also being dense in the sense of having a high information content. A final re

quirement that Hayes imposes on such a representation scheme is that of unifor

mity in that it is desirable that there is a common formal framework for each 

type of information. This view is supported by Tsotsos (Tsotsos 1984) who crit

icises past attempts at machine vision because of the lack of a formalism within 

which to define, code and manipulate all of the knowledge of the system, with 

particular reference to the different forms of knowledge representation for high 

and low level procedures. 

Currently, real world object representation schemes fall in to three basic cate

gories namely, geometric, rule based, and pictorial/iconic. We now briefly discuss 

examples of each representation type, give descriptions of vision systems that 

have been based on them, and identify the degree to which they correspond with 

the requirements of the this section. 

1.4 Geometric Representation 

One of the most common types of geometric representation schemes is that 

of constructive solid geometry (CSG), in which an object is described as the 

Boolean combination of a finite set of geometric shape primitives. Implementa

tions usually take the form of a binary tree in which the nodes represent geo

metric transformations or combining operations (such as union or intersection) to 

be applied to child nodes, the terminal nodes being associated with volumetric 

shape primitives (Anderson et al. 1988). Anderson shows that by using a set 
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of constrained transformations a CSG tree gives a umque description of an ob

ject, given a specific choice of primitives. However, it is the choice of primitives 

that is the major problem with CSG representations. As Fischler (Fischler 1978) 

notes, it is not possible to describe naturally occurring objects by the use of a 

small set of simple primitives, and the use of more complex primitives leads to 

exponentially increasing numbers. 

Pentland (Pentland 1986) and Bajcsy and Solina (Bajcsy and Solina 1987) 

have implemented CSG representation schemes using superquadrics - a family of 

three dimensional forms, the surfaces of which are defined by the locus swept out 

by the tip of a three-dimensional vector .:t'(v, w), where v and w are latitudinal and 

longitudinal angles respectively. The shape of each superquadric is determined 

by parameterising the length of .:t' in terms of two variables a and {3. The set 

of shapes which comprises the family of superquadrics includes the sphere, cube 

and cylinder, and so as Pentland points out, constitutes a superset of the more 

typically used primitives. By using in effect only one parameterised primitive the 

problem of a combinatorial explosion is reduced and the wide range of shapes 

that are possible allow for reasonably realistic representations. Pentland takes 

the process one step further by adding texture to the superquadric surfaces by 

the use of random fractal techniques (Mandelbrot 1982, Pentland 1984). 

A well known alternative to CSG representations is that of generalised cylin

ders developed by Marr and Nishihara (Marr and Nishihara 1978). Marr (MatT 

1978) describes the visual process as proceeding through three representational 

phases starting with the primal sketch which consists of intrinsic image fea

tures such as intensity changes and local geometry, then moving through the 

2~D sketch which incorporates viewer centered depth information and surface 

discontinuities, and finishing with a high level description in terms of geometric 
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object models. It is at this final level that Marr proposes the use of generalised 

cylinders. The motivation for the representation is the observation that many 

objects have a natural coordinate axis and so can be well modelled by defin

ing the variation of the objects cross-section along this axis. Hence a generalised 

cylinder representation consists of a space curve and a cross-sectional template 

of fixed shape but varying size. The surface of the modelled object is that which 

is swept out by the boundary of the template as it is drawn along the curve, 

the specific shape of the object being represented by variations in template size. 

By describing each articulated subpart of a sh~pe by a generalised cylinder in its 

own reference frame, a hierarchical part-wise description of objects is obtained. A 

criticism of this representation scheme is given by Pentland who observes the ex

treme degree of abstraction present in such models (and hence the motivation for 

the work with superquadrics), and also by Marr who acknowledges that objects 

with no obvious axis such as a crumpled newspaper "pose apparently intractable 

problems". 

The generalised cylinder representation is used in the ACRONYM system of 

Brooks (Brooks 1981). ACRONYM is of interest because of its use of prediction 

in the recognition process. Working from object descriptions entered by the user, 

the system generates two graph representations. The first of these is the object 

graph, the nodes of which are volumetric representations in the form of gen

eralised cylinders, whilst the connecting arcs describe the relationships between 

parts. The second graph is the restriction graph which has constraints on the vol

umetric models as nodes, and sub-class inclusion rules as arcs. From these two 

graphs ACRONYM produces a third, called the prediction graph, which contains 

information as to the features that an instance of a given object may produce in 

an image. The nodes of the prediction graph correspond to possible features, and 

-11 -



the connecting arcs to their relationships. Thus the ACRONYM system makes 

clear the distinction between models of object features and models of the ob

jects producing these features, and uses the latter to produce the former. The 

construction of the prediction graph requires the use of geometric reasoning tech

niques and the understanding of the image formation process, and is thus a good 

example of the use of na'ive physics and model-based reasoning as advocated by 

Hayes. 

The suggestive modelling system (SMS) developed by Fisher (Fisher 1987) 

has a similar representational structure as that used in ACRONYM, but does not 

use the generalised cylinder representation. Instead the representation scheme is 

primarily motivated by the need to simplify object recognition and thus describes 

objects in terms of one-, two-, and three-dimensional primitives chosen for their 

'visual saliency'. These consist of space curves which mark shape and reflectance 

discontinuities, surface patches which correspond to regions of constant principal 

curvature and which are bounded by space curves, and finally volume elements 

which are sub-divided into parameterised STICK, PLATE, and BLOB primitives 

depending on the number of directions of spatial extent. A typical SMS represen

tation of an object consists of a set of characteristic views, each described using 

combinations of the primary primitive types, and constitutes an explicit model 

of the information contained in a 2~ D sketch constructed from each of the char

acteristic viewpoints. The limitations of the SMS system arise from the inability 

to represent smoothly varying shapes other than a cone - other shapes being 

modelled piecewise - and the difficulty of representing natural objects. However, 

perhaps the greatest problem facing SMS is the large number of characteristic 

views needed for typical objects. Fisher reports that many objects require more 

than fifty characteristic views to be completely represented, but suggests the use 
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of as few a.s five of the most significant v1ews to reduce complexity. Even so 

Fisher acknowledges that SMS models are currently too complex to be imple

mented efficiently. 

To summarise the discussion of geometric representations, they are by their 

very nature partwise descriptions and isomorphic to the extent that relative pro

portions, distances, and relations are preserved. Further, implementations such 

as ACRONYM and SMS demonstrate that they can support the model-based 

reasoning that is required of a system if it is to emulate human vision. How

ever, even with the use of superquadrics, geometric representations tend to have 

too much of a 'cartoon' appearance and have difficulty in succinctly representing 

natural or irregular forms. Finally, geometric representations suffer difficulty in 

adding new models to a library because of the complexity inherent in deciding 

which primitives to use in the decomposition. 

1.5 Rule-Based Representation 

Rule based representation schemes describe objects by listing their defining 

properties. For example, a rule-based description of an object might consist of a 

description of the features it produces in an image together with their relative 

orientations. The prediction graphs produced by the ACRONYM system are rule 

based descriptions of objects that have been derived from the geometric model. 

A system that relies wholly on rule based representations is VISIONS developed 

by Hanson and Riseman (Hanson and Riseman 1978). It employs a hierarchi

cal data structure consisting of 'schemas' which are structures that contain all 

the information necessary to describe a given entity. The highest level schemas 

describe whole scenes such as streets, they include information about required 
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contents like houses and roads, and give constraints on their sizes and locations. 

The next level of schemas in the hierarchy describe objects, followed by ones for 

volumes, surfaces, regions, segments, and finally at the lowest level, vertices. The 

primary advantage of such a representation scheme over a geometrically based 

one comes in its ability to model entities with poorly defined spatial extent, or 

of an abstract nature. For example, VISIONS easily copes with concepts such as 

sky and ground by giving their definitions in terms of permitted orientations with 

respect to each other and other objects in a scene. It is impossible to conceive of 

a general vision system that cannot cope with such concepts and so rule based 

modelling must be at least part of a general representation scheme. However, the 

rules used by VISIONS contain no more information than that explicitly given 

and so every piece of knowledge that the system needs must be stated in this 

way. This is clearly impractical for a. system working in anything but the simplest 

of environments a.nd is demonstrated not to be the way the human vision system 

works by the psychophysical data.. Further as Waugh {Waugh 1989) points out 

there is a. fundamental problem in deciding just what set of rules will concisely 

and unambiguously describe a.n object or scene. 

1.6 Pictorial/lcoaic Representation 

Pictorial or iconic models constitute the third and final category of repre

sentation schemes in which information is portrayed either diagrammatically or 

as pictures. The WHISPER system developed by Funt (Funt 1980) uses dia

grammatic representations of information with which to reason about the real 

world for as Funt describes, diagrams present information in a. particularly usable 

form. The diagrams manipulated by WHISPER correspond to temporal snapshots 

of configurations of objects in a. 'block world' and, using a basic knowledge of 
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physics, the system is able to determine the stability of configurations and hence 

the way they will develop with time. The diagrams take the physical form of 

images in a rectangular pixel array. By inspecting the array WHISPER uses its 

physics knowledge to update the diagram to represent the state of the system 

after a small time step. Iterative applications of this procedure eventually pro

duce a stable diagram which corresponds to the equilibrium position that would 

be obtained by objects interacting in the real world. Whilst WHISPER embodies 

many of the representational and reasoning abilities identified as necessary for a 

general system, the object models are crude and not stored within the system 

but given as input. 

The Glimpse system of Koons and McCormick (Koons and McCormick 1987) 

also employs pictorial representations but in the form of directed graphs. Each 

node of the graph is a visual snapshot or 'glimpse' of an object taken from a 

certain viewing position. Arcs of the graph specify the change in vtewmg po

sition necessary to obtain the picture found at connecting nodes. In addition 

to the purely pictorial information each glimpse also has associated knowledge 

which Koons and McCormick suggest as a possible basis for a connection to a 

more symbolic representation. The nature of the pictorial models ensures that the 

Glimpse representations are truly isomorphic to the real world objects to which 

they correspond and hence have a high intrinsic information content. However, 

the need to store large numbers of glimpses limits the practicality of the ap

proach, a problem that is basic to all pictorial representations. 
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1. 7 IFS Representation 

The review of VISion systems and representation schemes given m the last 

three sections indicates that most of the concepts derived from the psychophysical 

data such as isomorphic representations and model based reasoning have been 

exploited to a greater or lesser extent. However, each basic type of representation 

appears to have its own shortcomings. Geometric models tend to oversimplify 

objects, especially ones with complex natural shapes, and experience difficulty 

in defining a concise set of volumetric primitives. Rule based representations, 

whilst being a necessary component of a representation scheme are inadequate 

in themselves due to a lack of isomorphism and intrinsic information content. 

Pictorial models, whilst being rich in intrinsic information are expensive to store 

and difficult to manipulate. In an attempt to combine the positive features of 

both CSG and pictorial models we propose the use of IFSs as a representation 

scheme for the following reasons: 

1. Owing to the work of Barnsley (Barnsley 1985, 1986, 1988, 1989) the theory 

of IFSs is well understood and provides a firm foundation on which to build a 

representation scheme. In particular, Barnsley has in theory solved the problem of 

finding an IFS encoding of a given shape. (It should be noted at this stage that 

what we are suggesting here is not the imitation of an image for the purposes 

of data compression, as successfully attempted by Barnsley, but the geometric 

modelling of individual objects to a resolution approaching picture quality). 

2. An IFS representation exhibits similar properties to those observed for the 

human visual system. For example object models are stored as a simple list of 

numbers from which an isomorphic representation can be retrieved. (However we 

make no claims as to the possibility of the IFS representation and that used by 
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the human visual system being one and the same. Indeed, this is almost certainly 

not the case since an IFS scheme does not require the gradual displacement of 

a model in order to achieve rotation as the psychophysical data suggests for the 

human system). 

3. The encoding process decomposes a shape in terms of primitives which are 

transformations of the shape itself. This results in an essentially recursive defini

tion and avoids the need for a predefined set of primitives and thus avoids some 

of the problems experienced by CSG schemes in this area. 

4. Since the retrieved representations are geometric, they can be combined in 

the same way as simple shape primitives in a CSG scheme and therefore be used 

to encode both whole objects and subparts. 

5. There is no restriction as to the type of shapes that can be encoded, both 

natural and artificial objects being described to a level of accuracy limited only 

by storage space restrictions. The modelled 'shapes' need not even be connected 

allowing the representation of such things as cloud patterns. Hence IFS encoding 

is more flexible than either generalised cylinders of superquadrics. 

6. The retrieval procedure for a single code allows the rendering of the pictorial 

representation in any desired orientation and at any scale thus facilitating the 

manipulation of the models if used as the basis of an 'experimental' reasonmg 

scheme such as that incorporated in the WHISPER system. 

7. Owing to the high quality of the representation that is theoretically possible, 

a single three-dimensional IFS representation of an object could be used to re

place the set of images needed for use in pictorial scheme such as that employed 

by the Glimpse system. 
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1.8 Thesis Structure 

The remainder of this thesis is devoted to an investigation of the practical

ity of an IFS representation scheme with the primary intent of determining the 

accessibility of automatically generated encodings. As a simplification we work 

with only two-dimensional shapes but there is no reason why the techniques de

veloped cannot be extended to three or more dimensions. The thesis structure is 

as follows: 

Chapter two details the mathematics of IFSs starting from basic principles in 

order to provide a sound theoretical foundation for the rest of the work and to 

introduce the terminology used. Specifically an IFS is defined and through the 

theorems of Barnsley its properties are derived. Anyone with an understanding 

of basic topology need only be concerned with section 2.5 onwards, whilst those 

familiar with IFS theory and terminology may safely skip the entire chapter, 

referring back to it as and when necessary. 

Chapter three uses IFS theory to introduce a formal framework for the rep

resentation of two-dimensional shapes and derives the properties of such a rep

resentation scheme based on the mathematics of the previous chapter. Finally, 

we give a description of how an IFS representation scheme could be used in a 

vision system in such a way as to incorporate many of the features observed to 

be present in the human visual system. 

Chapter four describes an attempt at an approximate encoding technique 

based primarily on the modelling of shape boundary information and aimed at 

determining the ease with which representations can be automatically generated. 

Included in this chapter is a discussion of the practicalities involved in imple

menting an IFS representation scheme. 
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Chapter five outlines the theory of genetic algorithms and gtves a discussion 

of the problems encountered with practical implementations. A modification of 

the standard algorithm is described which is designed to improve performance 

and reduce computational complexity. 

Chapter six implements the modified genetic algorithm described in chapter 

five as an attempt at the automatic generation of accurate IFS representations 

of arbitrary two-dimensional shapes. The performance of the algorithm is inves

tigated and the success of the application is evaluated. 

Chapter seven contains the overall conclusions of the thesis which at this 

stage can be briefly summarised as follows: 

1. Iterated function systems do, as suggested, possess the potential for use as 

the basis of a powerful shape representation scheme. 

2. The automatic generation of IFS encodings of general two-dimensional shapes 

is a practical proposition using a genetic algorithm. 

3. A highly efficient and non-arbitrary formulation of a genetic algorithm has 

been developed. 
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2 ITERATED FUNCTION SYSTEMS 

In the preceding chapter we introduced the idea of usmg IFSs as a shape 

representation scheme for a machine vision system. The purpose of this chapter 

is to present a concise description of the theory and characteristics of an IFS and 

to introduce the terminology required for later discussions on the properties of 

the representation and the requirements of encoding implementations. 

The mathematical concepts involved are not complex, although it is necessary 

to make reference to many fundamental theorems of topology in order to give a 

complete derivation. In the interest of completeness, all the theorems and proofs 

necessary for an understanding of IFSs and the processes associated with them 

have been included. Most of the theorems relating directly to IFSs and their 

properties are clue to Barnsley (Barnsley and Demko 1985, Barnsley et al 1986), 

and the content of this chapter is firmly based upon the first four chapters of 

Barnsley's excellent book 'Fractals Everywhere' (Barnsley 1988), and in which a 

more complete treatment of the following can be found. 

2.1 Metric Spaces 

To begin we recount the basic topological definitions of concepts such as 

spaces, the points in a space, and the metric distance between points. 
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Definition 2.1.1 A space, denoted by X, IS a set. The points of a space are 

the elements of the set. 

In future we use the standard notation of R 2 and R 3 to represent two- and 

three-dimensional Euclidean space respectively. We shall usually denote points in 

a space by single characters such as x or y, but occasionally use the longer nota

tion of (x 1 ,x2 , ... ,xn), where n is the dimension of a space, when the coordinates 

of a point need to be made explicit. 

Definition 2.1.2 (X,d) denotes a metric space. d is a real-valued function 

d : X x X t--> R which measures the distance between a pair of points x,y E X, and 

is known as the metric. A metric obeys the following axioms: 

(i) d(x, y) = d(y, x) V x,y EX; 

(ii) 0 < d(x,y) < oo V x,y EX and x =f y; 

(iii) d(x,x) = 0 V x EX; 

(iv) d(x,y) ~ d(x,z)+d(z,y) V x,y, z EX. 

Axiom (iv) IS often referred to a.s the triangle inequality for obvious reasons. 

In general, these axioms permit the definition of more than one metric for a 

g1ven space, a topic which we return to in chapter four. However, for the rest 

of this chapter metrics are used primarily to determine whether a pair of points 

has moved closer together or farther apart as a result of some operation, and 

the exact form of the function is unimportant. The definitions and theorems of 

the remainder of this section construct the vocabulary necessary to discuss the 

properties of spaces and their subsets. 
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Definition 2.1.3 Let (X,d) be a metric space with x EX. Let < > 0 be a given 

real number, then define the set B(x,•) as: 

B(x,c) = {y EX: d(x,y) ~ t}. 

The set B(x, •) can be thought of as all the points contained within a 'ball' 

of 'radius' • centered around the point x. Clearly the shape and dimension of the 

ball will depend on the dimension of the space X and the form of the metric 

function d. 

Definition 2.1.4 A sequence of points {xn}~=l in a metric space (X,d) is called 

a Cauchy sequence if, for any given real number < > 0, there is an integer N > 0 

so that: 

V n,m > N. 

The above condition is all tha.t is required of a sequence of points in order 

for it to be classified as a Cauchy sequence. There need not be any deterministic 

relationship between successive points, nor is there any requirement that each 

point be unique. 

Definition 2.1.5 A sequence of points {xn}~=l in a metric space (X,d) is said 

to converge to a point x E X if, for any given real number • > 0, there is an 

integer N > 0 so that: 

V n> N. 

The point x E X to which the sequence converges IS known as the limit of the 

sequence, and is written as: 

X= lim Xn· 
n-oo 
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In terms of definition 2.1.3 this means that all points x,. for n > N are con-

tained within B(x, <). 

Theorem 2.1.1 If a sequence of points {xn}~= 1 in a metric space (X,d) con-

verges to a point x EX, then {x,.} ~= 1 is a Cauchy sequence. 

Proof - Since the sequence {x,.}~= 1 1s convergent, gtven < > 0 we can find an 

integer k > 0 such that: 

f 
d(x,., x) < 2 'V n > k. 

Using the triangle inequality: 

d(x,.,xm) :S d(xn,x)+d(x,xm) < f 'V n, m > k; 

and so { x,.} ~= 1 1s a Cauchy sequence. 

Definition 2.1.6 A metric space (X,d) IS complete if every Cauchy sequence 

{xn}~= 1 in X has a limit x EX. 

Definition 2.1. 7 Let S c X be a subset of a metric space (X,d). A point x EX 

is called a limit point of S if there is a sequence of points {x,.}~=l and with 

Xn E s \{x} such that limn-oo Xn =X. 

Definition 2.1.8 Let S c X be a subset of a metric space (X,d). The closure 

of S, denoted by S, is defined to be S = S U {limit points of S}. S is closed if it 

contains all of its limit points, that is to say, S = S. 
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Definition 2.1.9 LetS c X be a subset of a metric space (X,d). Sis compact 

if every infinite sequence {xn};:=t in S contains a subsequence having a limit in 

S. 

The important concept here is that the infinite sequence need not converge 

or even be a Cauchy sequence; it could simply be a sequence of points chosen at 

random from S. A subsequence is a set of points {xN.}~ 1 such that xN, = Xn for 

some n, and such that for a pair of points XN, = xn and XNi = Xm, then N; > N1 

implies n > m. As an analogy consider trying to pack a long thin piece of string 

into a finite box. The longer the string is made the tighter it must be packed 

and the more often it must wind back upon itself. Eventually, the string is so 

tightly packed that it frequently passes close to any chosen point in the box so 

that starting from one end of the string and following along its length, marks 

can be made that are successively closer to the chosen point. 

Definition 2.1.10 Let S c X be a subset of a metric space (X,d). S is totally 

bounded if, for all real < > 0, there is a finite set of points {Yt, Y2 •... , Yn} c S 

such that for all x E S, d( x, y;) < < for some y; E {y1, y2 , ... , Yn}. The set of points 

{Yt, Y2, ... , Yn} is called an <-net. 

Theorem 2.1.2 Let (X,d} be a. complete metric space and let S c X. Then S 

is compact if a.nd only if it is closed a.nd totally bounded. 

Proof - First suppose S is closed and totally bounded. Let {x; E s}:1 be an 

any infinite sequence of points in S. We construct an <-net, {Yt, y2, ... , Yn} C S, 
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with c = 1. It follows from definitions 2.1.3 and 2.1.10 that: 
n 

S c U B(yj, 1). 
j=l 

The c-net contains a finite number of points yet {x;}~ 1 is infinite and so there 

must be a point Yk in the c-net for which B(yk.1) = B 1 contains infinitely many 

points of the sequence. Choose N 1 so that xN, E B1. Clearly S n B 1 is totally 

bounded so we can construct for it an c-net with f = 1/2. Again one point, Ym, of 

this c-net must contain infinitely many points of the sequence. With B(ym, 1/2) = 

B2 choose a point xN, E B 2 such that N2 > N 1 • Continuing in this way, halving 

the value of c each time, we generate the subsequence {xNn }~= 1 of the initial 

sequence {x;}~ 1 . Since, 

and given that the radius of the set B,. is 21-r then: 

Vk~l. 

Given a real number 8 > 0, 

V k > (2 -ln(8)/ln(2)), 

so {xNn}~=l is a Cauchy sequence which, using the closure of S, has a limit xES. 

Therefore, S is compact if it is closed and totally bounded. 

To complete the proof, suppose S is compact but that for c > 0 there does not 

exist an c-net for S. Then there is an infinite sequence of points {x; E S}~ 1 with 

d(x;,xj) ~ c for all if:; j. However, due to the compactness of S this sequence 

must possess a convergent subsequence with limit in S, and so we can find a 

pair of integers Ni and Ni with N; f:; Ni for which d(xN,,XNi) <c. We therefore 

have a contradiction and so an c-net does exist and hence S is closed and totally 

bounded. We now have the required result that S is compact if and only if it is 

closed and totally bounded. 
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2.2 The Space 'H(X) and its Metric 

We now introduce the idea of the space 'H(X), the points of which are subsets 

of the space X, because this is the space in which iterated function systems are 

defined and later we will show that 'H(R2 ) is the space which contains the images 

used by a machine vision system. 'vVe begin by giving a definition of 'H(X) and 

its metric. There follows a derivation of some of the properties of the metric 

function, and finally we give the proof for the compactness of 'H(X). 

Definition 2.2.1 Let (X,d) be a complete metric space. Then 'H(X) denotes 

the space whose points are the compact subsets of X other than the empty set. 

Definition 2.2.2 Let (X,d) be a complete metric space with x E X, and let 

B E 'H(X). Define: 

d(x,B) = min{d(x,y): y E B}. 

Then d(x, B) is the distance from the point x to the set B. 

Definition 2.2.3 Let (X,d) be a complete metric space and let A,B E 'H(X). 

Define the distance from the set A to the set B as: 

d(A,B) = max{d(x,B): x E A}. 

Definition 2.2.4 Let (X,d) be a complete metric space. Then the Hausdorff 

distance between points A and B in 'H(X) is defined by: 

h(A, B)= d(A, B) V d(B, A). 
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Theorem 2.2.1 The Hausdorff distance is a metric on the space 1-l(X). 

Proof - With reference to the axioms of definition 2.1.2, and introducing the 

binary operator 'v' as taking the maximum of two real numbers, let A, B, C E 

'Ji(X). Clearly from its definition h(A, B) = h(B, A) and so axiom (i) is satisfied. 

h(A, B)= d(a, b) for some a E A and bE B and, since A and B are compact, then 

0 S h(A, B)< oo, and so axiom (ii) is satisfied. We have: 

h(A, A)= d(A, A) V d(A, A)= d(A, A)= max{d(x, A): x E A}= 0. 

which satisfies axiom (iii). Finally, if A :f. B then we can assume that there is a. 

point a E A such that a fl. B. Then h(A, B) 2: d(a, B) > 0. Therefore, for any a E A 

we have: 

This gives: 

d(a, B)= min{d(a, b) :bE B}; 

S min{d(a, c)+ d(c, b): bE B} 

S d(a, c)+ min{d(c, b) :bE B} 

V cE C; 

V c E C. 

d(a, B) S min{d(a, c): c E C} + max{min{d(c, b): bE B}: c E C}; 

= d(a, C)+ d(C, B); 

and so d(A, B) S d(A, C)+ d( C, B). Similarly d(B, A) S d(B, C)+ d(C, A). Therefore: 

h(A, B)= d(A, B) V d(B, A); 

:S; d(B, C) V d(C, B)+ d(A, C) V d(C, A); 

:S; h(B, C)+ h(A, C); 

so satisfying the fourth and final metric axiom. 

We now g1ve some properties of the Hausdorff metric that will be neeeded 

for future proofs. 
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Lemma 2.2.1 For a.ll B, C, D and E in 7-l(X): 

h(BUC,DUE) ~ h(B,D)Vh(C,E). 

Proof - For A E 7-l(X) we have: 

d(A U B, C)= ma.x{d(x, C): x E AU B} = max{d(x, C): x E A} V max{d(x, C) : x E B}; 

and so, 

d(A U B, C)= d(A, C) V d(B, C). 

Also we have: 

d(A, B U C)= max{min{d(x, y) : y E B U C}: x E A}; 

and we get both d(A, B u C) ~ d(A, B), and d(A, B u C) ~ d(A, C). Consider the 

distance d(B u C, DuE). Using the above this becomes: 

and finally: 

as required. 

d(B U C, DUE)= d(B, DUE) V d(C, DUE)~ d(B, D) V d(C, E). 

h(B U C, DuE)= d(B U C, DUE) V d(D U E, B U C); 

~ d(B, D) V d(C, E) V d(E, C) V d(D, B); 

~ h(B, D) V h(C, E). 

Definition 2.2.5 Let S c X and let ( ~ 0. Then: 

S + f = {y EX: d(x, y) ~ c} for some xES. 

Lemma 2.2.2 Let A, BE 7-l(X) where (X,d) is a metric space. Let a real ( > 0 

be given. Then: 

h(A,B)~f {::} AcB+f and BcA+c 
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Proof - h(A, B) ~ (_ implies that d(A, B) ~ (_ and d(B, A) ~ €. Consider d(A, B) 

and suppose we have: 

d(A, D)= max{d(a, B) :a E A} ~f. 

This implies d(a, B) ~ (_ for all a E A and so a E B + (_ for all a E A and hence 

A c B + c Alternatively, suppose A c B + L Then for any a E A there is a bE B 

such that d(a, b):::; L Hence d(a, B):::;(_ and so d(A, B):::; L The same argument can 

be applied to d(B, A) to obtain the required result. 

In order to prove that (1i(X), h) is a complete metric space it is necessary 

first to give what Barnsley calls the 'extension lemma' which is concerned with 

a property of Cauchy sequences in 1i(X). 

Lemma 2.2.3 Let (X,d) be a metric space. Let {An}~= 1 be a Cauchy sequence 

of points in (1i(X),h). Let {11i }]:1 be an infinite sequence of integers such that 

0 < 111 < 112 < 113 ...• Suppose we have a Cauchy sequence {xn 1 E An)j; 1 in (X,d), 

then there is a Cauchy sequence {x~ E An}~= 1 such that x~1 = xn1 for all j. 

Proof - The lemma is obtained by g1vmg a construction for the sequence 

{x~}~= 1 and then proving it has the above properties. For each 11 E {1, 2, ... , 111} 

choose x~ E {x E An : d(x, xn,) = d(xn,, An)}. Hence, x~ lS the closest point, or one 

of the closest points, in An to xn,. Similarly choose: 

'r/ j E {2, 3, ... } and each n E {nj + 1, ... , 11i+d· 

Clearly from the construction, x;,
1 

= xn1 and x~ E An. Let a real f > 0 be given, 

then we can find a number N 1 for which d(xnk, xn1 ) ~ 1 for all 111.:. ni > N1. Similarly, 
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there is a number N2 for which d(Am, An):=:; 3 for all m, n > N2 • Let N = max{N1 , N2 } 

so that for m, n ~ N we have: 

where mE{nj_ 1 +.l, ... ,nj} and nE{nk-t+l, ... ,nk}. Since h(Am,AnJ:=:;! we have 

d(x;,,xn1 ) :=:; i and similarly d(xn.,x~) :=:; i· This gives d(x;,,x~) :=:; < for all m,n > N 

and hence the sequence is a Cauchy sequence. 

Theorem 2.2.2 Let (X,d) be a. complete metric space. Then (1-l(X),h) 1s a. 

complete metric space. Moreover, if {An E 7-l(X)}~=L is a. Cauchy sequence then 

A = limn-oo An with An E 7-l(X) can be characterised a.s follows: 

A = { x E X : there ts a Cauchy sequence { Xn E An} that converges to x}. 

Proof - Given that A is defined a.s above, the proof involves showing that 

convergence occurs, and that A is a non-empty compact set. We first show that 

A is non-empty. Take a sequence of integers N 1 < N2 < Na < ... < N,. < ... such 

that: 

'rl m,n~ N;. 

We now have h(AN1 , AN,) < l/2 and so from the definition of the Hausdorff metric 

we can find a pair of points XN 1 E AN1 and XN2 E AN2 for which d(xN1 , xN,) < 1/2. 

Hence, we can construct an sequence of points {xN, E AN.} such that d(xN,, XN;+ 1 ) < 

2-i. Then for m > n ~ k we have: 
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By choosing k large enough, we can make the right hand side of the above equa

tion as small as needed, and hence {xN,} is a Cauchy sequence. Using the previ

ous lemma we can construct a Cauchy sequence {x: E A;} with x'tv, = xN,· Since 

X is complete, this sequence has limit in X which by definition belongs to A. 

Hence A is non-empty and consists of the set of all points which are the limits 

of Cauchy sequences, {x; E A;}. 

To show that A is compact it is sufficient to show that it is closed and totally 

bounded. Suppose {a; E A} is a sequence that converges to a point a. For A to be 

closed we need to show that a EA. For each a; there exists a sequence {x;,n E An} 

such that limn-oo x;,,. =a;. \Ve can now choose the subsequences, {aN.} such that 

d(aN,, a) < i- 1 and {xN,,m, E Am.} such that d(xN,,m,, aN.) < i- 1
. Hence we arrive at 

d(xN,,m,, a) :::; 2i- 1 which tends to zero as i --+ oo. Therefore, we can construct a 

convergent sequence of points {z; E A;} with limit a, which by definition means 

a E A, and hence that A is closed. 

Let a real f > 0 be given. Then for m, n 2:: N we have: 

h(An, Am) :Sf ¢::> Am CAn+ f for m > n. 

For a E A we have a sequence {x; E A;} that converges to a. Assume that N IS 

large enough so that we also have: 

d(xm, a) < f V m 2:: N. 

We have Xm E An+ f since Am C An+ f. An IS complete and therefore closed so 

we also have a E An which gives A c An+ f for large enough n. Assume that A 

is not totally bounded and hence that no finite E-net exists. This means we can 

find an infinite sequence {a; E A} such that d(a;,ai) 2:: f for i '# j. However, we can 

find an n for which A c An+ f/3, and for each a; E A there is a point y; E An such 
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that d(a;,yi) :S </3. An is compact so some subsequence {Yn.l of the sequence {y;} 

converges and so we can choose points in {y .. ,} as close together as we wish. In 

particular we choose the points Yn; and Yni such that d(yn,, YnJ :S </3 and we get: 

This contradicts our initial assumption that d(a;, ai) 2: < and hence A ts totally 

bounded. It has already been shown that A is closed, and so now we have that 

it is compact. 

Finally we show that lim,._ 00 A,. = A. Let < > 0 be gtven. Then we can find a 

sequence of integers N 1 < N 2 < ... < Nk < ... such that: 

We choose n < N 1 such that h( An, AN,) < t. Taking y E A,. there is a point 

xN, E AN, such that d(y, XN,) :S t· Similarly there is a point XN2 E AN, such that 

Clearly the Cauchy sequence {xNk} converges to a point a E A for which d(y,a) :S <. 

vVe thus have An c A + < for a. sufficiently large n. Combining this with the 

previous result that A c A,. + < for a large enough n, we have that h(A, An) :S < 

for large n. Thus as n ___.. •)(), An converges to A and the proof is complete. 

This also completes the discussion of the properties of the space 7-l(X) and its 

metric which has shown that (7-l(X), h) can be treated like any normal complete 

metric space. 
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2.3 Mappings on a Metric Space 

vVe now introduce the idea of transforms on a metric space. Again we be

gin with some basic definitions and then go on to give the definition of a spe

cial group of transforms, called contraction mappings, and describe some of their 

properties. 

Definition 2.3.1 A function f : Xt f-;. X 2 from a metric space (Xt, dt) into a 

metric space (X2 , d2 ) is continuous if, for each real number f > 0 and x E X 1 , 

there is a real number o > 0 so that: 

di(x, y) < fJ =? d2(f(x),f(y)) <f. 

Definition 2.3.2 Let (X,d) be a. metric space. A transformation on X is a 

function f: X f-;. X which assigns exactly one point f(x) EX to each point x EX. 

If S c X then f(S) = {f(x): xES}. f is one-to-one if x,y EX with f(x) = f(y) 

implies x = y. f is onto if f(X) =X . f is invertible if it is one-to-one and onto 

and it is then possible to define a. transformation f- 1 : X ._.... X called the inverse 

of j, defined by f- 1 (y) = x, where x EX is the unique point such that y = f(x). 

As the name suggests an IFS is concerned with the iterative application of 

functions, for which we give the definition below using Barnsley's notation. 

Definition 2.3.3 Let f : X f-;. X be a transformation on a metric space. The 

forward iterates of f are transformations r" : X~---> X defined by: 

V n=0,1,2, ... 
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If f is invertible then the backward iterates of f are transformations r(-m)(x): 

X f---- X defined by: 

V m=1,2,3, ... 

'vVe introduce at this point the definition of a two-dimensional affine transfor

mation since we adopt their use in the implementation of IFS encoding programs 

as described in chapters four and six. 

Definition 2.3.4 A transformation w : R 2 ~---+ R 2 of the form, 

where a, b, c, d, e and f are real numbers, is called a two-dimensional affine trans

formation. In future the alternate matrix notation will be used. That is: 

The definitions and theorems in the remainder of this section describe the 

effects of iterative application of transformations to pairs of points in a metric 

space and introduces the concept of a contractivity factor which is of fundamental 

importance both to the theory and as it turns out, to the practice of IFSs. 

Definition 2.3.5 Let f: X~---+ X be a transformation on a metric space. A point 

x 1 E X such that f( x 1) = x 1 is called a fixed point of the transformation. 

Definition 2.3.6 A transformation f :X~---+ X on a metric space (X,d) is called 

contractive or a contraction mapping if there is a constant 0 ~ s < 1 such 
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that: 

d(f(x),f(y)) ::=; sd(x, y) V x,y EX. 

The number s. is called a contractivity factor of f. 

Lemma 2.3.1 Let tv : X ~---+ X be a contraction ma.ppwg on the metric space 

(X,d). Then tv is continuous. 

Proof- vVith reference to definition 2.3.1, let a real (. > o be given. Let s > o 

be a contractivity factor for tv. Then: 

d(w(x),w(y)) ::=; sd(x,y) <f.; 

whenever d(x,y) < 8 where 8 = ;. 

Theorem 2.3.1 Let f: X~---+ X be a. contraction mapping on a. complete metric 

space (X,d). Then f possesses exactly one fixed point x1 EX a.nd further, for a.ny 

point X EX, the sequence {f 0 n(x): n = 0, 1, 2, ... } converges to x,. That is: 

'r/ X EX. 

Proof - Let x EX and let 0:::; s < 1 be a contractivity factor for f. Then: 

V n, m = 0, 1, 2, ... , 

(The notation ml\n denotes the minimum of the two real numbers.) In particular 

after repeated application of the triangle inequality we obtain: 

d(x, rk(x)):::; d(x, f(x)) + d(f(x), r 2 (x)) + ... + d(fo(k-l)(x), rk(x)); 

::=; (1 + s + s 2 + ... + sk-l)d(x,f(x)); 

::=; (1- s)- 1 d(x, f(x)) for k = 0, 1, 2, ... 
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Substituting into the above we obtain: 

from which it immediately follows that {f0n(x)}~=O is a Cauchy sequence. Since 

X is complete, this Cauchy sequence possesses a limit x1 E X, and we have 

limn ..... oo rn(x) = x1. Since ! is contractive it is continuous and hence: 

f(x,) =!(lim rn(x)) = lim r(n+ll(x) = x,. 
n-co n-oo 

and so x 1 is a fixed point of f. Finally, we show there can be no more than one 

fixed point. Suppose the opposite. Let x1 and YJ be two fixed points of f. Then 

which implies d(x1 , YJ) = 0 and hence x1 = YJ· 

Lemma 2.3.2 Let (X,d) be a complete metric space. Let f : X r-+ X be a 

contraction mapping with contra.ctivity factor 0::; s < 1, and let the fixed point of 

f be x 1 EX. Then: 

'V X EX. 

Proof - The distance function d(a, b) for fixed a E X is continuous m b E X. 

Hence: 
d(x, Xj) = d(x, lim rn(x)) = lim d(x, rn(x)); 

n-oo r&-oo 
n 

::; lim ""'d(fo(m-l)(x), rm(x)); 
n-co L...J 

m=l 

::; lim (1 + s + ... + sn-l)d(x,f(x)); 
n-oo 

::; (1- s)- 1d(x,f(x)). 
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2.4 Mappings on 1l(X) 

vVe now describe the extensions that are made to the definitions of the pre

vious section so that they can be applied to the space 1l(X), and prepare for the 

definition of an IFS by considering mappings which are themselves the union of 

sets of contraction mappings. 

Lemma 2.4.1 Let w : X f-> X be a continuous mapping on the metric space 

(X,d). Then w maps 1l(X) into itself. 

Proof- Let S be a nonempty compact subset of X. Then clearly the set w(S) = 

{w(x): xES} is nonempty. Hence it is just needed to show that w(S) is compact. 

Let {Yn = w(xn)} be an infinite sequence of points in w(S). Then {xn} is an infinite 

sequence of points in S. Since S is compact there is a subsequence {xNn} which 

converges to a point xES. The continuity of w implies that {YNn = f(xNn)} is a 

subsequence of {Yn} which converges to iJ = f(x) E w(S). Thus w(S) is compact. 

Lemma 2.4.2 Let w :X f-> X be a contraction mapping on the metric space 

(X,d) with a contractivity factor s. Then w: 1l(X) f-> 1l(X) defined by: 

w(B) = {w(x): x E B} 't/ BE fl(X); 

is a contraction mapping on (1l(X),h) with contractivity factor s. 

Proof - From lemma 2.3.1 it follows that w :X~--+ X is continuous. Hence by 

lemma 2.4.1, w maps 1l(X) into itself. Now let B,C E 1l(X). Then: 

d(w(B), w(C)) = max{rnin{d(w(x), w(y)): y E C}: x E B}; 

:::; max{min{sd(x, y): y E C}: x E B} = sd(B, C). 
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Similarly, d(w(C), w(B)) :S sd(C, B). Hence: 

h(w(B), tv( C))= d(w(B), w(C)) V d(w(C), w(B)); 

:S s(d(B, C) V d(C, B)); 

:S sh(B, C). 

Lemma 2.4.3 Let (X,d) be a metric space. Let {tun : n = 1, 2, ... , N} be a set of 

contraction mappings on (1i(X),h). Let the contractivity factor for tun be denoted 

by sn for each n. Define W : 1i(X) ~ 'H(X) by: 

W(B) = Wt(B) u lli2(B) u ... u tvN(B); 
N 

= U w,(B) V BE 1i(X). 
n=l 

Then W is a contraction mapping with contractivity factor given by: 

s = max{sn : n = 1, 2, ... , N}. 

Proof- vVe give a proof by induction. Let B, C E 1i(X) and assume the lemma 

is true for some W with N = m mappings. Then consider the addition of an extra 

transform wm+l to construct W' given by: 

m+l m 
W'(B) = U W71 (B) = U tvn(B) U Wm+l(B) = W(B) U Wm+t(B). 

n=l n=l 

vVe now have: 

h(W'(B), W'(C)) = h(W(B) U Wm+t(B), W(C) U Wm+t(C)). 

Using lemma 2.2.1 this becomes: 

h(W'(B), W'(C)) :S h(W(B), W(C)) V h(tvm+t(B), Wm+l(C)).; 

:S sh(B, C) V Sm+th(B, C); 

:S max{s, Sm+dh(B, C); 
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and so if the lemma is true for m transforms it is also true for m + 1. Consider 

now the case for m = 2. Using the same argument as above we obtain: 

::=; max{s 1,s2}h(B,C). 

Thus the lemma is true for m = 2 and hence for all m ~ 2. 

2.5 Iterated Function Systems and their Properties 

We are now in a position to define exactly what is meant by an iterated 

functon system and to give a description of some of its properties. 

Definition 2.5.1 (Barnsley 1988) An iterated function system consists of a 

complete metric space (X,d) together with a finite set of contraction mappings 

wn :X~ X with respective contractivity factors sn for n = 1, 2, ... , N. The notation 

for an iterated function system is: 

{X, Wn : n = 1, 2, ... , N}; 

and its contractivity factor is; 

s = 1nax{s71 : n = 1, 2, ... , N}. 

Theorem 2.5.1 Let {X, w 11 : n = 1, 2, ... , N} be an iterated function system with 

contractivity factor s. Then the tra.nsformation W: 7-l(X) ~ 7-l(X) defined by: 

N 

W(B) = U W 71 (B) V BE 7-l(X); 
n=l 
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is a contraction mapping on the complete metric space (1t(X),h) with contractivity 

factor s. That is: 

h(W(B), W(C)) :S sh(B, C) '</ B, C E 1i(X). 

The unique fixed point A E 'H(X) obeys 

N 

A= W(A) = U Wn(A), 
n=l 

a.nd is given by A= limn-oo won(B) for any BE 7-i(X). 

Proof- The proof of the above theorem follows directly from those of theorem 

2.3.1 and lemma 2.4.:3. 

Definition 2.5.2 The fixed point A E 1i(X) as described m theorem 2.5.1 IS 

called the attractor of the iterated function system. 

The attractor of an IFS is what we are really interested in since it is a subset 

of a metric space which is uniquely defined by a set of contraction mappings 

which in turn can be described by a simple list of numbers. The use that we 

make of at tractors is discussed in more detail in the next chapter. The next two 

lemmas are used to show that small changes made to the mappings of an IFS 

result in correspondingly small changes in the attractor. 

Lemma 2.5.1 Let (P,dp) and (X,d) be metric spaces, the latter being complete. 

Let w : P x X f-.> X be a family of contraction mappings on X with contractivity 

factor 0 ::; s < 1. That is, for each p E P and x E X, w(p, x) is a contraction mapping 
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on X. For each fixed x E X let w be continuous on P. Then the fixed point of w 

depends continuously on p. That is x1 : P 1--- X is continuous. 

Proof- Let x 1 (p) denote the fixed point of w for fixed pEP. Let pEP and a 

real < > 0 be given. Then for all q E P, 

:::; d(w(p 1 XJ(p)) 1 w(q 1 XJ(P))) + d(w(q 1 XJ(P}) 1 w(q 1 Xj(q})) 1 

which implies, 

d(xJ(P) 1 XJ(q)):::; (1- s)- 1d (w(p 1 XJ(P}) 1 w(q 1 XJ(P))). 

Since w is continuous on P we can choose q to give 0 < dp(P~ q) < 6 and so that: 

d(w(p 1 x) 1 w(q 1 x)):::; cdp(p1 q) v X EX; 

which gives, 

and so x 1 is continuous. 

Lemma 2.5.2 Let (X,d) be a metric space. Suppose we have mappings wn : 

P x X ........ X for n = 11 21 ••• 1 N depending continuously on a parameter p E P, where 

(P ,dp) is a compact metric spa.ce. That is wn (p 1 x) depends continuously on p for 

fixed x E X. Then the transformation W : 7t(X) ........ 7t(X) defined by: 

N 

W(p 1 B)= U wn(P~ B) V BE 7t(X); 
r>=l 
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is also continuous in p. That is, W(p,B) is continuous in p for each BE ?t(X) m 

the metric space (1i(X),h). 

Proof - Consider the case N = 1. For B E ?t(X) with p, q E P, and given a real 

f > 0, 

d(wt(P, B), Wt(q, B))= max{min{d(w1(p, x), w 1(q, y)): y E B}: x E B}, 

:::; max{min{d(wt(P, x), Wt(P, y)) + d(wt(P, y), Wt(q, y)) : y E B}: x E B}. 

P x B is compact and w 1 : P x B ~----X is continuous. Hence there is a real number 

6 > 0 so that d(w1(p, y), w1(q, y)) < < V y E B, whenever dp(p, q) < 6. So assuming 

dr(P, q) < 6 we have: 

d(wt(P, B), Wt(q, B))< max{min{d(tut(P, x), Wt(P, y) + c}: y E B}: x E B}; 

:::; d(wt(P, B), tut(P, B))+<= c. 

similarly, 

d(wt(q, B), Wt(P, B))<< v dp(p, q) < 6, 

and so, 

h(wt(P, B), Wt(q, B))<< v dp(p, q) < 6. 

Hence W(p, B) is continuous for N = 1. Using lemma 2.2.1 it can be seen that for 

N > 1: 
h(W(p, B), W(q, B)) :S max{h(wn(P, B), wn(q, B))}= <1

; 

< f
1 V dp(p,q) < 6. 

Theorem 2.5.2 Let (X,d) be a metric space a!,ld let {X, wn : n = 1, 2, ... , N} be 

an iterated function system of contractivity s. Let all wn depend continuously 

on a parameter p E P, where P is a compact metric space. Then the at tractor 

A E 1i(X) depends continuously on pEP with respect to the Hausdorff metric. 
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Proof- The proof of this theorem follows directly from those of lemmas 2.5.1 

and 2.5.2. 

The next theorem is of fundamental importance to the possibility of usmg 

IFSs as a shape representation scheme since it describes how it is possible to 

find an IFS encoding of any shape. 

Theorem 2.5.3 (The Collage Theorem - Barnsley 1985) Let (X,d) be a complete 

metric space. Let L E 1t(X) and a. real t: ~ 0 be given. Choose an iterated function 

system {X, wn : n = 1, 2, ... , N} with contractivity factor 0 ~ s < 1 so that: 

N 

h(L, U tvn(L)) ~ t:; 

n=l 

where h 1s the Hausdorff metric. Then: 

where A 1s the attractor of the iterated function system. Equivalently: 

N 

h(L,A) ~ (1- s)- 1 h(L, U tvn(L)) V L E 1t(X). 
n=l 

Proof - The proof is the same as that for lemma 2.3.2 with the appropriate 

substitutions. 

The implications of this theorem can be best appreciated by considering the 

case for a two-dimensional space. Each mapping of a set can then be thought 

of as being a reduced size cut-out copy which is placed over the original. Many 

such mappings make a rough collage of the original set - and hence Barnsley's 

name for the theorem. Arranging the collage so that it covers the original set 
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with no holes or overlaps ensures that the attractor of an IFS consisting of the 

mappings in the collage will be an exact copy of the set. Any holes or overlaps 

will cause the attractor to differ from the original set by an amount determined 

by the contractivity factor of the collage. Thus given a set the problem of finding 

an IFS which has that set as its attractor reduces to the problem of finding a 

suitable collage. More on this subject is given in the following chapters. 

2.6 Code Space 

In order to understand iterated function systems more fully, and to be able 

to explain the methods of obtaining pictures of their attractors used in the next 

chapter, it is now necessary to introduce the idea of code space. This leads to 

a method of labeling each point on an attractor, and ultimately lets us view an 

IFS as a dynamical system. 

Definition 2.6.1 Let :E be the code space on N symbols where N is a positive 

integer. The symbols are the integers {1, 2, 3, ... , N}. A point in the space :E is a 

semi-infinite string of symbols. In general we write a point u E :E as: 

where u; E {1,2,3, ... ,N}. 

Theorem 2.6.1 For x,y E :E the function, 
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is a metric on the space ~-

Lemma 2.6.1 We show tha.t de obeys the axioms of definition 2.1.2. lx;- y;i = 

IY;- x;i and so dc(x, y) = dc(Y, x). Since x;, Yi E {1, 2, ... , N} then the maximum value 

of lx;- Yd is N- 1. Hence, the maximum value of dc(x,y) 1s: 

(N- 1) f 1 . = (N- 1); 
i=l (N + 1)

1 
N 

and so; 

'r/x,yE~. 

If x; = Yi V i, then dc(x, y) = 0 and so dc(x, x) = 0. Finally, 

lx; - y;j ::; lx; - zd + lz; - y;l V x;,y;,z; E {1,2, ... ,N}, 

and hence: 

dc(x, y) ::; dc(X, .:) + dc(z, y) V x,y,z E ~-

Consider the at tractor of an IFS and imagine its collage (as defined in the 

collage theorem) superimposed upon it. For N mappings (and assuming for the 

moment no overlapping bet·ween mappings) the at tractor is divided up into N 

regions and each can be labelled according to the mapping that covers it. For 

example, mapping w 1 maps all the points of the attractor into region one, and w 2 

maps all the points into region two. If we then consider the sequence of mappings 

used to generate a point of the attractor we produce a list of numbers n 1n 2 n3 .. .• 

This list of numbers is called an address of that point of the attractor and, 

from the preceding definitions, can be seen to be a point in the code space of N 

symbols. The rest of this section is dedicated to a description of how this idea is 

formalised and to the properties of point addresses. First however, the following 

lemma is needed which allows the redefinition of the space underlying an IFS. 
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Lemma 2.6.2 Let (X,d) be a complete metric space. Let {X, wn : n = 1, 2, ... , N} 

be an IFS and let K E 1i(X). Then there exist a set K' E 1i(X) such that K c K' 

and Wn: K' ........ K' for n = 1,2, ... ,N. That is, {K',wn: n = 1,2, ... ,N} is an IFS for 

which the underlying space is compact. 

Proof - 'vVe have defined W : 1i(X) ........ 1i(X) as: 

N 

W(B) = U w,(B) V BE 1i(X). 
n=l 

Therefore if we construct K' as: 

K' = K U W01 (K) U W02 (K) U ... U W 0 "(K) U .... 

It Is immediately clear that K c K' and that W(K') c K'. 

Definition 2.6.2 Let {X, w, : n = 1, 2, ... , N} be an IFS. The code space (!:,de) 

associated with the IFS is the code space on N symbols, with the metric de as 

defined earlier. 

Lemma 2.6.3 Let (X,d) be a complete metric space. Let {X, wn : n = 1, 2, ... , N} 

be an IFS with a contra.ctivity factors s and attractor A. Let (E,de) denote the 

code space a.ssociated with the IFS. For each (1 E !:, n EN, x EX, define: 

<jJ(C1, n, x) = w.,.l o Wu2 o ... o Wun(x). 

Let K denote a. nonempty compact subset of X. Then there is a real constant D 

such that: 

V C1 E :!: m, n EN and x 1, x2 E K. 
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Proof - Construct the set K' as in the previous lemma. Without loss of gen-

erality we can take m < n. We then have: 

where w=<Tm+l<Tm+2 ... <Tn ... E~. Let x3 =¢(w,n-m,x2 ), then x3 belongs to K'. VIe 

can then write: 

:S sd(w'72 o ... o Wum(x!),Wu 2 o ... o Wum(x3)); .. 

:S smd(x1, x3) :S sm D; 

where D = max{d(x 1, x3): x1, x3 E K'}, and is finite since K' IS compact. 

Theorem 2.6.2 Let {X, w, : n = 1, 2 ..... N} be an IFS on the metric space (X,d). 

Let A denote the attractor of the IFS and let (:E. de) denote the associated code 

space. Then for <T E :E, n EN, and x EX, 

cP(<T) = lim c;!>(<T, n, x), 
n-oo 

exists, is contained in A, and is independent of x. The function ¢: :E i--' A defined 

in this way is continuous. 

Proof - Let K E ?i(X) such that x E K. Construct the enclosing set K' defined 

previously. \Vith W defined as before we have: 

A= lim W0 "(K). 
n-oo 

In particular {W0"(K)}~= 1 IS a Cauchy sequence in (1i(X),h) and, since it is clear 

that ¢(<T,n,x) E W0 "(K), it follows that if limn-oocP(<T,n,x) exists it must belong to 

A. The limit can be seen to exist since it has been shown that: 

V xE K; 
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and by letting m and n tend to infinity the right hand side can be made arbi-

trarily small. To prove ¢J is continuous observe that: 
00 N 1 

dc(u,w) < L (N + 1)m = (N + 1)". 
m=n+l 

That is, by choosing u and w to agree through the first n terms we can limit the 

value of de. Suppose f > 0 is given, then we can choose an n such that d0 (u,w) <c. 

It follows that we can then write: 

d(¢(u, m, x), ¢(w, m, x)) = d(¢(u, n, xt), ¢(w, n, x 2 )); 

for some pau of points x 1 , x 2 E K'. Using the result of the previous lemma and 

taking the limit m---. oo we obtain: 

d(¢J(u), ¢J(w)) < s" D; 

and so ¢ IS continuous. 

Definition 2.6.3 Let {X, wn : n = 1, 2, ... , N} be an IFS with associated code 

space :E. Let ¢J : :E ~----> A be a continuous function from code space onto the 

attractor of the IFS as defined above. An address of a point a E A is any 

member of the set: 

¢- 1(a) ={wE :E: ¢(w) =a}. 

This set is called the addresses of a. An IFS is totally disconnected if each 

point on its attractor has a unique address. An IFS is just touching if it is not 

totally disconnected yet its attractor contains a nonempty set B which is open 

in the metric space A and such that: 

(i) w;(B) n wi(B) = {} V i,jE{1,2, ... ,N} with i::fj; 

(ii) U:: 1 w;(B) C B. 

An IFS that is neither disconnected nor just touching IS overlapping. 
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Lemma 2.6.4 Let {X,wn: n = l.2, ... ,N} be a.n IFS with invertible maps a.nd 

attractor A. The IFS is totally disconnected if and only if: 

V i,jE{1,2, ... ,N} with if.j. 

Proof - If an IFS is totally disconnected then every point of the attractor 

has a unique address. Consider two addresses that differ in only the kth digit. 

These two addresses agree completely before and after the kth digit but must 

correspond to two different points. Hence we must have that: 

V xEA and i:j:.jE{1,2, ... ,N}; 

which implies the condition g1ven above. Finally, assume the given condition is 

true, but that the IFS is not totally disconnected and that some point on the 

attractor has more than one address. Consider the digit at which the two ad

dresses first differ. This time we require w;(x) = wi(x) for some if. j E {1, 2, ... , N} 

and some x E A, which gives a contradiction and hence there cannot be two 

points with the same address. 

Having established what we mean by the address of a point on the attrac

tor, and thereby having obtained a way of classifying an IFS, we now go on to 

examine some properties of addresses. 

Definition 2.6.4 Let A be the at tractor of an IFS {X, wn : n = 1, 2, ... , N}. A 

point a E A is called a periodic point of the IFS if there is a finite sequence of 

numbers {u(n) E {1,2, ... ,N}}~=l such that: 

a= w17 (p) o w 17(p-l) o w 17 (p- 2) o ... o w 17(l)(a). 
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If a is periodic then the smallest integer p such that the above condition is true 

is called the period of a. 

Definition 2.6.5 A point in code space whose symbols are periodic is called 

a. periodic address. A point in code space whose symbols are periodic after a. 

finite initial sequence is omitted is called eventually periodic. 

Theorem 2.6.3 The a.ttractor of an IFS is the closure of its periodic points. 

Proof - The code space associated with an IFS is the closure of the set of 

periodic codes. The mapping ¢ is a continuous mapping from the code space to 

the attractor, hence A is the closure of the set of periodic points of the IFS. 

2. 7 Iterated Function Systems as Dynamical Systems 

The code space terminology introduced in the last section is now used to 

make the connection between an IFS and a dynamical system. This is necessary 

in order to understand the workings of Barnsley's algorithm for quickly calculat

ing the attractor of an IFS. Once again we begin with some basic definitions. 

Definition 2.7.1 A dynamical system is a transformation f :X~ X on a. 

metric space (X,d). It is denoted by {X;!}. The orbit of a point x E X is the 

sequence {r"(x)}~=a· 

Definition 2.7.2 Let {X;!} be a dynamical system. A periodic point off is 

a. point X EX such that r"(x) =X for some positive integer, n, called the period 
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of x. The smallest such integer is called the minimum period of x. The orbit 

of a periodic point of f is called a cycle of f. The minimum period of a cycle 

is the number of distinct points it contains. 

Definition 2. 7.3 Let {X;!} be a dynamical system. A point x EX is called an 

eventually periodic point of f if rm(x) is periodic for some positive integer 

m. 

Definition 2.7.4 Let (X,d) be a metric space. A sequence {xn}~=l of points in 

X is said to be dense in X if for each point x EX there is a subsequence {xNJ~o 

which converges to x. In particular, an orbit {xn}~=l of a dynamical system {X;!} 

is said to be dense in X if the sequence {xn}~=l is dense in X. 

Lemma 2.7.1 Let {X,wn: n = 1,2, ... ,N} be an IFS with attractor A. If the 

IFS is totally disconnected then for each n E {1, 2, ... , N} the mapping wn :A._. A 

is one-to-one. 

Proof- Take two points a 1 ,a2 EA. Assume that wn(at) = wn(a2 ) =a for some 

n E {1, 2, ... , N}. This would mean that the point a has two addresses, which is 

impossible unless a 1 = a 2 , since the IFS is totally disconnected. Hence wn is onto 

for all n. 

This last lemma now permits the following association between an IFS and 

a dynamical system to be made. 
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Definition 2.7.5 Let {X,wn: n = 1,2, ... ,N} be an IFS with attractor A. The 

associated shift transformation on A is the transformation S : A ....... A defined 

by: 

V a E Wn(A). 

The dynamical system {A; S} is called the shift dynamical system associated 

with the IFS. 

The next two theorems concernmg the accuracy of the calculation of orbits 

and the number of cycles with a given minimal period are the important results 

that this section has been aiming for. 

Theorem 2.7.1 Let {X,wn: n = 1,2, ... ,N} be an IFS with a contractivity factor 

s where 0 < s < 1. Let A denote the attractor of the IFS and suppose that each 

of the transformations wn : A ....... A is invertible. Let {A; S} denote the associated 

random shift dynamical system. Let {x~};;"= 0 c A be an approximate orbit of S 

such that: 

VnE{0,1,2, ... }; 

for some fixed constant () with 0 ~ () ~ Diam(A). Then there exists an exact orbit 

given by {xn = S 0"(xo)};;"=O for some Xo E A such that: 

'V nE {0,1,2, ... }. 

(Diam(A) = max{d(x, y): x, yEA}). 

Proof:- For n = 1,2,3, ... let O",. E {1,2, ... ,N} be chosen so that w;,1 ,w;l1 ,w;
3

1
, ... 

is the actual sequence of inverse maps used to compute S(x~), S(xl.), S(x2), .. .. Let 
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~ : I:...__. A denote the code space map associated with the IFS. Then define: 

Hence the exact orbit of the point x 0 is given by: 

For some large positive integer AI both xM and S(x~1 _ 1 ) belong to A and we can 

write: 

d(S(x,u _ d, S(x~1 _ 1 )) ~ Diam(A ); 

which is finite since A is compact. S(xM-d and S(x~u- 1 ) are both found usmg 

the same inverse map and so it follows that: 

d(xM-l,X~u-d ~ sDiam(A). 

We now have: 
d(S(xM-2),S(x~u- 2 )) = d(xM-l,S(x~I- 2 )); 

~ B + sDiam(A). 

Again the same inverse map is used to calculate each point so: 

d(xM-2, x~1 _ 2 ) ~ s(B + sDiam(A)). 

,, 
Applying the above argument k times we obtain: 

and so for any 0 < n < M we have: 

d( 1) < n ?n M-n-ln M-n D" (A) Xn, Xn _ su + s-u + ... + s u + s 1am . 

Taking the limit as M -+ oo we get the result: 

1 ( 2 sO 
d(xn,xn)~sB l+s+s + ... )=-(--) 

1-s 
V nE{l,2, ... }. 

Finally, we derive an expression for the number of cycles of minimum period 

p that lie on the attractor of an IFS. 
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Lemma 2. 7.2 Let {A; S} be the shift dynamical system associated with a to

tally disconnected IFS, {X, wn : n = 1, 2, ... , N}. Let N(p) denote the number of 

distinct cycles of minimal period p, for pE {1,2,3, ... }. Then: 

N(p) = [-NP - I: kNP(k)l 
p k=l 

k divide• p 

V p E {1, 2, ... }. 

Proof- Every point on a cycle of minimum period p is the fixed point of some 

transform n given by: 

That is, the application of p mappings brings us back to the starting point. For 

a given p there are NP possible ways of constructing n using N mappings. Since 

each n is a contractive mapping it has a unique fixed point which lies on a cycle 

of period p. Hence NP is the number of points that lie on a cycle of period p. 

However, not all these cycles will be of minimum period p, and those that are 

not must be of a minimum period that is a factor of p. If k is a factor of p and 

C(k) denotes the number of points that lie on cycles of minimum period k, then 

the number of points on cycles of minimum period p is 

p-1 

NP- L C(k). 
lr::l 

k divide• p 

Since there are p points on every cycle of period p, then the number of dis-

tinct cycles of minimum period p is 1/p times the number of points on cycles of 

minimum period p. Therefore: 

[

NP 
N(p) = P-

k 

c;k)] 
divide• p 

p-l 

L:: V pE{1,2, ... } . 
.k:l 

-54 -



Clearly we have that C(k) = k/V(k) and substituting this into the above gives the 

required result. Finally, we have /V(l) = N since points of period one must be the 

fixed points of the individual mappings of the IFS. 

This final lemma shows that the number of cycles of period p increases rapidly 

with p, and so it becomes likely that a point chosen at random on the attractor 

will be part of a cycle of long period. Further, since the attractor is compact, 

we can expect the orbit of such a point to be dense in the attractor. 

2.8 Summary 

In this chapter we have, starting from basic topological principles, related a 

concise derivation of IFS theory and introduced the terminology required for the 

discussions in the remainder of this work. Specifically, we have given Barnsley's 

definition of an IFS as being a set of contraction mappings on a complete metric 

space with the property that when the union of these mappings is applied itera

tively to an arbitrary subset of the space, the resulting sequence of sets converges 

to a non-empty limit set, called the attractor. Important properties of IFSs have 

been described such as the continuous dependence of the attractor on the map

ping parameters, and Barnsley's collage theorem has been stated which allows 

the calculation of an IFS for a given subset of the space on which it is defined. 

1i.(X) has been defined as a space with points corresponding to non-empty 

compact subsets of an underlying metric space, (X, d), and proved to be complete 

if X is complete. The Hausdorff distance, h(d), has been used as the metric on 

1i.(X) and thus an IFS based on (1i.(X),h(d)) has a non-empty compact subset 

A E 1i.(X) as its attractor. 
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Finally, we have included the proofs which demonstrate that an IFS can be 

considered as a dynamical system based upon its inverse mappings, and have 

described how this leads to an alternate definition of an attractor as the closure 

of the periodic points of such a system. 

The following chapter uses these concepts to formalise the proposed shape 

representation scheme and to explain its properties. 
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3 ITERATED FUNCTION SYSTEMS AND SHAPE 

Using the theory of the previous chapter we now describe a formal framework 

within which a two-dimensional shape representation scheme can be constructed. 

We then discuss, with examples, the theoretical properties of such a representa-

tion scheme emphasising those that correspond to features identified as beneficial 

to a general machine vision system. Finally we give an explanation of the ran-

dom iteration algorithm (RIA) as developed by Barnsley which allows the rapid 

rendering of the attractor of an IFS. 

3.1 2D Shape Representation. 

We begin with a pair of our definitions which make clear what we mean by 

a two-dimensional shape and how we propose to represent one using an IFS. 

Definition 3.1.1 Let (R2 ,d) be a metric space consisting of the Euclidean 

plane, R 2 , and a suitable metric function, d. Let a shape be any set S E 1i(R2 ). 

Definition 3.1.2 Let {R2 ,wn: n = 1,2, ... ,N} be an iterated function system 

with the two-dimensional Euclidean plane as the underlying metric space. Then 

a shape S is represented by the IFS if: 

lim W 00 (B) = S 
n-+oo 
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where W IS as defined m theorem 2.5.1. That IS to say, S IS the attractor of the 

IFS. 

The interpretation of such a representation is obvious. The set of points con

stituting the attractor are the same set of points occupied by the shape in the 

plane. There are however, two questions that need answering. Firstly, are shapes 

as just defined useful for study in a machine vision context, and secondly does 

there exist an accessible representation for any given shape? To answer these 

questions we make a couple of reasonable assumptions about the environment 

and image formation process of a hypothetical vision system. vVe assume that 

any real-world objects that we may wish our vision system to work with, such as 

man-made machine parts or naturally occurring flowers and trees, will be com-. 

pact subsets of three-dimensional Euclidean space, R 3 . Also, we assume that the 

system will produce a two~dimensional image of a three dimensional scene, and 

that the image formation process - the mapping from R 3 to R 2 - is continuous. 

Using these assumptions we state the following lemmas. 

Lemma 3.1.1 Let 0 E 'Ji(R3 ) be a three-dimensional object. Let 1j; be a con

tinuous transformation 1j; : R 3 ._.. R 2 • Then: 

,P(O) = {1/J(y): y E 0} = S; 

1s the image of 0 such that S E H(R2 ). 

Proof- Let {Yn}~=l be an infinite sequence of points in 0. Then {xn = rP(Yn)}~=l 

is an infinite sequence of points in S. Since 0 is compact, there exists a subse

quence {YNJ~=l of the initial sequence that has limit y E 0. Since 1j; is continuous 
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the sequence {xN, = ti>(YN,)}/V,= 1 has limit x = 1/;(y) which IS contained m S, and 

hence S is compact. 

This implies that visual information about the real world gathered by a con

tinuous image formation process takes the form of shapes in the image plane, 

and hence the study of shape encoding is certainly worthwhile. 

Next we show that for any shape, no matter how complex, we can always 

find a good IFS representation. This is a consequence of the collage theorem 

(2.5.3) which tells us how to find an IFS given the attractor. 

Lemma 3.1.2 For any shape S, and given a real number ~: > 0, there exists 

an iterated function system {R2 ,wn: n = 1,2, ... ,N} with attractor A for which, 

h(S, A) :S L 

Proof- From the collage theorem we have: 

h(S, A) :S (1- s)- 1h(S, W(S)) 

where W and s have their usual meanings. Since S is compact it is closed and 

totally bounded, and so there exists a finite ~:-net, {y1 , y2 , ... , YN }. Since an ~:-net 

contains only a finite number of points it is closed and totally bounded and hence 

we have {yn} E 1i(R2). From its definition an ~:-net has the property: 

h(S, {Yn}) :Sf. 

We now choose mappings such that: 

Wn(x) = Yn V xES and n = 1, 2, ... , N. 
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Hence W(S) = {yn} with contractivity factor s = 0. Finally then: 

h(S,A) ~ l- 1h(S,{yn}); 

This method of constructing an IFS code is clearly inefficient, smce it re

quires one mapping for every point in the c-net, and so will produce a very large 

number of mappings for small c. However, the proof only serves to show that 

a high resolution (small c) code can always be found, and does not claim that 

this code, or the method employed to find it, should be the basis of a practical 

implementation. 

In general the encoding of a shape will involve the search for a collage com

prising of a small number of 'large' mappings, which is to say those that map 

points over a large area. The process of collage construction is similar to decom

posing a shape into a set of primitives, the difference being that we are using 

only the one fundamental primitive, that of the shape itself. The advantage of 

this is that it is not required to define and store the description of a set of shape 

primitives prior to encoding, and no reference need be made to any data source 

external to the IFS code in order to render a picture of the encoded shape. (This 

is explained in more detail in the section on attractor rendering). Hence we are 

able to describe complex shapes using a complex primitive without the prob

lem of the exponential increase in the number of primitive types as described 

by Fischler (Fischler 1978). Further, we can be sure that our primitive is of a 

suitable type since a shape has just the right morphology with which to describe 

itself. For example, an angular shape will have an angular primitive, a smoothly 

rounded shape will have a rounded primitive, and a fractal shape will have a 

fractal primitive. 
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Still it is possible that for very complex shapes it will not be possible to 

obtain a high resolution encoding without recourse to multiple 'small' mappings. 

In this case it may be necessary to subdivide the shape into smaller and less 

complex subshapes, and then to encode each one separately, similar to the repre

sentation by parts scheme suggested by Pentland (Pentland 1987). The inherent 

problem is that of finding an algorithm that will produce high resolution collages 

without human intervention. Ideally, given a fixed number of mappings, the al

gorithm should find a close to optimal arrangement that minimises the Hausdorff 

distance between the collage and the shape it is intended to represent. The de

velopment of such an algorithm is discussed primarily in chapter six. 

The foregoing has illustrated the point that although a given IFS has a 

unique attractor, there are an infinite number of IFSs that share the same shape 

for their attractors. This is a consequence of the fact that there are an infinite 

number of perfect (< = 0) collages that can be made of a given shape. For exam

ple, if we have a perfect collage we can construct another by replacing one of its 

mappings with a mapping of the whole collage. 

This is demonstrated in figure 3.1 where the collages depicted have exactly 

the same attractor. The multiplicity of codes for each shape can be used to 

ad vantage for several reasons as will be discussed later. 

-61 -



Figure 3.1 A sequence of collages all having the same fern-like attractor 

shown in the top left-hand corner. The first collage, top right, is the sim

plest possible, consisting of just three mappings. The second, bottom left, 

is comprised of five mappings, the result of replacing the largest mapping 

of the first collage with its mapping of the whole collage. The final collage, 

bottom right, has replaced two of the mappings found in the original, and 

hence contains a total of seven mappings. 

The discussion so far has assumed that the image plane is a continuous space, 

whereas in reality the image presented to a computer vision system is represented 

as a two-dimensional pixel array. This does not however, affect our assertion that 

a good IFS code can be found as our following lemma demonstrates. 
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Lemma 3.1.3 Let P E ?i(X) be a finite rectangular array of points in the metric 

space (R 2 , d) such that (P ,d) is a complete metric space. Let S' = {Pn E P : n = 

1, 2, ... , N} be a set of points in P such that S' is the discrete approximation of 

a set S E 1l(R2 ). Then there exist an IFS {P, wn: n = 1, 2, ... , N} with an attractor 

A' for which: h(A', S') = 0. 

Proof- We choose wn such that: 

Wn(x) = Pn V xES' and n=1,2, ... ,N. 

The resulting set of mappings { w,.} has contractivity s = 0 and W(S') = S'. Hence, 

by the collage theorem we have: 

h(A', S') = 1- 1h(S', W(S')) = h(S', S') = 0. 

It would seem that we can represent exactly any shape defined on a pixel 

array. However, such an exact encoding amounts to nothing more than a pixel 

map - a list (albeit in terms of mappings) of the position of every pixel that 

constitutes the shape. In general we still expect to be able to find high resolution 

codes, using the collage theorem, that significantly improve upon this. 

To summarise this section we have shown that, under some reasonable as

sumptions, the image of objects in a real-world scene consists of compact subsets 

of the Euclidean plane and hence are representable as the attractors of two

dimensional IFSs. Further, there exists an IFS representation for every conceiv

able shape formed in the image plane, and the resolution to which the shape 

may be encoded is limited only by the number of mappings used. 
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3.2 Compactness 

We now look at the physical form that an IFS representation of a shape 

would take. Basically an IFS is just a set of mappings which in turn are sim

ply a set of numbers. Hence an IFS code will have the physical form of a list 

of numbers, and as such has the potential for being a compact way of storing 

information. The extent of the compactness is dependent on two parameters, 

the number of mappings used in the IFS, and the number of coefficients re

quired to specify each one. The contractivity term in the bounds on resolution 

derived from the collage theorem suggests th.at if we restrict our attention to 

just-touching IFSs then in general an increase in the number of mappings will 

produce a corresponding increase in the resolution of the representation, and so 

in a practical implementation the number of mappings used will be determined 

by the accuracy to which the system must work. However, we are still free to 

choose any mappings we want, the only restriction imposed by the mathematics 

is that they be contractive. Obviously it is desirable to keep the form of the 

mappings as simple as possible without introducing too many constraints on the 

range of collages that they are capable of producing. Further, there is nothing in 

theory to prevent the use of several different types of mapping in the same IFS, 

although this would needlessly add to the complexity of the resulting code and 

require more complex decoding algorithms. 

a b c d e f 

Wt 0.50 0.00 0.00 0.50 0.00 18.00 

W2 0.50 0.00 0.00 0.50 -15.00 -8.00 

W3 0.50 0.00 0.00 0.50 15.00 -8.00 

Table 3.1 The IFS code for a Sierpinski triangle. 
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An example of an IFS code for N = 3 is given in table 3.1. We have used two

dimensional affine transformations as described in definition 2.3.4. and hence the 

code consists of three sets of six coefficients. In general, if we require n cofficients 

to describe each mapping, an IFS will consist of nN floating point numbers. 

Figure 3.2 The attractor of the IFS given in table 3.1. 

The attractor of figure 3.2 is a well known fractal called the Sierpinski trian

gle. Since we already know its IFS representation this and shapes like it will be 

used to test the collage generating ability of the encoding algorithm described in 

chapter six. 

3.3 Stability 

An important property of an IFS coding scheme is stability during the en

coding process since, in order for the scheme to be practical, it is necessary that 

as long as the collage we find is close to the optimum, then the attractor will 

be similarly close. By defining the term 'close' as meaning close under the Haus

dorff metric, we can appeal directly to the collage theorem. It states that if the 

Hausdorff distance between a shape and its collage is less than or equal to £, 
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then the distance between the attractor of the IFS associated with the collage 

and the shape is less than (1 - s)- 1
f, where s is a contractivity factor for the 

IFS. The stability implied by this can be easily visualised by recalling lemma 

2.2.2 which can be interpreted as follows. If the Hausdorff distance between two 

shapes, B and C, is f then the shape, created by drawing a circle (for the two

dimensional case) of radius f around every point in B, contains the shape C, 

and vice versa. In terms of the collage theorem this means that there is an en

velope of size (1- s)- 1 f around the coded shape S which is guaranteed to contain 

the attractor. Remembering that the Hausdorff distance between two shapes is 

simply the distance between some pair of points within the shapes, then it is ap

parent that not all changes to the collage need change the size of the envelope, 

indeed most small changes will simply result in some shift of the attractor within 

the existing envelope. Hence, there exists a large number of collages all within 

a short distance of the optimum that yield a good attractor. This is demon

strated by the following sequence of pictures in which the attractors are shown 

for collages of varying quality and contractivity. We have adopted the method 

of representing a mapping as used by Horn (Horn 1989) in which we show the 

effect of a mapping on the bounding rectangle of a shape. Although this does 

not make clear the operation of reflections, it does adequately depict rotations, 

scalings and translations. 
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Figure 3.3 Illustration of how approximate collages give recognizable at

tractors. (Top left) The attractor obtained with a perfect collage. (Top cen

tre) The attractor for the same collage but with a slight skew introduced 

into each mapping. (Top right) The effects of slightly translating each map

ping. (Bottom left) The attractor for a collage with both skew and transla

tion added to each mapping. (Bottom centre) Skew, translation, and scaling 

effects. (Bottom right) One of the mappings has been replaced with three 

smaller mappings which have been skewed, translated and rotated - notice 

that although the magnitude of the adjustments are the same as before the 

effects are smaller. 
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3.4 Robustness 

A further . useful property of an IFS code is its robustness with respect to 

errors introduced into the mapping coefficients. This is predicted by theorem 2.5.2 

which states that if the mapping coefficients of an IFS. are continuous in some 

parameter p then the attractor of the IFS is also continuous in p. In practice this 

means that if a small change is made to one or more of the mapping coefficients, 

it will produce a correspondingly small change in the attractor. More specifically, 

if an error in the code means that the maximum value of h(wn(S),w~(S)) where w~ 

denotes an inaccurate mapping, is 6, then the distance between the attractor of 

the inaccurate code and the exact code is less than or equal to 6. For example, 

consider the set of IFS codes on the following page and compare their attractors. 
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a b c d e f 

tvl 0.60 0.00 0.00 0.60 0.00 -15.00 

'W2 0.35 0.20 -0.20 0.35 8.00 0.00 

'WJ 0.35 -0.20 0.20 0.35 -8.00 0.00 

Table 3.2 The exact, error free code consisting of three two-dimensional 

affine transformations. 

a b c d e f 

tvl 0.60 0.00 0.01 . 0.60 0.00 -15.00 

'W2 0.35 0.20 -0.20 0.35 8.03 0.00 

'WJ 0.35 -0.22 0.20 0.35 -8.00 0.00 

Table 3.3 The same code as in table 3.2 but with small (second decimal 

place) numerical errors introduced into one coefficient of each mapping. The 

changed digits are printed in bold type. 

a b c d e f 

'Wl 0.62 0.03 0.12 0.57 -0.20 -15.31 

'W2 0.32 0.18 -0.21 0.30 7.92 -0.81 

'WJ 0.38 -0.22 0.25 0.36 -8.04 0.29 

Table 3.4 The code of table 3.2 with all of the coefficients affected by 

small errors. 

a b c d e f 

'Wl 0.65 0.19 0.14 0.04 -0.32 -18.15 

W2 0.28 0.21 -0.29 0.21 4.53 -3.16 

WJ 0.42 -0.29 0.28 0.22 -12.15 2.09 

Table 3.5 The code containing numerous large errors. 
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Figure 3.4 A demonstration of the robustness of the attractor of an IFS 

with respect to errors introduced into the mapping coeflicients. Top left is 

the attractor for the exact code given in table 3.2. Top right is the attractor 

for the code in table 3.3 which has several small errors introduced. Bottom 

left is the attractor for the code in table 3.4 with many small errors, and 

bottom right is the attractor for the code in table 3.5. 
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Clearly a few small errors can be tolerated causmg almost no perceptible 

change in the attractor. Even the introduction of numerous such errors gives 

results that are, to the human eye at least, recognizable. However, increasing 

the errors too far results in the break-up of the attractor as a recognizable unit. 

Since the effect of an error on the attractor is bounded by the size of the effect 

it has on the mapping in which it appears, less damage is done when errors 

occur in small mappings. Hence it is possible to build in the desired degree of 

robustness by limiting the maximum size of the mappings used. 

3.5 Attractor rendering 

Up to this point we have discussed the use and properties of the attractor of 

an IFS without describing how to obtain a rendering (picture) of one. This is of 

crucial importance since it is the attractor and not the IFS itself which displays 

the stored information in useful form. From the definition of an IFS (definition 

2.5.1) we see that the at tractor is the limit of the iterative application of the 

mapping W to an arbitrary starting region. The obvious method of obtaining the 

attractor then would be to start with some easily defined shape, such as a single 

point, and iteratively map it under W until the difference between successive 

iterations became negligible. This illustrates the self-contained nature of an IFS 

since, due to the recursive way in which it describes shape, there is no need to 

decode it with reference to any other data. 

The method just described has several obvious drawbacks. Firstly, there is 

no guarantee of the rate of convergence and so it could take a prohibitively large 

number of iterations before a good approximation to the attractor is obtained. 

Secondly, even if convergence were to occur quickly, an IFS consisting of a large 
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number of mappings, or one for which the attractor contained a large number 

of points, would result in slow rendering. Both these problems would severely 

restrict the use of an IFS coding scheme in a machine vision system, since we 

require quick and easy access to stored information. 

A much better algorithm is that devised by Barnsley (Barnsley 1988, Barnsley 

and Sloan 1988). It is based upon the idea of an IFS as a dynamic system and 

requires the definition of a modified IFS for which a probability is associated 

with each of the mappings. 

Definition 3.5.1 An iterated function system with probabilities consists of an 

IFS {X, wn : n = 1, 2, ... , N} together with a set of real numbers {p; : i = 1, 2, ... , N} 

such that: 

P1 + P2 + P3 + · ·· + PN = 1 and Pi> 0 v i. 

The notation for an iterated function system with probabilities Is: 

{X,(wn,Pn): n = 1,2, ... ,N}. 

The rendering method is called the random iteration algorithm (RIA), or as 

Barnsley sometimes calls it, the chaos game. The algorithm is as follows: 

1. Choose an initial point x0 EX. 

2. Choose one of the mappings of the IFS, wn, with probability Pn· 

3. Apply the selected mapping to the point x0 and so generate and store the 

point x1. 

4. At random, select a second mapping, wm with probability, Pm and apply it to 

x1 to generate x2. 

5. Continue in this manner to generate the set of points {xo, xll x2, ... , xK }. 
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6. The set L = {xn}~=o for large K is, to a very high probability, a good 

approximation to the attractor of the IFS. 

If the initial point x 0 lies on the attractor then so will all subsequent points. 

However, if x 0 lies off the attractor it will take several iterations of the algorithm 

before the points converge onto the a.ttractor, so it is normal practice to discount 

the first few points of the sequence. To explain why the RIA works, and that 

almost without exception, it produces a. very good approximation of the attra.ctor, 

we refer back to some IFS theory. 

In chapter two we introduced the idea of an IFS as a shift dynamical system 

on its attractor - that is a. dynamical system for which the transformation is 

defined as w;;- 1(x) for all x E wn(A). Theorem 2.6.3 demonstrated that the a.ttractor 

of an IFS is the closure of all the periodic points of the shift dynamical system. 

In other words, every point on the attractor lies on a periodic orbit, or cycle. 

Consider a cycle of minimal period p, and let p tend to infinity. The orbit of this 

cycle consists of an infinite sequence of points on the attractor, and since the 

a.ttractor is compact, the orbit possess a convergent subsequence. Therefore, we 

expect cycles of large minimal period to be dense, as defined in definition 2.7.5, 

and so pass close to every point on the atttactor. Hence we can approximate the 

attractor of an IFS by the orbit of a. cycle of large minimal period, I<. 

Theorem 2. 7.3 showed that the number of cycles of minimal period p for the 

shift dynamical system associated with an IFS of N mappings is given by by the 

equation: 

[
NP p-l kNP(k)l 

N(p)= -p- ~ VpE{l,2, ... }. 

A: divide• p 

If we calculate the number of cycles of period p = 1, 2, ... for the first few 

values of N we obtain the data given in the following table. 

-73 -



Period (p) 
1 2 3 4 5 6 ... 15 

2 2 1 2 3 6 9 ... 2182 
(N) 3 3 3 8 18 48 116 ... 956577 

4 4 6 20 60 204 670 ... 71582784 
5 5 10 40 150 624 2580 ... 2034505921 

Table 3.6 The number of cycles of minimal period p for the shift dynam-

ical system associated with an IFS of N mappings. 

The figures of table 3.6 show that any cycle of period ]{, where [( is a large 

number, has a very high probability of being a cycle of minimal period K, and 

so its orbit will consist of I< unique points on the attractor. For example, with 

N = 2 and for p as small as 15 there is a 99.56% chance that any cycle of period 

15 we care to construct is a cycle of minimal period 15. 

By definition a point on a cycle of period p of a dynamical system {X;!} is 

a fixed point of rP. For a shift dynamical system associated with an IFS, this 

means that we return to the starting point after the application of a sequence of 

p inverse mappings. That is: 

However, it 1s clear that we will also arrive back at the starting point after p 

applications of reverse-order forward mappings. That is: 

( ) -1 -1 -1( ) Wop 0 Wo(p-1) 0 ... 0 Wo1 X =Wop 0 Wo(p-1) 0 ... 0 Wo1 0 W 0 1 0 W 0 2 0 ... 0 W 0 p X =X. 

Hence a sequence of forward mappings is equivalent to the reverse order sequence 

of inverse mappings and so we can say that a sequence of forward mappings also 

represents a cycle. 
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The RIA then works in the following way. It selects a long random sequence 

of K mappings and takes them as representing a cycle of period [{. Since J( 

is large there is a high probability that this random sequence of mappings con

stitutes a cycle of minimum period [{ and so its calculated orbit consists of J( 

unique points dense in the attractor. The RIA calculates the points of the or

bit according to the algorithm given earlier. To plot the exact orbit denoted by 

the sequence generated it would appear to be necessary to start with its fixed 

point. Fortunately this is not true since we are calculating the orbit in terms of 

forward mappings which are contractive so that any starting point, whether on 

the attractor or not, will converge very quickly onto the chosen orbit. This is the 

reason why it may be necessary to discard the first few points generated. 

Clearly the RIA is a more efficient algorithm than iterative shape mapping 

since, (neglecting the first few), every point generated belongs to the attractor, 

and so the number of points that are rendered is determined by the size of the 

orbit chosen - in effect the number of iterations of the RIA that we choose to 

run. With proper implementation it is also possible to obtain rendering rates 

(pixels per second) that are independent of the number of mappings in the IFS 

(neglecting program overheads). 

A disadvantage of the RIA IS that smce it is a random process it cannot 

guarantee to plot any given point. However, we can manipulate the density of 

points plotted in each region of the attractor by varying the probabilities as

sociated with each mapping. Although a rigorous explanation of this requires a 

discus~ion of measures on Borel sets (Barnsley 1985, 1988), it can be seen in

tuitively that the more often a given mapping is chosen during rendering, the 

more points that are going to be plotted in the region of the attractor that it 

covers, and hence the higher the density of points is going to be. However, for 
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representing shape we are only concerned with whether or not a point belongs 

to the attractor and so we want an even distribution of points to be produced. 

To this end we normally select mapping probabilities in proportion to the area 

of the shape that each mapping covers. 

The operation of the random iteration algorithm is shown by the sequence 

of pictures below. They show the rendering of the attractor of an IFS using 

increasing values of I<. Notice that the basic shape of the at tractor is apparent 

for small values of I< and further increases serve only to fill in the fine detail. 

.. ' .. 

. :·-. -..... :-_--:-. 

· ......... ·.·:.:··-
. ~.:: ..... ·::: . : 

·-·. :·. ,-~~- ..... . -:: ........ 
~ ........ =~ .: :-. 

Figure 3.5 A circle of renderings of the attractor of an IFS consisting 

of just two mappings. Starting at the nine o'clock position and moving 

clockwise they correspond to J( values of 50, 250, 1000, 4000, 16000, and 64000 

respectively. 

The importance of theorem 2.7.1 is now apparent. It states that if there is 

an error of up to 8 in the calculation of each successive point using the ran-

dom iteration algorithm, then there is always an exact orbit which 'shadows' the 
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inaccurate one at a distance less than or equal to sfJ(l- s)- 1 . This means that 

we do not have to be concerned with small rounding or truncation errors when 

rendering an attractor, since even if we are not plotting the orbit of the cycle 

that we intended, we are guaranteed to be plotting the orbit of a cycle that is 

equally good. 

A final very important property of the RIA is that it can render a transfor

mation of an attractor almost as easily as it can the basic attractor itself. For 

example, instead of plotting the set of points {xm} it can instead plot the set 

{ 1/l(xn)} where 1/J is the desired transformation. In effect this allows the system to 

manipulate the representation and obtain any desired view of the encoded infor

mation. In two-dimensions this means shapes can be easily rotated or translated, 

or even scale to see how they would appear from a greater distance. If work

ing in three dimensions, it would allow the construction of any two-dimensional 

view of a given object. It is this ability to manipulate information in a way iso

morphic to that of the real world quantities that has been stressed before as a 

central requirement of a pictorial representation scheme and it is the relative ease 

with which this can be achieved using IFS encodings and the RIA that is one of 

the major advantages of the application. A demonstration of the possibilities of 

transforming rendered points can be seen by the following picture: 
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Figure 3.6 The at tractor of the 'fern' IFS as it was originally encoded 

is shown in the top right-hand corner. The montage of shapes in the cen

tre was constructed entirely from affine transformations of the original at

tractor, and wa.s produced using the RIA with extra. transformations as 

described in the text. 

3.6 Summary 

We have introduced a formal framework in which to embed a two-dimensional 

IFS shape representation scheme in which shapes are defined as compact sub

sets of the Euclidean plane produced by images of three-dimensional real world 

objects. It has been shown that within this scheme every two-dimensional IFS 
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corresponds to a shape, and further that any shape can be represented by an 

IFS to an accuracy limited only by the permitted size of the code. 

The properties of such a representation scheme such as compactness, stability, 

robustness, and ease of manipulation have been discussed, and the near picture 

quality of the encodings demonstrated. Further, we have given an explanation of 

the operation of the RIA and indicated how this enables the quick rendering of 

code attractors and enables their easy manipulation. 

Regardless of the suitability of an IFS representation scheme based upon its 

theoretical properties, the question of fundamental importance to the practical

ity of an implementation is that of the accessibility of automatically generated 

encodings. This is the problem to which we now turn attention, starting in the 

next chapter with an attempt at a simplified encoding technique. 
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4 IMPLEMENTATION OF IFS CODING 

We now address what is often described as the 'inverse problem' (Barnsley 

et al. 1986), which is that of finding an IFS representation for a given shape. 

Barnsley first proposed a solution based on the moment theory of p-balanced 

measures (Barnsley and Demko 1985) which relied on a manual approximation of 

the measures of digitised images, but which was only applicable to a restricted 

set of shapes (Levy-Vehel and Gagalowicz 1987). With the formulation of the 

collage theorem, Barnsley developed a technique of general applicability and has 

employed it in the area of image compression, although the only published work 

describes an interactive process whereby a tracing of a shape is placed over a 

computer screen and a software collage construction tool is used by an operator 

to find the mappings. 

Levy-Vehel and Gagalowicz use the collage theorem for shape generation in a 

computer graphics environment, and employ an optimisation algorithm starting 

with an essentially random collage and involving the iterative minimisation of 

some distance function between that collage and the desired shape. Using the 

Hausdorff distance as the metric they achieved a good result on the single test 

shape presented, although it was reported that their algorithm failed unless all 

the mappings of the initial collage intersected the shape. To ensure this condition 

was satisfied the starting collage was created by hand. 

Another attempt at the inverse problem employed the concept of skeletonisa

tion from mathematical morphology (Libeskind-Hadas and Maragos 1987). The 
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skeleton of a shape is the set of all points which are centres of disks maximal 

with respect to that shape. (A disk centered at x of radius r is maximal with 

respect to a shape S if it is contained in S and is not properly contained in any 

other disk contained in S). Libeskind-Hadas and Maragos describe an interactive 

system based on the displayed skeleton of a shape which enables the user to iden

tify mappings useful for a collage. The system works well for perfect self-similar 

fractals, (those which display the same structure at all scales), by enabling the 

discovery of collages that fit to the shape boundary. However, the system is not 

intended for use with arbitrary shapes. A simple 'plugging' scheme is proposed to 

fill shape interiors using circular primitives. The authors suggest that it should 

be possible to develop a fully automated system, the main difficulty being the 

detection of useful skeleton branch points. 

It appears that the problem of developing a completely automated IFS en

coding system is unsolved in that all the above implementations rely on human 

interaction to a greater or lesser extent. From their results however, we can iden

tify the prime objective of such a system to be the construction of shape collages 

and, because of the close association between a collage and the IFS it determines, 

the two terms will often be used interchangeably in the following discussion. 

We now describe the implementation of our own algorithm designed for the 

automatic calculation of shape collages, which is a development of that pre

sented in the paper, (Giles et al. 1989). Following the methodology of Libeskind

Hadas and Maragos, (although not using their skeletonisation technique), the 

approach taken was to reduce the collage construction process to an essentially 

one-dimensional problem by looking for mappings which matched to shape bound

aries only, thus significantly reducing the search space complexity. The goals of 

the implementation were thus threefold. Firstly, to determine the practicality of 
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automatic generation of boundary matching collages assessed upon the criteria 

of encoding speed, accuracy, and compactness. Secondly, to evaluate the degree 

to which subsequent plugging of a shape's interior to produce full encodings was 

possible, and finally to evaluate the use of the implementation as the basis of an 

IFS shape representation scheme. 

To begin, we describe the decisions that need to be made relating to the 

practical choices presented in selecting coordinate systems, mappings, and an en

coding standard. 

4.1 Coordinate Systems 

In order to calculate mappmg coefficients we must first adopt a coordinate 

system, or frame. We have two basic choices, either to use a space fixed frame 

such as that provided by the image plane, or a body fixed frame where the 

coordinates are taken relative to an origin and an axis system defined by the 

shape itself. This second option is further complicated when we describe shapes 

in terms of subshapes - should we choose to refer each subshape in a single 

frame, or should each subshape have its own? 

We choose to use body fixed coordinates for the following reason. If the max

imum diameter of a given shape is calculated to be D, and the origin of our co

ordinate system lies somewhere on that shape, then the maximum translational 

component of a mapping it would ever be necessary to use would be D. This is 

because we never want a point contained in a shape S to be mapped onto a point 

outside S, and since the origin always gets displaced by an amount exactly equal 

to the translation parameters (the constant terms) of any mapping, this would 

occur for any mapping of non-zero contractivity and translation of vector length 
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greater than or equal to D. Thus we put an upper bound on the amount of 

translation allowed and significantly reduce the search space of possible collages 

by removing from consideration mappings known to be of no value. 

As to the problem of subshapes, Marr (Marr 1978) suggests that the second 

approach (separate coordinate systems for each articulated subpart) is to be pre

ferred. This has the advantage of allowing the natural description of the relative 

movements of subparts, and strengthens the isomorphism between the real world 

object and its representation. However, the current implementation is aimed at 

encoding only single shapes and so we propose a Cartesian coordinate system 

with origin at the observed centroid of the shape. The orientation of the axes 

is not critical, but for simplicity, we take them in the same directions as those 

of the image plane. The choice of the centroid as origin seems natural since it 

is easily calculated, relatively stable, and further, corresponds to the centre of 

mass for uniform planar objects and hence is the point about which they would 

naturally rotate. 

Once the position and orientation of axes are decided, we still have the free

dom of choice as to the scale we use. It could be argued that the scale should be 

taken as 1 : 1 with that of the image plane so that rendering of the attractor of 

the IFS yields the same sized shape as the original. Alternatively, a normalised 

frame could be chosen in which we set D = 1 and hence limit translation pa

rameters to the range [-1, 1] which, as shown later, results in all the mapping 

parameters being less than unity and giving the code an aesthetic symmetry. 

This second option is probably more suited to a system working with complex 

objects and employing subshape coding since a single scale factor stored as part 

of each code would ensure that they were rendered in the correct proportions 

to one another. The first option is more suited to an application where shapes 
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are simple enough to be represented by a single code and it would be benefi-

cial to have their relative sizes reflected m those of their representations. Due 

to the simplicity of the shapes encoded in this implementation, and the extra 

computational complexities of using normalised coordinates, we adopt the first 

option. 

The choice of reference frame will not affect the collage or the attractor of the 

associated IFS, and so it is tempting to think that it will be possible to change 

the frame of reference, if for example a more natural one was discovered, and 

simply modify the mapping coefficients so that the IFS is preserved. In general 

if ¢J is an invertible change of coordinate transformation such that, 1/J(x) = x' 

where primes denote the new coordinate system, then given an IFS {X, wn : n = 

1, 2, ... , N} in the original coordinate system with at tractor A, we have: 

N 

U ¢Jwn¢J- 1(A') =A'; 
n=l 

g1ves the collage of the attractor in the new coordinate system. Unfortunately 

the set of mappings {1/Jwni/J- 1 } does not constitute an IFS since they are not in 

general contractive (see figure 4.1 for a graphic example) unless we have the extra 

constraint: 

d(¢J(x),¢J(y)) = d(x',y') = kd(x,y) 0 < k < 00. 

That is to say that no independent rescaling of the axes is permitted. Since 

normalisation of the coordinate system will in general require such rescaling, (as 

described later), it is not possible to mix easily codes of this format with ones 

encoded at their natural scale. Should mixing of the two formats be required, all 

that can be done is to check the mappings produced by the coordinate transfor-

mation and ensure that they are all contractive. 
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A 

Figure 4.1 For change of coordinate tnwslormaUon ¢ the distance A' B' is 

greater tl1an the distance AD and so t.hc mapping t/Jwt/J- 1 is not contractive. 

\Ve leave a. discussion of the metric to be used until the next section since it will 

be shown to have an effect on the size of mappings we can use. 

4.2 Mappings 

Once the coordinate system is fixed, we turn attention to the type of map

pings to be used. As stated earlier, the only restriction we have is that each 

must be contractive, and there is no reason why we could not use many differ

ent mapping types. However, mixing types within an IFS adds unnecessarily to 

the complexity of the encoding and rendering algorithms and it is difficult to see 

what compensating benefits there might be. Obviously we want to keep the form 

of the tnappings as simple as possible since this will both reduce the amount of 

storage ~equired and improve program speeds, but we must ensure that we have 

a rich enough palette of maps to produce satisfactory collages. 
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vVe propose the use of two-dimensional affine transformations as described in 

chapter two (definition 2.3.4) and as used by Barnsley. They permit scalings, ro-

tations, reflections, and translations of a shape in the plane, and should therefore 

provide a broad enough set of collages for our purposes. The general form of an 

affine transformation requires the use of six coefficients: 

However, the matrix component of the transformation can be expressed m a 

different form using the four parameters, rh r 2 , 81 and 82 as follows: 

( ) _ (Xt) _ (1'tCOS8t 
WX-W - .

8 x2 . rtsln 1 

where x0 and y0 are the translation parameters. The value of this alternative 

notation will become apparent in the following discussion where we examine the 

limits imposed on parameters by the requirement that a mapping be contractive. 

We know from the previous section that the translation parameters can be 

confined to the range [-D, D] (without axis rescaling) but we can do better than 

this. If we calculate the extent of the shape in the x- and y-directions relative to 

the body-fixed reference frame then, because we must not map the origin outside 

this envelope, we can limit the x and y translations to these values. That is to 

say, if the shape is bounded by the interval [x 1 , x2) in the x-direction and [Yt, Y2J in 

the y-direction, then we can restrict xo a.nd Yo such that xo E [xt, x2] and Yo E [Yt. Y2]· 

For normalised axes we now scale in the x-direction by an amount max{lxtl, lx2l} 

and in the y-direction by max{lytl, IY2I}. As for the values of lh and 82, we allow 

them to take values in the range [0, 21r). The case for r 1 and r2 is not quite so 

simple since all we know is that they scale the shape and so must be bounded 

by the requirement that the mapping is contractive. Hence we need to derive a 

contractivity factor for a two-dimensional affine mapping in terms of r1 and r2. 
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We have from definition 2.3.6 that for a contractive mapping, w: 

d(w(x), w(y)):::; sd(x, y) where 0:::; s < 1. 

For a two-dimensional affine transformation we have: 

and 

and using the Euclidean metric we obtain: 

condition: 

d(w(x), w(y)):::; l1·,llx1 - Y1l + hllx2- Y21· 

Now let 1· = max{l1·,1, lr2l} so we have: 

Imposing the contractivity constraint gives the condition: 

The left hand side has its maximum when lx1- y11 = lx2- Y2l and so we get: 

r.../2:::; 1. 

Thus we can guarantee an affine transformation 1s contractive by making the 

restriction, 1·1 , r 2 E ( -0.707, 0.707), since then the minimum contractivity factor is 

given by, s = max{lr11, lr21}. However, this does not mean that all contractive affine 

mappings need to satisfy this condition since it makes the assumption of the 

worst case values for fh and 02 • For example, a mapping for which 01 = 02 has 

( ab + cd) = 0 and then r 1 ,r2 E ( -1, 1) satisfies the contractivity condition. 
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The Manhattan metric defined as dm(x,y) = Jx 1 -y1 J+Jx2-y2J is a less expensive 

function to evaluate than the Euclidean equivalent and so it would appear good 

sense to adopt this as our working metric. However, if we calculate the contrac

tivity factor for an affine mapping under the Manhattan metric we arrive at the 

following: 

dm(w(x), w(y)) = (JaJ + JcJ)J(xl- yt)J + (JbJ + JdJ)J(x2- Y2)J. 

Now, 

JaJ + JcJ = j1·tJJcosBtJ + hJJsinBtJ ~ JrtJJ2, 

and similarly (JbJ + JdJ) ~ Jr2 JJ2. With r = max{JrtJ, Jr2J} we get: 

dm(w(x),w(y)) ~ rJ2 dm(x,y). 

Hence, to ensure contractivity we have the requirement that r1 , r2 E ( -0.707, 0.707) 

for all mappings. Therefore the choice of metric determines the range of scale 

factors that can be used and hence the range of collages that can be made. 

In order to maximise the chances of obtaining a good collage, we decide to use 

the Euclidean metric and the larger range of scale factors it makes possible. Also, 

since 0 ~ cosx, sinx ~ 1 for all x, we have a, b, c, d strictly less than unity and with 

normalised coordinates we have all the six mapping coefficients less than unity as 

promised earlier. The full significance of the limits on mapping scale factors will 

become apparent in chapter six where we are concerned with generating random 

contraction mappings. 

An additional property of two-dimensional affine mappings that makes them 

useful for the current implementation is that the area which they cover is easily 

calculable from their coefficients. This is of relevance to the random iteration 

algorithm for which it has been stated that the probabilities associated with each 

mapping should be in proportion to their area. If the area of a shape is A then 
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the area of that shape under an affine transformation is given by lad- bcjA. Thus 

we take the probability for each mappmg as: 

Of course, this solution is only strictly applicable to totally disconnected or just-

touching iterated function systems, but can still be applied to slightly overlap-

ping ones without a significant degradation in the distribution of points over the 

attractor. In any case, overlapping codes are inefficient from the information stor-

age point of view and so we will normally be looking for totally disconnected or 

just touching representations and the overlap problem will not become apparent. 

The only care that need be exercised with such probability assignments is that 

each value of Pn does not fall below the minimum non-zero number that can 

be represented in the system. If a probability is ever set to zero the associated 

map is effectively removed from the IFS and the representation is degraded as a 

consequence. 

4.3 Encoding Algorithm 

We now give a detailed description of the proposed collage constructing al

gorithm. The data on which it works takes the form of digitised binary images 

of simple geometric shapes contained within a 512 by 512 pixel array. To begin 

we give an overview of the structure of the algorithm. 

1. The boundary points of the input shape are detected usmg a simple edge 

tracking algorithm. An arclength value is assigned to each point on the boundary 

and the centroid of the shape is calculated. (The arclength value for a point is 

its linear distance along the boundary from a chosen origin). 
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2. The curvature, ,.., is calculated at each boundary point by the convolution of 

the raw edge data with derivatives of a Gaussian function, G(O", s), where s is the 

arclength parameter. 

3. The boundary is segmented into a number of arcs, the endpoints of which 

correspond to zero crossings of curvature. 

4. Any arcs of less than five pixels in length are treated as spurious and merged 

with surrounding arcs. 

5. The equation of an interpolating arc, parameterised in terms of arclength, is 

calculated using a least squares method. Each arc is classified as either linear, 

concave, or convex by inspection of the equation coefficients, and then placed in 

a data queue. 

6. Contractive affine transformations are calculated which map arcs of the same 

curvature type onto each other. Only mappings with contractivity factors less 

than 0.8 are considered so as to avoid the value of (1- s)- 1 becoming too large. 

The quality of each generated mapping is tested by evaluating an error function 

given by: 

E= Ea 
(r 2 + r~) 1 - . 

2 ' 

where Ea is a measure of the area of the mapping that does not overlay the 

shape, and r1 and r2 are the mapping parameters introduced earlier. All error 

values are normalised to the range (0, 100). 

7. If the best error value obtained for mappings to a given arc is less than a set 

threshold, or if the arc becomes shorter than one pixel, then the corresponding 

mapping is accepted as part of the IFS and is output to a file. The matched arc 

is then removed from further consideration. If no suitable match is found then 
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the unmatched arc IS halved and the two new arcs produced are added to the 

back of the queue. 

8. The search continues, considering each arc m the queue m turn, until the 

queue is empty. 

Boundary detection is achieved by an edge tracking algorithm that works by 

finding points (pixels) adjacent to a known starting edge point. It makes the 

assumption that the boundary it is following is continuous, closed, and relatively 

smooth. It makes its traversal in an anticlockwise direction, (so determining the 

direction of increasing arclength, and thus giving meaning to the terms concave 

and convex), so that it moves in the sense of increasing angle subtended at the 

centroid, as usually reckoned in mathematics. The eight possible directions In 

which an adjacent point may lie are labelled as in the following table. 

0 1 2 

7 * 3 
6 5 4 

Table 4.1 The possible search directions relative to the pixel marked * 

as used by the boundary tracking algorithm. 

We make the assumption that the shape to be coded is contained within a 

known rectangular area of interest (AOI), and is of such a size that it intercepts 

the main diagonal. (This is equivalent to knowing the extent of the shape in the 

x- and y-directions which in any case is necessary for putting the bounds on the 

translation component of mappings). Starting from the top left-hand corner of 

the AOI, the algorithm samples each successive point along the leading diagonal 

until it detects one that is part of the shape - a 'foreground' point. This is 

taken as the first boundary point and is assigned a zero arclength value. The 
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search direction at which this point was found is taken as the step direction from 

the previous 'background' point as defined in table 4.1. The eight surrounding 

points are then checked in an anticlockwise direction, starting with the one in the 

position 'most opposite' (see later) to the search direction. When one of these 

points is detected as also being part of the foreground, it is taken as the second 

boundary point. With the location of this second point it is possible to make an 

assumption, based on the supposed smoothness of the boundary, as to the local 

direction in which the boundary is progressing, and so the following routine can 

be used for the rest of its points. 

From the 'old' search direction, the 'new' search direction is calculated using 

the formula new= (old+ 5) · (mod 8), which is the definition of the 'most opposite' 

direction. Starting in this direction each surrounding point is checked in a clock

wise direction until a background point is detected. The last foreground point 

before this one is taken as the next boundary point, its step direction is taken 

as the 'old' direction from which the new one is calculated. Repeating this pro

cess tracks the remainder of the boundary. The algorithm terminates when the 

last found point is adjacent to the initial point, so long as the boundary contains 

more than three points. 

As an example consider the section of pixel array represented below where the 

shaded points represent the shape (foreground). The search starts at the point 

in the top left-hand corner of the array. Moving in direction 4 the fifth point it 

checks (a) is determined to lie on the boundary and is taken as the initial point. 

The new search direction is set as 7 and so, starting with the pixel in direction 

7 and moving anti clockwise, (decreasing numerical search directions), each point 

adjacent to (a) is tested. The first such point tried is (b) and it is also found to 

be part of the foreground and is taken as the second boundary point. The new 
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search direction is calculated to be 4 = (7 + 5) (mod 8). Searching clockwise from 

(b) and starting in direction 4, the last foreground point is found to be (c). The 

new starting search direction yields (d) as the next boundary point. Continuing 

in this fashion, the tracking stops when it reaches the point (z). 

~ v t/' 
v /-/ '/ v:• [/ .. · / I/ . 

[Z r/· -·/ /'' 
b' ra: 

c 
;./> d' 
/ / 

/ 
I 

t:%·• 
I I 
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Figure 4.2 An example of the operation of the boundary tracking algo

rithm. 

For each boundary point the approximate arc-length distance from the pre-

ceding one is calculated and stored. Points in the step directions 0, 2, 4, and 6 

are taken as being v'2 units away, whilst those in directions 1, 3, 5. and 7 are 

one unit away. From this information we can associate an arc-length value, s, to 

each point along the boundary. 

The required end result of the segmentation process is a set of boundary arcs 

between which it will be possible to find contractive mappings. We refer to this 

mapping process as 'matching' one arc to another. Clearly better matches are 

possible between arcs of the same structure - ie. smooth or angular - and so we 

choose to segment at points of curvature zero crossings. This means that along 

its length each arc will have either zero curvature, or else a non-zero curvature 
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of a constant stgn. The concept of segmentation on curvature values is widely 

accepted because of the high perceptual information associated with points of 

high curvature - see for example Asada and Brady (Asada and Brady 1986). 

Curvature, ,.,, is defined as the rate of change of a curve's gradient with 

arclength. That is: 

dljJ 
K.=

ds 
with 

dy 
tani/J = -. 

dx 

Following the boundary detection phase, we have an arclength value associated 

with each point (x,y), and so it is natural to express curvature in terms of the 

derivatives of x and y with respect to s. This is the same approach as that taken 

by Mokhtarian and Mackworth (Mokhtarian and Mackworth 1986). We begin 

with the expression for ¢J and differentiate both sides with respect to s. 

d(tani/J) =sec2 1/Jdi/J = ..!!._ (dy). 
ds ds ds dx 

Making the substitutions x = dxjds, iJ = dyjds, x = d2xjds2 and jj = d2 yjds2 , and 

expressing dyjdx in terms of x and iJ, we obtain: 

d¢J 2 d (il) 
"' = ds = cos 1/J ds "f · 

Expanding the differential we get, 

..!!._ (~) = xii- xiJ 
ds x x2 ' 

and substituting for the cos ¢J term using: 

-1 . 2 
cos2 

A.- (1 + (y"jx) 2
) - x 

'+'- - :i;2 +y2' 

we arrive at the result: 

:i:ii- xy 
,.;,= "2 "2" 

X +y 

This differs from the result that Mokhtarian and Mackworth obtained, in that 

they have the denominator raised to a power of 3/2. We claim that our result is 
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the correct one, arguing that the introduction of a fractional power introduces an 

ambiguity as to the sign of the curvature. However, the error is unimportant with 

respect to Mokhtarian and Mackworth's work on scale-space representation since 

the denominator is dimensionless and their erroneous values are only scalings of 

the correct ones. 

Due to the discrete nature of a digitised image, and the effects of nmse, 

calculation of "' based on the raw data would contain too many spurious zero 

crossmgs to be of any use. Hence we smooth the data by convolution with a 

Gaussian function defined by, 

' 1 ( 2/ 2 G(a, s) = ~exp -s 2a ), 
av 21r 

and make the substitutions: 

X= x(s) * dG(a, s) 
ds 

with }~ and Y defined similarly. 

v ( ) d2G(a, s) 
A = x s * ds2 ; 

The boundary is now segmented into a number of arcs, the endpoints of 

which correspond to curvature zero crossings. The next stage of the algorithm 

is to find a parameterised equation for each of these arcs which requires that 

an arc contain at least three boundary points. Therefore to ensure a meaningful 

amount of data in each arc, and to weed out any spurious ones that have evaded 

the smoothing filter, arcs of less than five boundary points in length are merged 

with surrounding arcs. 

Each arc is represented as a quadratic function of s since it is known that 

each arc has a constant curvature sign and, by inspection of the curvature equa-

tion just derived, so must such a parameterisation. Explicitly we make the as-

signments: 
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sign of curvature is given by: 

Hence each arc IS classified as either linear, concave, or convex, depending on 

whether its curvature is zero, negative, or positive. This labeling convention is 

determined by the choice of arclength increasing in an anticlockwise direction 

around the boundary. The coefficients a0 , a 1 , a 2 , b0 , b1 , b2 are found using a least 

squares method. That is, for each arc the sums: 

i=N 

~1 = L(x;- a2s~- a1si- a0 )
2

; 

i=1 

are minimised where (x;,y;) are data points on the arc for i = 1,2, ... ,N. The 

solution to the minimisation of ~ 1 is given by the following matrix equation: 

where subscripts have been dropped for clarity. The solution for ~2 IS obtained 

by the same equation with the replacement of x by y throughout. 

The matching of two arcs is achieved by calculating a number of points along 

the length of each and finding the best fit transformation that maps one set of 

points onto the other. This is a further reason for parameterising everything m 

terms of s since any number, m, of points may be chosen along the length of 

each arc depending only on the resolution required. If the points along the first 

arc are denoted by the set of coordinates ( u( s), v( s)), and those along the second 

arc by (x(s), y(s)), then the required mapping, w, is given by, 

and Vn = CXn + dyn + f, 
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and IS found by the minimisation of 

m m 

D.3 = L(un- axn- byn- e) 2 and D.4 = L(vn- CXn- dyn- /)2. 
n=l i=n 

The following matrix equation (again without subscripts) giVes the solution for 

(a,b,e) whilst the replacement of u by v gives (c,d,f). 

The quality of a given mapping is decided by an error function defined by: 

E= Ea 

where r1 and r2 are the scaling coefficients g1ven by )a2 + c2 and )b2 + d2 re-

spectively, and Ea is the fraction of points in the whole of the shape that get 

mapped onto the background. A good mapping is one which correspond to a. low 

error value. There are several reasons for the use of this form of error function 

over the others that immediately present themselves. Firstly, it is not enough 

to use the values of ~3 and ~4 a.s the error measure since they only relates to 

how well two arcs match each other and do not give any information a.s to how 

/ good the mapping is a.s part of a. collage. There is not even any reason why 

their values should be used a.s a.n element of the error function since it is only 

required that the mapping produced be the best possible (for a. least squares fit) 

between two given arcs - it is only the possibility of a. match between the arcs 

that is of concern. Secondly, the Hausdorff distance is not included in the er-

ror measure for two reasons. The most important is that it is only of use when 

applied to the difference between the shape and the whole of the collage. It is 

possible that the Hausdorff distance between a shape and a single mapping could 

be quite large but that the mapping still be a valuable component of a collage. 

Also, by concentrating collage construction around the boundary of a shape we 
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are resigned to the fact that our final collage may be a poor representation of 

the whole shape, and that there will be a large Hausdorff distance between the 

two. Thirdly, the evaluation of Ea determines not only how good the match is 

at the site of interest, but also globally. It will penalise mappings that produce 

overspill of the shape at other points of the boundary other than that currently 

being considered. 

The use of the Pythagorean sum of scale factors mitigates the effect of over

spill by scaling it to the 'size' of the mapping. For this factor to be small it 

reqmres that both 1· 1 and 1·2 be independently small, and thus avoids the ac

ceptance of long thin mappings which may have a very small area but which 

protrude from the shape and cause the associated at tractor to form 'whiskers'. 

The value of Ea is scaled so that possible error values are in the range (0, 100]. 

The overall effect of the error function is to favour mappings that maximise the 

number of points that they map onto the shape (the foreground) whilst minimis

ing the number they map onto the background. 

Matchings are not considered between all possible pairs of arcs, in fact each 

arc is only tested for a match with those of the 'matching set'. This is the set 

of arcs accepted after the initial segmentation of the boundary. This restriction 

is employed to prevent a rapid increase in the size of the search space, and also 

to guarantee that most of the possible matchings will be contractive. Further, 

only matches between arcs of the same type are considered in order to maximise 

the possibility of a good fit. The order in which arcs are tested is determined by 

their position in the arc queue. At the start each of the arcs from the boundary 

segmentation is placed in the queue in an arbitrary order. The first arc is then 

considered, and a match looked for with arcs of the same curvature type in the 

matching set. If the error value for the best mapping for a given arc is less 
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than the set threshold value, or if the length of the arc has become less than 

one pixel, the mapping will be accepted as part of the IFS, and the arc will 

be deleted from the queue. However, if no suitable mapping is found then the 

arc is halved to produce two child segments which are placed at the back of the 

queue. The next arc in the queue is then taken, and the process continues until 

the queue is empty. 

When an arc is halved the equations and types of the two new arcs are recal-

culated if they are of a length greater than five pixels, otherwise they inherit the 

equation and type of their parent. This ensures that the best possible equation is 

used for each arc and that arcs that are too short for the least squares matching 

process still have a meaningful equation. We can be sure that the algorithm will 

terminate since successive halvings of arcs ensures that their lengths must even-

tually become less than one pixel at which point the best mapping is accepted 

regardless of the error threshold. 

Finally we demonstrate that the algorithm has an upper bound of O(n2 ) 

where n is the number of boundary points. Consider the segmentation of the 

boundary to result in m arcs each of length ain for i = 1, 2, ... , m such that: 

i=m 

L ai = 1. 
i=l 

An arc of length a;n can be halved until each child is less than or equal to one 

pixel in length. Thus an upper bound on the number of times an arc can be 

halved is h = log2 (2a;n) and so an upper bound on the number of children it can 

produce is given by: 
i=h 
L 2i = 2h+t - 1 = 4a;n- 1. 
i=O 

Neglecting overheads, the execution time of the algorithm is proportional to the 

the total number of matches it considers. In the worst case every arc produced 
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is matched to each arc m the matching set and so we have the total number of 

matches given by: 

i=m i=m 

L m(4ain -1) = 4mn L ai- m 2 = 4mn- m2
. 

i=l i=l 

However, we restrict the minimum length of an initial arc to five pixels, and 

so the maximum value of m is n/5. Hence an upper bound on the number of 

matches made is 19n2 /25 and so the algorithm is at worst O(n2 ). 

4.4 Program Performance 

We now present the results produced by a program of the algorithm described 

in the previous section. To test the program's performance we used a set of four 

simple shapes containing different combinations of the three arc types. The test 

set is shown in figure 4.1 and, labeling from left to right, we shall refer to them 

as shapes one, two, three, and four respectively. 

F 

Figure 4.3 The set of test shapes used to test the performance of the 

encoding algorithm. 

Whilst quantitative results are supplied for encoding speeds and compression 

ratios, the fidelity of the representations are discussed only qualitatively. This is 
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due to the problem inherent in calculating perceptually meaningful values for the 

'difference' between two shapes. Mumford (Mumford 1987) discusses this problem 

and gives examples of shapes which demonstrate that the use of metrics such as 

the Hausdorff distance quantify the 'closeness' of two shapes in a way that does 

not in general correspond to human classification, indicating that the shape of 

an object is a complex and context dependent perceptual entity. We therefore 

make the assumption that a good encoding is one that appears of high quality 

to the human eye and base our assessment of program performance upon this 

evaluation. 

We start with the output from the boundary detection and segmentation 

routine which is dependent on the smoothing parameter u. The effect on the 

number and position of the arcs into which the boundary is divided as u is 

increased IS demonstrated for shape two by the sequence of pictures in figure 

4.4. 
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Figure 4.4 A sequence of boundary segmentations of shape two for in

creasing values of (j, Arc endpoints are represented by the breaks in the 

shape outline. The values of the smoothing parameter are: (top left) 1.0, 

(top right) 2.2, (bottom left) 8.0, and (bottom right) 32.0. For each picture 

the graph at the bottom is the curvature plot on which the segmentation 

is based. 

Clearly, for an angular shape such as that used, the boundary of which could 

be accurately described using only linear arcs, a low value of (j is required to ob-

tain an optimal segmentation since the high sharp peaks produced at the corners 

maximise the length of the linear sections. However, as described in the previ-

ous section, in order for the program to have some degree of robustness when 

used on noisy images, any arcs of less than five pixels in length are treated as 

spurious and are merged with surrounding arcs. Hence, as the results for (j = 1.0 
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demonstrate, if the smoothing parameter is made too small then the curvature 

peaks at corners become so sharp that the small concave and convex arcs that 

they represent fall below the minimum length and cause linear arcs to be joined. 

Since the typing of each arc is left until its parameterised equation has been 

calculated, linear arcs joined in this way become classified as curves. The best 

segmentation of shape 2 is achieved with a smoothing parameter of u = 2.2, the 

broader curvature peaks being accepted as individual arcs, and thus allowing the 

correct classification of the whole of the boundary. As u is increased further, the 

peaks become still broader resulting in the shortening, and in some cases the 

disappearance of, the linear segments. This IS demonstrated by the results for 

u = 8.0 where it can be seen that some of the shorter linear segments detected 

with smaller smoothing parameters have joined with adjacent curves due to the 

coalescence of curvature peaks, as clearly visible in the graph. For u = 32.0 as 

shown in the final picture of the sequence, the curvature plot is smoothed to 

such a degree that the boundary is segmented into only four arcs, resulting m 

the loss of all fine detail of the boundaries structure and its subsequent repre

sentation as four long curves. Although not shown, if the smoothing is continued 

any further curvature becomes positive along the boundary's entire length and 

no segmentation occurs. 

It was determined experimentally that a value of u = 2.2 gave useful segmen

tations of all the shapes in the test set. This is demonstrated by the following 

figure. 

-103 -



F 
c;-;==.] 

I L~ ~~ 
c'~:J 

Figure 4.5 Boundary detection and segmentation for the set of test shapes 

with a smoothing parameter of, u = 2.2. The input shape appears on the 

left of each picture, and the segmentation points are denoted by the breaks 

in the boundaries on the right. 

A vv 

The segmentations found for each test shape in figure 4.5 were used to define 

the initial arcs for the collage construction process. At this stage we have the 

error threshold, t:, as the free parameter and demonstrate its effect on the quality 

of the output collages by the following figure. 
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Figure 4.6 The effects on collage construction due to increasing the error 

threshold, c. The values of£ are: (top left) 1.0, (top right) 2.0, (bottom left) 

4.0, and (bottom right) 16.0. For ea.ch picture the four test shapes appear 

on the top row with their collages directly beneath them. The collages are 

represented differently from usual, being shown as mappings of the whole 

shape to give a. better idea. of their space filling qualities. The bottom row of 

each picture shows the a.ttra.ctors for the IFSs associated with each collage. 

In general it appears that lower error thresholds result in better collages with 

more mappings (table 4.2) as is to be expected from theory. However, there are 

some exceptions, notably cases where an increase in the error threshold produces 

a better collage. First, consider the results for shape two which closely follow ex

pectations. With the lowest threshold setting the collage consists of 138 mappings 

which match the boundary well and coincidentally fill the interior of the shape. 
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Hence the attractor of the IFS not only has a good boundary, but serves as an 

acceptable representation of the whole shape. For t = 2 the number of mappings 

used drops to 103 and the resulting collage fits less well to the boundary, although 

the interior is still well filled. Further increases result in progressive deterioration 

of collage quality until the attractor for t = 32 is unrecognizable. 

[ shape 1 shape 2 shape 3 shape 4 

1 19 138 74 63 
2 15 103 34 41 
4 13 73 15 31 
16 11 43 12 28 

Table 4.2 The number of mappings used to construct a collage for each 

shape at a given erro1· threshold. 

The other three test shapes each show a departure from the expected norm. 

vVith shape four as input~ the output is poor even for low error threshold val-

ues, with numerous 'whiskers' present in the collage and hence the attractor. 

This is due partly to the inherent difficulty of matching sharply pointed cor-

ners, and partly to the algorithm used. In an attempt to find mappings with 

below-threshold error measures, boundary arcs in the region of sharp corners are 

repeatedly halved. Since matching in such regions is difficult due to the narrow 

angle into which the shape must be mapped, this process continues until the 

one pixel arc length limit is reached, at which point the best mapping is ac

cepted irrespective of its absolute error value. It is therefore possible for high 

error mappings to be accepted into the collage and to produce the thin penin

sulas that are so apparent. A positive aspect of the collages produced for shape 

four is the degree to which the interior of the shape has been filled, even at low 
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error thresholds. However, this is due to a fortuitous combination of the geome

try of the shape and the relative length of the linear arcs which enable the use 

of some large mappings with very low error values. 

Shape one begins to display the same effect since the boundary of the collage 

for t. = 1.0 is slightly inferior to that obtained with t. = 2.0. If we take into account 

the quality of the collage in the interior of the shape, then both can be considered 

inferior to the result obtained using a threshold of 4.0 since, for a small trade-off 

of boundary fidelity, it achieves greater overall shape coverage. This is simply 

due to the use of larger mappings which naturally occupy a greater area. 

Finally, shape three demonstrates several unwanted effects of the current Im

plementation. The most noticeable is the 'migration' of collages towards the 

boundary as the error threshold decreases. This is not altogether unexpected 

since by looking only for mappings along the boundary it must be accepted that 

when the mappings become very small they will provide little coverage of the 

interior. However, in this case the effect is exacerbated by the symmetry of the 

shape which has the effect of producing only two distinct arcs in the match

ing set - one corresponding to a long convex section, and the other to a short 

concave one. The resulting lack of variation in the types of possible mapping, 

combined with the similarity of all the child arcs produced by halving, means 

that if no acceptable mapping can be found for an arc of given length, then it is 

unlikely that one can be found for another arc of similar length. In practice, this 

means that the program will keep searching until all the arcs get small enough 

for an acceptable mapping to be found. Hence for a low error threshold, nearly 

all the mappings are very small and the boundary of the attractor approaches 

one pixel in width. This is apparent in the collage for t. = 1.0 where there is only 

one mapping of significant size. As the error threshold is increased further large 
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transforms are accepted but at the expense of degrading the boundary informa

tion. A further effect of the symmetry of shape three is the spurious structure 

that is apparent in the attractors of the iterated function systems produced by 

error thresholds of 4.0 and 16.0, which would prove misleading if used as a repre

sentation of the shape. 

By selection of different (O", e) parameters for each test shape, it was possible 

to Improve upon the results of figure 4.6. The following figure depicts the best 

collage that was found for each shape (using the parallelogram representation 

scheme) and, to demonstrate the fidelity of the information encoded in each IFS, 

the boundary of the associated at tractor. 

F D 

Figure 4. 7 The collages (left) and the at tractor boundaries (right) pro

duced for the best combination of parameters for each shape. The param

eters are (4.0, 4.0) for shape one, (2.2, 1.0) for shape two, (1.5, 2.25) for shape 

three, and (1.0, 0.5) for shape 4. 

To the eye, the quality of these 'best' encodings reflects the problems specific 

to each shape, that of shape two for example, is of a high standard but the 

pnce we pay is the use of 138 mappings. The representation of shape one was 

achieved with the use of just 11 mappings but the boundary contains several 

significant imperfections. The encodings of shapes three and four required 19 and 
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97 mappmgs respectively, but also contain significant boundary errors. However, 

making the assumption that a conventional representation of shape boundaries 

would need to make explicit the coordinates of each point and thus require the 

storage of two numbers per pixel, the following table shows the compression ratios 

that were obtained. The figures were calculated based on the number of pixels in 

each shape boundary and the number of mappings used in the encodings, each 

of which is taken to be described by six coefficients. 

shape boundary number compressiOn 
number length of maps ratio 

1 306 11 0.108 
2 449 138 0.922 
3 297 27 0.273 
4 383 63 0.493 

Table 4.3 Compression ratios for the best encoding of each test shape. 

To complete the results, we g1ve the following table of approximate execu-

tion times using the parameters (2.2, 16.0) for a program running on a SUN 3/75 

workstation. Clearly, as the number of mappings becomes very small as in the 

case for shapes one and three, our assumption that program overheads can be 

neglected is invalidated. The output of the RIA implementation is demonstrated 

by all the attractors that appear throughout this work, which were rendered at 

a rate of approximately one thousand pixels per second (one one- thousandth the 

rate achieved by Horn (Horn 1989) using an AMT DAP machine with 1024 pro-

cessing elements). 
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shape boundary number number runtime 
number length of arcs of maps (cpu s) 

1 306 6 11 62 
2 449 18 43 354 
3 297 6 12 84 
4 383 16 28 288 

Table 4.4 Program execution times for u = 2.2 and t: = 16.0. 

4.5 Conclusions 

We have demonstrated that automatically generated boundary collages are 

accessible using the O(n2 ) algorithm described in this chapter. For the set of 

test shapes used, runtimes were in the range of sixty seconds to half an hour 

depending on boundary length and complexity. Data compression ratios of nearly 

10 : 1 were achieved for the simpler shapes, and even the most complex produced 

codes more compact than a simple list of pixel coordinates. Qualitatively, the 

best encodings produced attractors which, whilst far from perfect, gave good 

approximations of shape boundaries. Taken together these results indicate that 

the encoding method is practical so long as absolute code fidelity and encoding 

times are not of critical importance. For example, the technique could find an 

application in computer graphics such as that initially suggested by Levy-Vehel 

and Gagalowicz. 

The results further indicate that the plugging of holes m boundary collages 

to produce full shape encodings is not as simple as suggested by Levy-Vehel and 

Gagalowicz. The use of small mappings to produce accurate boundary matches 

can result in minimal interior overlap and hence holes which are not significantly 
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smaller than the original shape, and which have a more complex boundary. Fun

damentally this returns us to the problem of finding full two-dimensional collages, 

which is the problem that boundary matching was employed to avoid. 

With reference to the use of this implementation as a basis for a machine 

vision shape representation scheme we make the two following observations: 

1. The algorithm is applicable only to the set of shapes possessing a well de

fined and relatively smooth boundary. In general however, we cannot expect an 

tmage of a real world object to have such a boundary for as Marr illustrates 

(MalT 1978), there exists a large set of shapes for which even though a clear 

'perceptual' boundary exists, a well defined physical one does not. For example, 

we find it easy to draw the outline of an imaginary leafy tree whilst there is no 

physical boundary around a real tree to which our drawing corresponds. Clearly 

just because we perceive most shapes to have a well defined boundary it cannot 

be assumed that the low level processing of a machine vision system will also 

find them to have one. Even if such a boundary were to exist, it is unlikely to 

be as continuous or as smooth as those of the shapes in the test set, due to the 

presence of noise. A possible solution would be to take the convex hull (see for 

example Bailey and Cowles 1987) of a shape· as its boundary, but even this is 

unnecessarily restricting the scope of the IFS representation scheme since, as was 

shown earlier, it should be possible to encode any given shape. 

2. The whole algorithm depends critically on the smoothing factor u and the 

error threshold f, it having been demonstrated that each shape requires it own 

specific values of each of these parameters to achieve satisfactory results. The 

value of u in particular has been shown to determine the number of initial arcs 

into which the boundary ts segmented and therefore to determine the range of 

possible mappings. 
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The general conclusion that we can draw from the results of this chapter 

1s that whilst the current implementation has possible applications in computer 

graphics, the limitations imposed on the type of shapes that can be encoded 

and the lack of robustness of the algorithm make it unsuitable for use as the 

basis of a general shape representation scheme. Specifically, we have shown that 

the problem of finding a full two-dimensional collage cannot be avoided by this 

boundary matching approach, and that it is necessary to develop an algorithm 

for directly obtaining full collages. 

The construction of such an algorithm poses a complex problem. Even usmg 

a normalised representation scheme, and restricting the mapping coefficients to 

an accuracy of two decimal places, we have a set of mappings numbering in the 

region of one hundred million, from which to choose. Further, there is no known 

method for finding the optimal collage other than 'try all cases' (Aho et al. 1983) 

which is clearly impractical. Hence, as for the vision problem in general, we are 

forced to look for approximate solutions. Fortunately we know that a IFS does 

not have to be perfect to be of use and that we can easily determine the quality 

of a given IFS using the collage theorem. 

The situation just described is the type of problem domain for which adaptive 

algorithms were developed. Hence we devote the next chapter to the description 

of a special type of adaptive algorithm, the genetic algorithm, and go on m 

chapter six to implement an IFS encoding scheme based upon one. 
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5 GENETIC ALGORITHMS 

For any search algorithm intended to function in a large and complex domain, 

there exists a fundamental trade-off between two competing strategies, those of 

exploration and exploitation. That is, whether to focus attention in the direction 

of the locally best solutions or to perform a more exhaustive search of the whole 

space, regardless of local qualities. The first approach is exemplified by random 

search techniques such as that of 'try all cases' which, although eventually guar

anteed to produce the optimal result, are too inefficient to be of any practical use 

(Aha et al. 1983). Hill climbing algorithms employ the second type of strategy 

in that they adopt the best solution currently available and as a consequence are 

easily trapped in local maxima, possibly leaving large areas of the search space 

unsampled. A feature of both random search and hill climbing algorithms is that 

they discard much of the information presented to them during the course of a 

search. It has been shown (Holland 1975) that a genetic algorithm (GA) achieves 

a near optimal trade-off between exploration and exploitation and also makes 

good use of past experience. Genetic algorithms have been demonstrated to have 

superior performance over hill-climbing types in some large search domains such 

as those of the NP class of problems (DeJong 1987), and find particular use in 

domains for which no theory exists to act as a guide. Recent applications have 

included uses in AI for machine learning (DeJong 1987), and in vision processing 

(Fitzpatrick and Grefenstette 1988) 

-113 -



A GA is a simplified model of the operation of population genetics (Dawkins 

1976, 1982, Ridley 1983). in that it 'evolves' a set of successively better solutions. 

It makes the basic heuristic assumption that the optimum solution in a search 

space is to be found in a region containing a high proportion of good sub-optimal 

ones. \Vith a view to the application of a GA t9 the solution of the inverse 

problem, this is clearly a sound hypothesis based on the inherent stability of the 

collage construction process as demonstrated in chapter three. 

In outline, the basic structure and operation of a GA can be described as 

follows. In the same way that the complete set of chromosomes (or genotype) 

specifies the properties of the organism (the phenotype), and as such can be 

regarded as an encoding of that organism by a string of chemical bases, so a GA 

represents all possible solutions in a problem domain by fixed length strings of 

numbers. The solutions themselves need not be numeric since it is the way m 

which each string is interpreted that determines the solution's structure. However, 

a necessary constraint of the mapping from numeric string to solution is that it 

be one-to-one and onto. Employing such a representation, an initial set of trial 

solutions, called a population, is produced by the random generation of numeric 

strings. A performance measure, (or to use the language of population genetics, 

a 'fitness' measure), is calculated for each of the trial solutions in the population. 

Each solution is then allocated a number of 'offspring' proportional to its relative 

fitness value. The exact offspring numbers are scaled so that the total number 

is equal to the number of original solutions thus maintaining a fixed population 

size from generation to generation. Each of the offspring is then modified using 

a set of genetic operators which are designed to mimic the effects of biological 

gene recombination. This is achieved by the swapping of sections of the strings 

between pairs of solutions. The procedure which governs how many offspring are 
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to be allocated to each solution, and which of the set of genetic operators are to 

be applied, is called the reproductive plan. The new set of solutions generated by 

the reproductive plan then replace the parent population and the whole process 

is repeated a number of times with the result of a progressive increase in the 

average fitness of the population. 

For the next few sections we turn to a description of the work of Holland 

(Holland 1975) on the development of the theory of GAs and formalise the above 

outline. We then discuss some of the problems encountered with practical imple

mentations of GAs, and go on to present our own ideas for a reproductive plan 

that attempts to alleviate some of them. 

5.1 A Formal Framework 

Holland (Holland 1975) identifies the following four components as reqmre-

ments of an adaptive system: 

1. an environment of the system, E; 

2. a set of structures, K; 

3. an adaptive plan, T, which modifies the system structures; 

4. a measure, JJ, of the performance of each structure. 

The purpose of an adaptive system is to update iteratively a subset of struc

tures, I< c K:, based on the information it receives from its environment, so that 

the average performance of individual structures k E I< improves. In general, the 

form of the performance measure will depend on the environment, and so we 

should adopt Holland's notation of writing J.lE(k) to represent the performance of 

a structure in the environment, E E £, where £ is the set of all possible envi

ronments. However, this notation becomes cumbersome when we start to talk of 
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the nth structure in a set at a time t, and because we normally have a fixed 

environment, we leave out explicit reference to it and write J.lnt as shorthand for 

J.1E(k,(t)), but bear in mind the proper meaning. Following Holland we make the 

definition: 

Definition 5.1.1 Let K(t) be the set of structures at time t. Let the environ

ment produce a signal I(t) which consists of the performance measures J.lnt for the 

structures kn(t) E K(t), then the adaptive plan produces a new set of structures 

K(t + 1) and can be represented as a function: 

r:IxK~-->K. 

As Holland observes, the relationship between K(t) and K(t + 1) may not be 

deterministic since r can be a stochastic process. That is, instead of constructing 

a unique set of structures, K(t + 1), from I(t) and K(t), a range of new sets of 

structures, {Kj}, is produced and a probability, Pi, associated with each one. The 

next set of structures to be evaluated is then selected with probability Pi. 

The effect of iterative applications of r to is to produce a sequence of suc

cessively fitter sets of structures which can be thought of as a trajectory, or 

path, through K. Alternatively, the individual structures that comprise I< can be 

thought of as a parallel set of trajectories through K. (Parallel in the sense that 

they progress through K at the same time). The ability of the system to discrimi

nate between structures is limited by the range of stimuli, I, that it receives from 

its environment and hence this range is a limiting factor on the improvement in 

average performance that is possible. 
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It 1s clear that a G A 1s an adaptive system smce we can make the assoCia

tions: 

environment = search environment 

set of structures = population 

structures = solutions 

performance measure = fitness 

adaptive plan = reproductive plan 

which are consistent with the outline of a GA's operation and with the previous 

definitions. In future when referring to GAs we will use the terminology on the 

right since it is more descriptive, although we will always intend the meaning 

formally associated with the terms on the left. In addition we make two further 

terminological definitions. Firstly, we will refer to each successive population that 

is generated during the iteration of the algorithm as a generation, for example 

the initial random population is the first generation, and so on. Secondly we call 

the fittest solution that has been found by the nth generation the best-so-far 

solution. The term indicates that although the solution is the best that has been 

found to date, it does not preclude the possibility that a few more generations 

would yield a better one. The best-so-far solution is important as it is the result 

we are interested in from a practical point of view, the average fitness of the final 

generation being of incidental importance, although providing a useful measure 

of the algorithms performance. 

The set of solutions, I<(t), serves a double purpose, being not only the data 

on which the algorithm is currently working, but also a coded history of all 

the structures tried to date. How this is possible is described in the following 
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sections, but first it reqmres the specification of exactly what we mean when we 

talk of data strings, reproductive plans, and genetic operators. 

5.2 Schemata 

In the analysis of Holland it was shown that best results can be expected 

from a GA when solutions are represented as binary strings and, since any set 

of solutions which can be represented by a string of numbers can obviously be 

represented by a binary string, it is unusual for anything else to be used. Hence, 

the following discussion assumes the use of binary strings in all cases. 

Borrowing the terminology from genetics, the use of a binary representation 

means that each point (or locus) on the string can be occupied by one of only 

two 'alleles'. This simply means that there can be either a '1' or a '0' at each 

point of the string. We can then represent a section of a string as follows: 

... 1-0-0-1-1-*-*-*-*-0-1 ... 

where the * stands for a locus at which the allele value is of no importance to 

the current discussion. Holland gives the following definitions. 

Definition 5.2.1 A schema is an n-tuple of defining positions along a binary 

string. 

That is to say we vtew each solution string as a compound entity consisting 

of a combination of different loci groupings. The groupings are allowed to overlap 

and a single locus is permitted to be a member of more than one distinct schema. 

Thus a string of length I loci contains 21 different possible schemata. A specific 
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association of allele values to the defining positions of a schema IS called an 

instance or realisation of that schema. The previously illustrated section of a 

binary string can be interpreted as a instance of a schema with seven defining 

positions, and is just one of the 2i possible realisations. 

Definition 5.2.2 Let a schema, £, have n defining positions it, i2, i3, ... , in along 

a binary string. The length of the schema is defined to be: 

Hence the schema of our example has a length of ten units. 

Schemata are treated as the random variables in a population and as the real 

entities being evaluated when the fitness of a solution is calculated. For example, 

the observed average fitness of an instance of a schema is taken as the average 

fitness of all the solutions in which it appears. An analysis of the change in the 

relative proportions of schema instances leads to an explanation of the power of 

a GA, but first we must consider the way in which schemata are modified from 

generation to generation. 

5.3 Reproductive Plans 

Two possible reproductive plans are described by Holland, and are labeled R1 

and R2 respectively. Plan R1 updates only one solution during each generation 

and is defined as follows. 
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Reproductive Plan R 1 

1. Set t = 0 and initialise the population randomly. 

2. Calculate and store the fitnesses, /Jno, for n = 1, 2, ... , N. 

3. Increment t by one. 

4. Select a solution with probability, Pi= /Ji(r-1)/NP.r-1, 

where [1.1 is the average population fitness. 

5. Apply genetic operators to produce a. child solution. 

6. Choose a second solution at random from the population. 

7. Replace the chosen solution with the new child and calculate its fitness. 

8. Repeat steps three to seven until t = T, where T is the runtime allocated. 

The second algorithm, R 2 , uses a. time-step during which all the solutions are 

updated, and for which each individual solution is replaced deterministically. 

Reproductive Plan R 2 

1. Set t = 0 and initialise the population randomly. 

2. Calculate and store the fitnesses, /Jno, for n = 1, 2, ... , N. 

3. Increment t by 1. 

4. For each solution, ki, generate ni offspring by selecting ni choices of genetic 

operators with ni = /Ji(t-1)/[1. 1_ 1 where [1.1 is the average fitness. 

5. Place all the offspring in the next generation. 

6. Replace the parent generation with the child generation. 

7. Repeat steps three to six until t = T, where T is 

the number of generations to be run. 
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Based upon these reproductive plans, Holland states the following theorem. 

Theorem 5.3.1 (Holland 1975) If a.t any time-step, t, there is probability p 1 

that a structure, kn(t), produces an offspring during that time-step, and there is 

a probability p2 that kn(t) is deleted during that time-step, then the expected 

number of offspring of kn(t) is Pt!P2· 

Proof- The probability of kn(t) E I<(t) surviving a time-step is (1- p2), so the 

probability of kn(t) being deleted during the Tth time-step is its probability of 

surviving T- 1 time-steps multiplied by its probability of being deleted during 

the Tth. That is 

The expected number of offspring during this interval is simply JlnT = p1T. There

fore, the expected number of offspring during the lifespan of kn Is: 

00 00 

LP(i)fint = LPtP2i(l- P2)t-l 
t=l t=l 

00 

= P1P2 L t(I- P2) 1
-

1· 
t=l 

However: 

f:t(1- P2) 1
-

1 = 1 + 2(1- P2) + 3(1- P2)2 + ... = (1- (1- P2))-
2 = i-. 

t=l p 

and so, 
00 

'"""' - P1 P2 P1 L...p(t)J-lnt = -2 = -. 
t=l P2 P2 

For plan R1 we have: 

m=N 

Pl = 1-'nt/ L 1-'mt 
m=l 

and 
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whilst for R 2 we have: 

and P2 = 1.0 

Then, if the total fitness of the population changes negligibly over the expected 

lifetime, the expected number of offspring for k11 (t) under either plan 1s: 

m=N m=N 

Pt/P2 = Np,nt/ L Jl.mt = Jl.nt/ L Jl.;:/ 
m=l m=l 

where flt 1s the mean fitness of all solutions m the population at time t. 

Thus for a reproductive plan of type R, which is to say either R1 or R2 , the 

number of offspring allocated to each solution is dependent on its relative fitness. 

Solutions with above average fitness clearly get allocated more offspring whilst 

those of below average fitness get fewer. Since only integer numbers of offspring 

are actually possible, Holland suggests scaling the value of JJ.nt/Jt 1 • 

5.4 Genetic Operators 

Holland describes several genetic operators such as mutation, crossover, inver-

sion, dominance, modification, translocation, and deletion, but shows that just 

mutation and crossover are adequate for a robust and general purpose set of 

operators. 

To discuss the use of these operators we represent a solution string as k = 

a1a2aa ... at where a; denotes the allele value at each locus, and is thus either a '1' 

or a '0', and I is the length of the string. Holland then describes the crossover 

operator as the following three step process: 
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1. Two structures, k=a 1a2 ... a, and k'=a;a~ ... a;, are selected at random 

from the current population. 

2. A crossover point is selected by choosing a random number, x, 

from { 1, 2, 3, ... , I - 1}. 

3. Two new structures are formed by exchanging the alleles of k and k' to the 

right of position x which results in the new structures: 

The effect of a crossover operation on the schemata pool is twofold. Firstly 

there is the generation of new instances of a schema already in the pool. For 

example, the structure k given above is an instance of the schema a 1a2 ... * * ... * 

but after crossover with k' we get a new instance of a1a2 ... ** ... * namely that of 

a1a2 ... a..,a~+l ... a;, always assuming that a; i= ai for some i > x. Each new instance 

of a schema c is equivalent to another trial of the random variable associated with 

c, and so increases the the likelyhood that the observed mean performance fl,t of 

the schema c is a good approximation of the expectation of the random variable 

c. Crossover also generates completely new schemata for trial. The crossover be-

tween k and k' produces an instance of the schema * ... * a..,a~+l * ... * which was 

present in neither of the two initial strings, again assuming that a..,+l i= a~+ 1 • Hal-

land gives the following theorem for the number of instances of new and already 

existing schemata that are generated by a crossover operation. 

Theorem 5.4.1 (Holland 1975) Let k = a1a2 ... a1, and k' = a;a2 ... a;, differ in 

attribute values at n 1 positions to the left of x + 1 and by n2 positions to the 

right. Then either resultant of crossover between k and k' will be an instance of 
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21 - 2/-n, - 2/-no + 21-n,-n, 'new' schemata and an instance of 2/-n, + 2l-n,- i-n,-n, 

schemata already instanced by k or k', assuming n 1 f. 0 and n2 f. 0. 

Proof - After crossover any schema which is defined at one or more of the n 1 

positions to the left, and at one or more of the n2 positions to the right, will 

have neither k nor k' as an instance. The number of such schemata is the number 

of 'new' schemata instanced by the crossover. There are 2n, combinations that 

can be made of the n 1 positions to the left. However, this includes the 'null' 

combination in which none of the n 1 positions are defined and so the number 

of combinations including at least one positions is 2n, - 1. Similarly to the right 

there are 2n,- 1 combinations. The remaining I- (n1 + n2 ) positions can have any 

allele and so there are 21-n,-n, combinations possible. The total number of 'new' 

schemata is then: 

Since n1 ,n2 > 0 the remainder of the 21 schemata will have new instances. Thus 

the number of existing schemata getting new instances will be: 

Clearly the application of the crossover operator allocates new trials to existing 

schemata whilst simultaneously introducing new schemata for trial. This is where 

the GA manages the trade-off between exploitation and exploration since further 

trials of existing schemata represent a more thorough examination of regions of 

the search space already identified as containing above average solutions, whilst 

the new schemata represent a speculative investigation of as yet unexplored areas. 
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We now consider the second of Holland's genetic operators, that of mutation. 

This is a single step process for each loci of a string whereby the allele value 

is inverted with probability Pm. For example, if the binary string of structure k 

begins with the sequence, 

1-0-1-1-0- ... , 

then a mutation at the third locus will transform it to: 

1-0-0-1-0- .... 

The mutation probability, Prn, is the same for each locus and has a fixed value. 

The purpose of mutation is to ensure that no schemata are permanently lost 

from the pool and is usually kept as a background process in that the value of 

Pm is made very small. 

5. 5 Intrinsic Parallelism 

We are now in a position to give Holland's analysis of the operation of the 

reproductive plans described earlier using just the two genetic operators. This 

will lead to the concept of 'intrinsic parallelism' which is responsible for the ef-

fectiveness of GAs. To begin, Holland concentrates on the effect of crossover 

alone. 

Theorem 5.5.1 (Holland 197.5) Let P(f, t) be the probability of a given solution 

kn(t) being an instance of schema f a.t time t. Given a reproductive plan of type 

R, and using only the crossover operator, the expected change in P(f, t) over one 

generation is bounded by: 

P( 1) ( 1 - (1- P(f,t)]Pcl(f)) p.,, P( t)· 
f,t+ :2: {1-1) P.t f, ' 
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where Pc is the probability of individuals undergoing crossover during a gener-

ation, and fl 1 is the observed a.verage performance of all the schemata in the 

population. 

Proof- It has already been shown that during one generation each individual 

in a population is expected to produce 1-lnt! fl 1 offspring under a reproductive plan 

of type R. Let B<(t) be the set of individuals that are instances of the schema L 

The total number of offspring expected for the set B<(t) is: 

where N<(t) is the number of instances of schema c at time t and jj<t is the average 

performance of all individuals that are instances of c. If Pc is the probability of 

crossover selection, and /(c) is the length of c, then a proportion Pcl(c)f(l-1) of the 

schema offspring will have .a crossover falling within its defining positions. When 

an instance of c is crossed with another instance of c the result is also an instance 

of c, otherwise the result may or may not be an instance of L The probability of 

c crossing with cis just P(t:,t) so no more than a proportion (1-P(t:,t))Pcl(t:)/(1-1) 

of the modified offspring of c can be expected to be instances of schemata other 

than t:, the remainder, [1- (1- P(c, t)Pcl(c)f(l-1)], will be instances of c Therefore, 

if N is the number of solutions in the population and N;(t + 1) is the number of 

instances of c that survive into the next generation: 

P( 1)= N;{t+1) ( 1 - [1-P(c,t)]Pcl(c)) N<(t+1) 
c, t + N ~ (/- 1) N 

> ( 1 _ -=-[1_-_P....,.('-t: ,--'t )'-=-] P_c_.l (c...._) ) jj<t N < ( t) 
- (/-1) JJtN 

> ( 1 _ [1- P(t:, t)]Pcl(c)) ~<t P(c, t). 
- (I- 1) Jlt 
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Of course, it is possible that some instances of t could form from the crossover of 

two solutions that did not contain t but this would only strengthen the inequality. 

As Holland points out, instances of a schema will increase so long as: 

( 1 
_ [1 - P( f, t)]Pcl( f)) Jt,t > 1. 

(1- 1) p, -

Therefore, a schema will become more populous if: 

Jl<t 2 ( ) . 1 _ [1-P(<,l)]Pcl(•) 
(1-1) . 

The denominator of this expression is equal to 1 - c where c is the product of 

three probabilities and soc:::; 1. Also, 1/(1-c) 2 (1+c) since (1-c)(l+c) = (1-c2 ):::; 1 

which gives: 

_ _ ( [1- P(f,t)]Pcl(f)) 
J.l<t 2 J.lt 1 + ( l - 1) . 

Taking the worst case with Pc = 1 and assuming that P(f, t) is small for any given 

f since the number of schemata is in general very large, then to ensure increase 

it is required that: 

- - ( /(f) ) 
J.l<t 2 J.lt 1 + ( l- 1) 

This demonstrates the intrinsic parallelism of the genetic algorithm in that the 

proportions of each schema increase or decrease according to the above, indepen-

dently of what is happening to all the other schemata in the population. Further, 

the relative proportions with which a schema appears in the population is depen-

dent on its past performance and thus serves as a record of that performance. 

The effect of mutation on this result is given by the following lemma. 
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Lemma 5.5.1 (Holland 1975) For a reproductive plan of type R, usmg both 

the crossover and mutation operators, the expected change in P( f, t) over one 

generation is bounded by: 

Where Pm is the probability of a mutation occurring at any given locus, and L 

is the number of defining positions for schema c 

Proof - From the previous proof we know that the term, 

( 
_ [1- P(€, t)]Pcl(€)) 

1 (/-1) ' 

is the probability of an instance off surviving crossover. The probability of one of 

the defining loci being mutated is Pm, so the probability of each defining position 

being unchanged is (1 - Pm), and the probability of all L loci being unchanged 

is (1- Pm)L. Hence the proportion of instances of schema f in a population after 

crossover and mutation Is: 

( 1 _ [1- P(E,t)]Pcl(€)) (1 - p )L 
(/-1) m . 

Substituting for this term n theorem 5.5.1 gives the desired result. 

Clearly mutation is a constant source of loss of schemata, and hence the 

reason for keeping the value of Pm small. However, some mutation is necessary 

to maintain diversity and lessen the chance of entrapment in false maxima. 
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5.6 Robustness 

The ultimate level of robustness that could be required of a GA 's repro-

ductive plan is for it to converge to the optimal solution under any conditions. 

However, as Holland points out, this is a pointless performance measure since 

searches based on exhaustive evaluation will converge but are useless in practice. 

Further, Holland states that when data can be represented by no more than a 

population of N trial solutions, where N is less than the number of all possi-

ble solutions, then no plan can be guaranteed to yield convergence. Specifically, 

Holland gives the condition that for any N < IK:I there exists 6(N) > 0 such that: 

T 

lim -T
1 

'L,P(I\*,t) = 1- 6(M). 
T-oo 

t=l 

where J(• is a subset of K: consisting of one or more structures with optimal 

performance which is to say structures k* E A such that the mean of Jl.(k*) is at 

least as high as the mean for any k E K:. 

This occurs because for any finite number of trials of a sub-optimal solution 

there is a non-zero probability that its observed average performance will exceed 

that of the observed value for the optimal solution(s ). There is thus a non-zero 

probability that enough sub-optimal solutions could be wrongly observed to lead 

to the deletion of data pertaining to the optimal solutions( s). Thus it cannot 

be expected for a genetic algorithm to produce optimal solutions even given an 

arbitrary large number of generations. 

However, 6(N') < 6(N) for N' > N even when N' is less than the number of all 

possible solutions. This is because: 

1. More copies of sub-optimal solutions in a population enables the average per-

formance to be calculated with more accuracy. If the variance of J.l(k) is smaller, 

then there is less chance that it will be observed that jj(k) > ji(k*). 
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2. The bigger the population the more generations that are required to com

pletely displace optimal solutions which means that ji(k) has to exceed p(k*) over 

a longer period which is less likely. 

To summanse the results of the last few sections, during each generation a 

G A evaluates and updates a large number of schemata in an intrinsically par

allel way, the current generation acting both as the set of best solutions found 

to date as well a history of the search, represented by the relative proportions 

m which each schema appears. Whilst this makes for an algorithm capable of 

quickly finding good solutions, it will not in general find optimal ones in do

mains with an infinite or unmanageably large number of possible solutions due 

to practical constraints on population size. 

5. 7 Limits on Implementations 

Holland identifies some of the factors that can adversely affect the performance 

of a G A as follows: 

- K is large resulting m many alternatives to test. 

- The solutions k E K are complicated so that it is difficult to determine 

which schema or components are responsible for good performance. 

- p.( k) is a complicated function containing many interdependent 

parameters and hence can be non-linear and discontinuous. 

- p.(k) can be a time and space varying function. 

- E presents the adaptive plan, T, with a great flux of information. 

These problems are however purely theoretical in that they identify limita

tions on a GA 's performance due to the search domain, fitness function, and 

reproductive plan, but do not consider the practical limitations imposed by an 
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implementation. Booker (Booker 1987) has addressed such problems and identifies 

the main one to be that of the population converging prematurely to solutions 

that are far from optimal. This is due to a combination of the effect described 

in the last section in which inferior solutions can be observed to out-perform su

perior ones, and the fact that any practical implementation of a GA must have 

a finite population size and hence cannot allocate an arbitrarily small number 

of offspring to each solution. For example, only an integer number of offspring 

can be generated, and for a population of fixed size, this means that some solu

tions must necessarily get allocated zero offspring. This complete loss of solutions 

never occurs in the theoretical formulation, the proportions of inferior solutions in 

the population simply become very small but still significant should one of their 

number eventually be transformed into a much fitter solution. The divergence of 

the search trajectory from that predicted and the domination of far from optimal 

solutions is termed genetic. drift, after its analogue in population genetics. 

The problem is aggravated if, during the early generations, a solution should 

appear that is significantly better than the average although not particularly good 

in absolute terms. Due to the way offspring are allocated, such a solution con

tributes a large proportion of offspring to the next generation which in turn are 

likely to be of above average fitness. After a few generations the descendants 

of an abnormally good solution have completely dominated the population by 

pushing out all other solutions. The resulting lack of diversity ensures that the 

population will converge prematurely. The fraction of the next generation which 

are descended from a single solution is defined by Baker (Baker 1987) as the 

'percent involvement' and can be used as an early warning of premature conver

gence. 
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Several approaches to alleviating the problem are discussed by Booker, the 

simplest of which is to simply increase the population size to allow for the rep

resentation of smaller shares of the space available. This is limited by efficiency 

considerations since larger populations require more memory and take longer to 

evaluate. In addition this detracts from the appeal of a GA - that of achiev

mg near optimal solutions without recourse to mammoth evaluation. Initially, 

increasing the mutation rate would appear to prevent premature convergence 

by increasing the amount of disruption m the system, however, mutation af

fects good and bad solutions equally and as v~rified in the next chapter increas

ing its probability above a background level has an overall detrimental effect on 

the performance of the algorithm. Booker briefly mentions other techniques for 

delaying convergence but they involve such ideas as introducing extra rules to 

the adaptive plan that weigh in favour of exploration over exploitation. Book

ers preferred approach is to improve performance by careful implementation of 

the crossover operator. The three techniques suggested are the use of two-point 

crossover (DeJong 1975), variable crossover rates, and the maximising of change 

during crossover operations. 

Two-point crossover is a slightly modified versiOn of the operator described 

by Holland, in that both crossover endpoints are chosen at random. The imple

mentation of two-point crossover is explained in more detail in the next chapter. 

The crossover rate is the frequency with which the operator is applied and by 

varying this inversely with changes in the percent involvement Booker is able to 

reduce the influence of well above average solutions and thus lessen the risk of 

premature convergence. Bookers final modification of crossover involves ensuring 

change from each application of the operator. For example, when the crossover 

sections of two solutions are the same no new schemata are generated for trial 
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and the hence the process is ineffectual. By deriving 'reduced surrogates' which 

is to say the sections of each solution containing non-matching alleles, and forc

ing the choice of crossover endpoints to lie in these sections, Booker ensures that 

the crossover operator always produces new schemata for trial. Of these three 

techniques we will make use of two-point crossover since Booker reports a signif

icant improvement in best-so-far performance at very little extra computational 

expense. However, ensuring change on crossover is reported as having little or no 

effect on best-so-far solutions, and varying the crossover rate adds computational 

expense to what proves to be an already slow program and so neither of these 

techniques will be used. 

One aspect of GA implementation that appears to be have been overlooked 

1s that of the exact numbers of offspring to be assigned to each solution. Theory 

suggests that the numbers should be proportional to the fitness of each solution 

but what should the proportionality factor be? The question is important since 

the number of offspring allocated to the best solution will determine the fitness 

level at which solutions start to get zero offspring and as the foregoing discussion 

indicates this can lead to loss of diversity, genetic drift and subsequent premature 

convergence. 

In the next section we propose a reproductive plan for a GA involving no 

arbitrary choices in the allocation of offspring and which attempts to keep to a 

minimum the advantage given to above average solutions. 

5.8 An Alternative Plan: D 1 

The problem with offspring allocation in a population of fixed size would ap

pear to be that as soon as one solution is given more than a single offspring 
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another solution must necessarily get zero. However, we propose that this prob

lem is illusory and caused by the focusing of attention on the wrong quantity -

that of the number of offspring - and that the correct factor to consider is the 

total amount of genetic material each solution imparts to the next generation. 

This is justified when we realise that after the use of a. crossover operator the 

resulting child solution should be counted a.s a.n offspring for both parents. 

From the definition of crossover it can be seen that the resulting child con

tains genetic material from both parents to an extent depending on the selected 

crossover length. Since the crossover length is permitted to be anything between 

zero and the full length of a. solution, it is impossible to tell from an inspection 

of the child and its parents exactly which of the parents was selected due to its 

superior fitness, and which simply as a. randomly selected mate. Hence the only 

consistent way of classifying the child is a.s the offspring of both parents and not 

simply the above averagely fit one. 

If we then consider each parent as having one of two shares in each child it 

is involved in producing, then we have the child generation containing a total of 

2N shares where N is the population size. Clearly now every parent solution is 

able to be allocated at least one share in the next generation whilst there being 

adequate capacity for allocating extra shares on the basis of relative fitness. Fur

ther, this allocation can be achieved in a natural way by the use of the following 

reproductive plan which we will call D 1 . 
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Reproductive Plan D 1 

1. Set t = 0 and initialise the population randomly. 

2. For each solution, kn(t), select at random a set of r· solutions, Kr(t), 

from the current population, K(t), where r > 1. 

3. Select the fittest solution, k*(t) E Kr(t). 

4. Apply the crossover operator to kn(t) and k*(t) and 

store the result in the next generation as kn(t + 1). 

5. Apply the mutation operator to kn(t + 1} with probability Pm. 

6. Increment t by one. 

7. Repeat steps two to six until t = T where T is the number 

of generations to be run. 

To analyze the performance of this plan we need the following definition. 

Definition 5.8.1 Let the number of solutions in a population at time t with 

fitness values between J.l and J.l + 6J.l be N1(J.l). Then define: 

where N is the population size and 1-'nt has its usual meaning. (We have assumed 

here that the J.lnt are positive, real numbers, but in general the lower limit of the 

integration is the lower limit of the range of fitness values.) 

From its definition lint is clearly the probability that solution kn(t) is fitter 

than any other single solution chosen at random from the current population. We 

now state the following theorem concerning the number of shares each solution 

can expect to get in the next generation. 
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Theorem 5.8.1 For a reproductive plan of type D1 , the expected number of 

population shares allocated to each solution is bounded by: 

N(kn(t), r):::: 1 + (Nr + (N- 1)r) ( V~t r- 1
. 

where N 1s the population size. 

Proof - The probability of a given solution kn(t) not being selected at all in 

a random sample of r solutions from a population of size N is (N- 1)" jNr, and 

so the probability of it being chosen at least once is 1 - (N - 1)" jNr. At worst 

there can be only r- 1 other distinct solutions in the random sample and so the 

probability of kn(t) being the fittest is better than v,{- 1 • Therefore the number 

of shares allocated to kn ( t) by random selection over N trials is greater than or 

equal to: 

N (1- (N ;r1)") v~~~ = (Nr + (N -1)") (~~r-t. 
Finally, each solution, kn(t), is guaranteed one share in kn(t + 1) and so its total 

number of expected shares is: 

N(kn(t), 1·) :::: 1 + (Nr + (N- 1n ( ~~) r-t. 

For brevity we shall henceforth write c(r) = N 1-r(Nr - (N- 1Y) which gives the 

number of population shares for each solution as 1 + c(r)v~~~ 

Lemma 5.8.1 The condition necessary for a schema to increase its probability 

from one generation to the next under reproductive plan D1 is: 
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where (v;,- 1
) 1s the a.verage value of v~;- 1 for all kn(t) that are instances of e. 

Proof - The effect of plan D 1 can be interpreted in Holland's terms as al-

locating at least c(r)v~;- 1 offspring to each solution, where the mate is chosen 

deterministically rather than at random, thus ensuring that all solutions get a 

share in the next generation. Following the same procedure as in theorem 5.5.1, 

the expected number of offspring for the set of solutions containing schema e is: 

n:kn(t)EB,(t) 

Even though the mate for each solution is chosen deterministically, the proba

bility that it will be an instance of c is still P(c, t), and since the crossover and 

mutation operators of D1 are the same as those for R1 and R2 , the probability 

that a given crossover will contain new instances of c is the same as in theorem 

5.5.1 but with Pc = 1. Hence: 

For increase we need the factors on the right hand side to be greater than one. 

Once again re-expressmg the terms in brackets and assuming P(c, t) is small for 

any gtven e we obtain: 

However, the mutation probability is usually very low and so by assummg that 

(1- Pm)-L:::::: 1 we obtain the required result. 

The advantages of reproductive plan D 1 are as follows: 
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1. Each solution gets a share in at least one solution in the next generation 

regardless of how low its fitness value may be. This guarantees that no solution 

gets completely neglected during a. single generation. 

2. Each solution gets a total number of shares in the next generation dependent 

on its relative fitness ensuring that better solutions still donate more genetic 

material than do poorer ones. 

3. There is no need to make a.n arbitrary choice of the exact numbers of off-

spring to allocate to each solution since this is handled automatically. 

4. By choosing r to be small the advantage of good solutions over poor ones can 

be reduced so encouraging exploration over exploitation and lessening the risk of 

premature convergence. For example, with r = 2 the expected number of shares 

for solution kn(t) is: 

1 
(2N- 1)llnt ,.., 

1 2 
. 

+ N """ + lint, 

if N is large. Clearly no matter how much better a particular solution is than 

the rest it can have lint = 1 at best and so contribute on average only three 

shares to the next generation. A reproductive plan in which offspring numbers 

are allocated proportional to J-Jnt/[1.1 could have the best structure contributing to 

nearly all of the offspring. 

5. Since only the fitnesses of the r solutions in the randomly chosen set need be 

known at any one time, it is only necessary to evaluate a solution if it is chosen 

as part of one of these sets. Hence, a solution that never gets selected need not 

be evaluated. For example, consider again the case when r = 2. The probability of 

selection for each structure is 1/ N each time. In total there are 2N selections and 

so the probability of a structure not being picked at all during one generation 

is (1- 1/N)2N. Typically N is of the order 100 and gives a 0.134 probability of a 
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solution not being evaluated. For complex fitness functions their evaluation is the 

major time consuming component of a GA and so any reduction in the number 

of evaluations that are necessary will result in improved run times. 

6. Since it is the best solution from the random subset of the whole popula

tion that IS required, it is not necessary to completely evaluated the fitness of 

each solution but only to be able to determine which is the better of two given 

solutions permitting the use of approximate evaluation techniques. 

Of course, there are also certain disadvantages associated with a reproductive 

plan of type D 1 , namely: 

1. The use of very small sample sizes makes it possible that a good solution 

could be allocated fewer shares than it warrants or that it could be allocated 

just its single share. However, this is the price we pay to reduce the effects of 

over exploitation. 

2. Since not all trial solutions get evaluated the best-so-far performance will 

be degraded, especially for programs employing large populations and a small 

number of generations. 

5.9 Summary 

In this chapter we have presented a summary of Holland's work on the the

ory of genetic algorithms and introduced the characteristics that make them suit

able for the intended application to collage construction. Namely, the ability to 

conduct efficient searches resulting in the attainment of near optimal solutions 

in large and complex domains for which no guiding theory is available, but in 

which trial solutions are readily evaluated. 
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The terminology of genetic algorithms has been introduced and their power 

explained by the way in which they allocate exponentially increasing numbers of 

trials to above average solutions in an intrinsically parallel fashion. 

We have further presented a discussion of the problems encountered with 

practical implementations such as genetic drift and premature convergence, and 

have suggested our own reproductive plan, D1 , in an attempt at improving pro

gram performance and efficiency. 

The next chapter concerns the implementation of a genetic algorithm incor

porating a reproductive plan of type D 1 , and with the purpose of constructing 

full shape collages. 
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6 IFS ENCODING BY GENETIC ALGORITHM 

In this chapter we describe the implementation and testing of a GA designed 

to automatically generate IFS representations of general shape input, and which 

incorporates a reproductive plan of type D 1 . The main aim of the implementation 

is to assess the practicality of the encoding method rather than an investigation 

of the properties of genetic algorithms or reproductive plans in themselves. How

ever, some of the issues discussed include the determination of practical program 

parameters, the trade-off between the accuracy of fitness evaluation and popu

lation size, and the effect of different fitness functions on best-so-far program 

performance. A notated listing of the C source code for the program can be 

found in appendix A. 

6.1 Program Parameters 

The search domain for a GA intended to solve the inverse problem is a space 

m which the points correspond to sets of contraction mappings. Regardless of 

practical considerations, the purely theoretical limitations of GAs discussed m 

the last chapter indicate that it would be nai've to expect anything like opti

mal solutions from such a search. However, we can simplify the problem, and 

hopefully increase the chance of obtaining near optimal solutions, by fixing the 

number of mappings to be used, which is to say fixing the 'size' of the collages. 

We can justify this by referring to the discussion of chapter three in which it was 
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stated that, in general, increasing the number of mappings in a collage increases 

the resolution of the representation and it was suggested that the resolution to 

which an encoding program is required to work should be the determining factor 

in deciding collage size. Thus we would normally expect an encoding program to 

search for the best collage possible with a fixed number of mappings. 

We therefore take collage size as one of six program parameters to be deter-

mined at runtime, the full set being: 

POP - population size. 

GEN - number of generations to run. 

MAP - collage size. 

XLN - crossover length. 

MUT - mutation probability. 

SUB - subsampling factor. 

Apart from MAP, SUB is the only parameter whose use 1s not obvious from 

the discussion of the previous chapter. Its value is a measure of the accuracy 

to which the fitness of each solution is evaluated and will be discussed in detail 

later. 

Clearly trying to optimise six independent variables is a difficult task in itself, 

complicated in this case by the stochastic nature of a GA and the difficulty of 

assessing the performance of each parameter combination. As a simplification we 

impose constraints on the amount of computer resource that we are prepared 

to spend on the encoding of each shape, the practical result of which is that 

we place a limit on program runtimes. By doing this we necessarily reduce the 

maximum performance that it may be possible to extract from the program, 

but in exchange we have a useful framework within which to make comparisons. 
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Further, there is little point in achieving good results if an exorbitant amount of 

resources are required. 

In terms of the g1ven parameters, and for a fixed value of MAP, we have 

approximately: 

t (X (GEN X POP); 

where t is the program runtime. The proportionality is only approximate since 

the other parameters, (especially SUB), complicate the relation as discussed more 

fully in a later section. However, what we can achieve by fixing the value of 

(POP x GEN) is a baseline runtime from which we expect small variations as 

the other parameters are changed. Specifically, we take POP = GEN = 100 as 

our standard values. Some justification for this is provided by Fitzpatrick and 

Grefenstette (Fitzpatrick and Grefenstette 1988) who report that these are typical 

values and ones for which useful results can be expected, since they allow the 

evaluation of ten thousand trial solutions. With MAP, POP, and GEN fixed there 

are now only three other parameters that need to be set which constitutes a 

much simpler problem. The determination of values for MUT, X LN, and SUB is 

covered in sections 6.6 and 6.7, but for the present we proceed by describing the 

implementation of the G A components given in the last chapter in terms of the 

above parameters. 

6.2 Program Environment 

The environment of a GA is the source of information on which the fitness 

of trial solutions is evaluated and hence it determines the future evolution of 

the initial population. In theory therefore, we must associate it with a specific 

shape input which is to say, E = S E 1-l(R2) and hence, E = 1-l(R2), since we make 
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no restrictions as to the type of shapes on which the program can operate. In 

practice though, we take the environment to be an image file created by a simple 

image processing program and which contains the following information: 

1. The number of pixels that constitute the shape. 

2. The coordinates of the centroid of the shape in the image plane. 

3. The coordinates of each pixel relative to the centroid. 

4. The maximum extent of the shape in the x- and y-directions. 

The information in the image file in addition to the minimum requirement of the 

pixel positions is a necessary consequence of the conventions adopted in chapter 

four, and which we have retained for the current implementation. The value of 

all coordinates in the image file are scaled by a factor of 1024 to allow the use 

of integer arithmetic thus increasing execution speed without loss of accuracy. 

Since the environment is time independent, the information in the Image file is 

invariant and need only be read once at the beginning of a program run. 

6.3 Solution Representation 

Following convention we use a binary representation for the solution strings, 

and as a result of the discussion of chapter four we continue to use affine trans

formations. We are able to keep the representation scheme simple because an 

IFS is basically a list of mapping coefficients which can be translated directly 

into a binary string. Since two-dimensional affine transformations requires six 

numbers to be completely specified, solution strings consist of (6 x MAP) sections 

each containing a. fixed number of bits which represent one mapping coefficient. 

The number of bits used is important since it determines the resolution to which 
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mappmg coefficients can be calculated and hence limits the accuracy to which 

the program works. 

The work of Barnsley (Barnsley 1988) indicates that a coefficient accuracy 

of two decimal places is sufficient to produce accurate collages, and this is sup-

ported by the demonstration of code robustness in chapter three which shows 

that changes made in the second decimal place have little effect on the attractor 

as a whole. Using the C programming language on our system, the 'char' data 

type is of length eight bits and consequently takes signed values in the range 

[-128, 127). This makes it convenient for use sil'lce it gives a coefficient resolution 

of 1/128 :::::: 0.008. Using one eight bit byte for each mapping parameter results in 

the length of each solution string being 48 x MAP bits. 

For the choice of coordinates and metric made, the range of values that each 

mapping parameter may take are as follows: 

1'1,r2 E (-0.707,0.707) fh,02 E [-11',71'), 

xo E [xmin, xmax] Yo E [ymin, ymax]. 

where xmm, xmax, ymm, ymax, are the shapes extent as gtven m the image 

file. The restricted range for the scale factors, r 1 and r 2 , ensures that any legal 

combination of parameters results in a strictly contractive mapping. 

The solution strings are decoded in the following way. If the value of the nth 

byte of a group of six is denoted by en, then the values of r 1 and r 2 are given 

by: 

rl = 128.ov'2 r 2 = 128.0v'2 · 

The next two bytes are taken as the angle parameters, 01 and 82 and their values 

are obtained from the following: 
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Of course, the fact that a value of +11' can never be attained is unimportant 

since a value of -11' produces exactly the same effect. The final two bytes of a 

group represent the translational components of the mapping and are decoded as 

follows: 

(c+128.0) ( . ) . 
xa = 

2 
* xmax - xmm + xmm; 

5500 

(c + 12800) 0 0 
Yo= 

25500 
* (ymax- ymm) + ymm; 

which gives them their proper full range. Clearly such a solution representation 

scheme satisfies the condition of being one-to-one and onto, in that every legal 

string represents a contractive collage, and every possible strictly contractive col

lage defined to two decimal places of accuracy has a representation by a string. 

6.4 Implementation of D 1 

Theorem 5.8.1 tells us the number of shares in the next generation that can 

be expected for each solution under a reproductive plan of type D 1 given a ran

dom sample size or r. If we consider these numbers at the extremes of the per-

mitted range of r we find the following: 

(2N- 1) 
N(kn(t), 2) = 1 + N Vnt :::::: 1 + 2Vnt (assuming large N); 

and 
lim N(kn(t), r) = N + 1 

r-oo 
if Vnt = 1.0 

= 1 if Vnt < 1.00 

This clearly demonstrates that as the sample size is increased the best solution 

gets a greater proportion of the 'quota' shares until in the limit it is allocated 

them all and the other solutions only get their one guaranteed share. (Notice 

that in both extremes the total number of shares is still equal to 2N)., The limit 

case corresponds to the fittest solution always being chosen as the mate and will 
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clearly result in that solutions descendants dominating the population. With r = 2 

however, the average number of extra shares the best solution can hope to get 

is two, hence restricting its ability to become dominant too quickly. This is just 

the effect required to prevent premature convergence and it is therefore proposed 

to adopt the use of a sample size of 1· = 2 henceforth. By combining such a small 

sample size with the ability to use approximate evaluation, and only evaluating 

solutions as and when necessary, the implementation of plan D 1 is made highly 

efficient. 

The decision to take r = 2 is further supported by noticing that for large N 

the result of lemma .5.8.1 now simplifies to the condition: 

where iift is the average fitness of all the instances of schema t at time t. The 

interpretation of this is that for even the shortest schemata to increase their 

population share, it is necessary that, on average, solutions containing their in-

stances be more likely to be chosen in preference to any other randomly selected 

solution. It should be noted at this point that although setting r = 2 gives a the-

oretical minimum advantage to above average solutions, it is possible that this 

goes to far and results in adverse effects on the algorithms performance. An ex-

tensive investigation of the effects of sample size is however beyond the scope of 

the current work, and we rely instead of the satisfactory algorithm performance 

described later as an indication that r = 2 is not too small. 

With the size of r set, we now describe the implementation of the crossover 

and mutation operators. As mentioned in chapter five, we do not use the sim-

ple crossover algorithm described by Holland, but a slight variant introduced by 

DeJong (DeJong 1975) called two-point crossover, the difference being that now 
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both the start and end points of a crossover section are determined at random. 

The rationale for this algorithm becomes apparent if the solution strings are con

sidered to be joined at their ends to form loops. A crossover section can now 

be any segment of a loop and is not restricted to the arbitrary choice of one 

bit being the fixed endpoint. This different crossover technique does not change 

the result of theorem 5.4.1 since we simply associate positions inside the two 

crossover points with those to the right of the single crossover point, and points 

outside with those to the left, or vice-versa, and the mathematics remains the 

same. However, two-point crossover differs in effect to the standard algorithm 

since it has a less disruptive effect on long schemata. For example, with a fixed 

crossover endpoint, even for short crossover lengths, any schemata with a defin

ing position at this endpoint is nearly always disrupted. By varying the position 

of the crossover endpoint this effect is distributed more evenly amongst all the 

schemata in the population and results in improved performance (Booker 1987). 

Using the string representation scheme given in the previous section, the sim

plest crossover implementation would be one in which two bytes along a string 

were chosen at random and the intervening bytes swapped between two solutions. 

However, this only allows crossovers in lengths of multiples of eight bits and 

would rather circumvent the use of a binary representation. To ensure crossovers 

of any length, masks are created for the end bytes of a crossover section. Thus 

the algorithm used to implement two-point crossover is: 

1. Select a random integer, x 1 , between one and 6 x MAP. 

2. Select a second random integer, x2 , between zero and XLN. 

3. Starting at the x1 th byte, crossover x2 bytes between parents. 

4. Place the child solution m the next generation. 
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.5. Generate a random left-end mask byte. 

6 Apply to the byte to the left of the childs crossover section. 

7. Generate a random right-end mask byte. 

8. Apply to the byte to the right of the childs crossover section. 

We choose to determine the endpoint of the crossover in terms of a distance 

from the start point, since then the parameter X LN controls the amount of ge

netic information that is inserted into each deterministically selected solution and 

so will affect the speed with which good solutions become dominant. The range 

of permitted values for X LN is between zero and 6 x MAP- 2. At the lower limit 

the amount of crossover is determined by the end masks alone and so the total 

crossover length cannot be greater than two bytes. When X LN has its maxi

mum value, it is possible for nearly the whole length of two solutions to undergo 

crossover. 

As an example of the operation of the end masks, let the bytes immediately 

to the left of the crossover section for two solutions be c and c' respectively. If 

the bit values in these bytes are represented by a 1 ,a2 , ... ,a8 and a~,a~, ... ,a;,, and 

the mask byte, m, is 00000111, then the operation: 

( c 1\ m) + ( c' 1\ ( ...,m)); 

results in a byte with the structure: 

hence adding three more bits to the crossover length to the left. The left-end 

masks are generated by choosing a random number, x E {0, 1, ... , 7}, and setting 

their value equal to 2" - 1. The same operation handles the right most byte of 
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the crossover usmg masks consisting of the binary values of -2"' for x chosen at 

random as before. With the endpoint crossover defined in this way, the minimum 

number of bits that are exchanged is one, corresponding to the left-end mask 

having a value of zero, and the right-end mask being -128. The maximum number 

of bits that the end mask can exchange is fifteen when the values are 127 for 

the left-end, and -1 for the right-end. Thus the minimum and maximum total 

lengths of a crossover section are one bit, and the length of the string minus one 

bit respectively. 

Mutation is handled in a similar way to crossover by the use of masks. Each 

child solution is given a probability of MUT of undergoing mutation. If mutation 

IS selected then the following algorithm is employed: 

1. Select a random integer, x, between one and 6 x MAP. 

2. Generate a random mask. 

3. Apply the mask to xth byte of the child solution. 

A mutation mask is generated by setting its value to 2Y where y is chosen 

at random from {0, 1, ... , 7}. If c is the byte selected to undergo mutation and 

00100000 is the mask then the operation: 

(c 1\ (•m)) + ((•c) 1\ m); 

would change a byte 01101101 to 01001101. This is a slightly different form of 

mutation to that described in the last chapter since it ensures that at most one 

bit of a solution is changed, however this is not of great significance since the 

very low mutation rates usually employed make multiple mutations of a single 

solution an extremely rare occurrence. The chance of any given bit of a solution 

being mutated is MUT/(48xMAP) which is the value that is intended by the factor 
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Pm in lemma 5.5.1 so and the value of MUT will typically be much larger than 

is normal for a mutation parameter. The advantage of implementing mutation in 

this way is that only two calculations need to be made per solution rather then 

the 48 x MAP needed if each bit were to be selected for mutation individually. 

6.5 Fitness Functions 

The obvious choice of fitness function for testing trial solutions ts that pro-

vided by the collage theorem, and so we could write: 

h(S, Wnt(S)) 
f.lnt = (1- Snt) . 

where S is the input shape and s111 and Wnt are the minimum contractivity factor 

and the union of mappings for solution k11 (t) respectively. However, the value 

of this function tends to infinity as the contractivity factor approaches unity 

which is fine theoretically, but unacceptable in practice. Also, although a minor 

point, the function decreases as the solutions improve and so it would require the 

minimisation of average population fitness. Taking the reciprocal of the function 

ensures that fitness needs to be maximised but now its value tends to infinity as 

the Hausdorff distance tends to zero. We therefore define the first of the fitness 

functions we consider to be: 

A _ (1- Snt) 

nt - 1 + h(S, Wnt(S)) 

Adding one to the denominator dramatically changes the behaviour of the func-

tion when h < 1, but this is of no importance since by working in the discrete 

space of the pixel plane, unity is the smallest non-zero value that h can take. 

The advantage of this modification is that fitness values are always finite, and 

moreover are normalised to be in the range [0, 1]. 
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Using Ant the fitness of a solution is calculated as follows: 

1. Decode the solution string, kn(t), and calculate the mapping coefficients. 

2. Calculate the contractivity factor Snti for each mapping, 

Wnti, where i = 1, 2, ... , MAP. 

:3. Calculate the contractivity factor for the collage, 

Snt = max{snti : i = 1, 2, ... , At!A.P}. 

4. Calculate the set of distinct points produced by the mapping Wnt(S). 

5. Calculate the Hausdorff distance, h(S, Wn1(S)). 

6. Evaluate Ant as defined above. 

Referring back to the definition of the Hausdorff metric in chapter two, it 

can be seen that the main computational burden is the calculation of the mini

mum distance between a point and a set, and the obvious algorithm to achieve 

this, that of exhaustive evaluation, is 0( m) where m is the number of points in 

the set. For a shape consisting of a finite number of points and with a collage 

of MAP mappings, there are a maximum possible number of m x MAP points in 

the mapping of the shape under the collage. Hence, the evaluation of h(S, Wnt(S)) 

requires the calculation of 2m2 x MAP distances and is thus 0( m2 ). Since even 

very small shapes can contain many thousands of points we require a more ef

ficient method of calculating Hausdorff distances or else a good approximation 

technique. 

Shamos and Hoey (Shamos and Hoey 1975) state that if no preprocessing 1s 

permitted then O(m) is both upper and lower bound for the calculation of the 

distance from a point to a set. That is, we will not be able to find an algorithm 

that will give an exact evaluation of h(S, Wn1(S)) that is better than 0( m2 ). As for 

an approximation technique, it is known that the Hausdorff distance between two 

sets is just the distance between a pair of points, one in each set. This sensitive 
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dependence on just two points, and the fact that we make no restrictions on the 

type of shapes to be used as input, means that no useful approximations can be 

made and we must accept that evaluation of function A will be slow. 

Although the Hausdorff metric appears in the theory of iterated function sys-

terns, we are not bound to its use in a GA. We therefore define the second of 

our fitness measures as: 

( 
ffint 

Bnt = 1- Snt)-. 
m 

where mn1 is the number of distinct points of S generated by Wn 1(S). Using B 

the fitness of a solution is found by the following algorithm: 

1. Decode the solution string, k,.(t), and calculate the mapping coefficients. 

2. Calculate the contractivity factor Snti for each mapping, 

Wnti, where i= l,2, ... ,MAP. 

3. Calculate the contractivity factor for the collage, 

Snt = max{snti: i = 1, 2, ... , MAP}. 

4. Determine the number of distinct points in S that are 

produced by the mapping W,. 1(S). 

5. Evaluate Bnt. 

Clearly B only performs a maximum of m x MAP calculations and is thus O(m), 

which gives it a significant speed advantage over A. 

The final fitness function we will investigate is defined as: 

C _ ffint(1- Snt) . 

nt - m(1 + h(S, Wnt(S))' 

which is just a hybrid form of Ant and Bnt· The performance of each of these 

fitness functions is discussed in section 6.8. 
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6.6 Parameter Settings 

We now focus on the experimental determination of suitable values for the 

MUT and XLN parameters. We take POP= GEN = 100 and use the Sierpinski 

triangle as the test shape which sets the value of M A.P at three. In order to 

first investigate the effects of varying MUT we set SUB = 1 and X LN at 6 x 

M A.P- 2 which allows for exact evaluation and maximum crossover. Fitzpatrick 

and Grefenstette (Fitzpatrick and Grefenstette 1988) use the average fitness of 

the best fifty solutions in a population after a fixed number of generations as a 

performance measure for a GA, using this rather than the average fitness of the 

whole population to equalise the evaluation time for populations of different sizes. 

However, since we vary population size little, we measure program performance 

as the average fitness of all the solutions. Also, because we are not concerned at 

present with absolute performance, we use the cheapest of our fitness functions, 

B, but with a slight modification. Since we are using a shape with a known IFS 

we can calculate the fitness of the optimal collage - which is clearly less than 

unity and dependent on the contractivity factor. By dividing through by this 

value we can better see the changes in performance. 

The results of varying the mutation probability through the range zero to 

one is demonstrated in graphs C.l-C.5 in appendix C. We take the graph for 

MUT = 0 as our reference point since this shows the effect of having no disruption 

in the system. As expected the average fitness shows an initial smooth increase 

with an eventual leveling off at around the eighty-ninth generation to a value of 

approximately 56% of the optimal. An inspection of the attractors of the solutions 

in the final generation reveal almost complete convergence to a single highly sub

optimal solution and due to the lack of variation introduced into the system, 

there is no chance of any further improvement. 
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Introducing a mutation probability of 0.25, which is to say that on average 

25% of the solutions in the population will have one bit changed each generation, 

produces the results of graph C.2. There is evidence of much greater fluctuation 

between the average fitness of successive generations but the final value is slightly 

higher than the previous result at around 65% of optimal. Graph C.3 shows the 

effect of setting MUT = 0.5 and now the deleterious effect of such a high mutation 

rate are clearly apparent, the fluctuations in average fitness are more pronounced, 

and the value after one hundred generations is approximately two-thirds of that 

achieve with MUT = 0. Inspection of the solu~ions in the final generation reveal 

large amounts of variation but clearly the tendency for improvement is becom

ing swamped by mutation effects. This trend continues with increasing values of 

MUT as depicted in graphs C.4 and C.5, and when finally MUT = 1 the popu

lation enters into an equilibrium between the opposing forces of refinement and 

disruption, with average fitness values fluctuating around 0.12. Graph C.6 shows 

the results obtained with a mutation probability of 0.01 which proved to give best 

results within the one hundred generation time limit. 

Graphs C.7-C.l2 show the effect of varying the value of XLN whilst keep

ing all other parameters fixed. With MAP set at three, the permitted range of 

X LN is integer values between zero and sixteen. For X LN = 0 Graph C. 7 exhibits 

similar behaviour to that obtained with a one hundred percent mutation rate, in 

that fitness values fluctuate from generation to generation, and there is little dis

cernible trend towards a steady rate of increase. This is probably to be expected 

since the exchange of very short string sections is little different from a mutation 

operation because early on at least, there is little correlation between a solutions 

fitness and the short schemata of which it is an instance. For XLN = 2 as de

picted in C.S the fluctuations are more pronounced, but there is an underlying 
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increase in the fitness of successive populations. As X LN is increased the absolute 

values of population fitnesses rise, the graphs become smoother, and the rate of 

increase higher. Best results are clearly obtained when crossover is allowed up to 

the full length of each solution string thus enabling the exchange of significant 

amounts of genetic information between parents and child. 

The results of this section indicate that within the bounds we have imposed 

the values MUT = 0.01 and X LN = 6 x MAP- 2 give best results. However, the 

indication is that in general the effects of mutation and crossover length have a 

sensitive dependence on each other and the remaining parameters such as POP 

and GEN. A more extensive investigation of this relationship is beyond the scope 

of this work and so we adopt the above values for all future program runs and 

now turn attention to the possibility of trading-off the accuracy of fitness evalu

ation for population size. 

6. 7 Evaluation vs Population 

Fitzpatrick and Grefenstette (Fitzpatrick and Grefenstette 1988) have exam

ined the benefits of trading accuracy in the evaluation of the fitness of each 

solution for an increase in population size and have shown that this can result 

in improved program performance in some cases. They assume that the runtime 

of a program is limited and hence that by making a quicker, more approximate 

fitness evaluation a larger population can be accommodated. Ignoring the over

heads, they give the runtime of a GA as: 

t ~ (o: + cf3)GN. 

where G is the total number of generations to be run, and N is the population 

size. The constant o: is dependent on the amount of computation required to 
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produce each generation due to the operation of crossover and mutation. cf3 is 

the cost of evaluating the fitness of each solution, where c is the number of 

sample points taken during the evaluation. It is assumed that the function being 

evaluated depends on the sampling of some quantity and that the accuracy to 

which the evaluation is made depends on the size of this sample. In practice 

though, all that is necessary is that the fitness function can be approximated 

and that c is a factor which represents the degree of approximation, decreasing 

as the evaluation becomes less precise. 

For our implementation the runtime equation IS modified to become: 

t::::: (a+ cf3)M AP x GEN x POP. 

the only significant change being the introduction of the MAP term which makes 

explicit the effect of increasing solution string length. The evaluation functions 

we use take as their data the pixels of the input shape, and so an approximate 

evaluation is achieved by taking only a fraction of the available data points. 

Therefore, rather than refer to the absolute number of samples for an evaluation 

we set c = m/SU B where m is the number of pixels that constitute the input 

shape and so corresponds to the maximum number of samples possible, and SUB 

is the subsampling factor. Clearly for a given value of MAP, if SUB is increased 

then the values of POP and GEN can be increased either individually or jointly 

without affecting the overall runtime. In general however, increasing the number 

of generations produces little improvement clue to population convergence and so 

it is preferred to increase the value of POP alone. Fitzpatrick and Grefenstette 

point out that the amount of population increase that can be accommodated 

depends on the ratio of afc/3. For example, if a is negligible and hence a/cf3 is 

small, which is to say that the major burden on the program is the evaluation 

of fitness, then POP varies inversely with SUB and large increases in population 
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are possible. However, if nf3 IS small then POP IS effectively fixed regardless of 

the value of SUB. 

Graphs C.13-C.16 show the effects of increasing the subsampling factor whilst 

keeping the population size constant and using the values for mutation and 

crossover determined earlier. With SUB = 1 we obviously get the the same re-

sults as before with the quick rise to high averages fitness values with that of 

the final generation being around 70% of optimum. Taking alternate data points 

produces the result of graph C.14 which shows a flattening of the rate of fitness 

increase and a leveling off at a slightly lower value of approximately 60% of opti

mum. Taking every fifth point significantly reduces the final average population 

fitness to 30% after one hundred generations whilst the graph for a subsampling 

factor of ten shows a rapid converges to a very low fitness value in the region 

of 15%. These results, whilst demonstrating the effect of inaccurate evaluation do 

not in themselves determine whether subsampling is detrimental. Graph C.15 in 

particular still shows an increasing fitness tendency right to the' last generation 

and it is possible that given a larger population size it could perform as well as 

for more accurate evaluations. The following timings were obtained for each of 

the runs just described: 

subsampling runtime 
factor (cpu seconds) 

1 981 
2 533 
.5 332 
10 274 

Table 6.1 Runtimes for a GA demonstrating the effect of increasing the 

subsampling factor. 
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Using these timings we are able to calculate approximate values for a and (3 to 

be: 

a = (5.22 ± 0.44) x 10- 3 fJ = (3.55 ± 0.12) X 10- 5
. 

Even though (3 is very small we are typically working with numbers of points m 

the region of one thousand and so significant increases in population size are still 

possible. For each of the three subsampling factors used, the possible population 

increase was calculated and the results of using these larger populations can be 

seen in graphs C.l7-C.20. A subsampling factor of two allows seventy-five extra 

solutions in the population, but the resulting fitness plot does not vary signif

icantly for that obtained with the standard population size. A set of 310 trial 

solutions with SUB = 5 and 417 for SUM = 10 give only marginal improvements 

to the program performance over one hundred generations, although both show 

the averages fitness to be still rising at that point which might indicate that 

more generations would give still better results. However, increasing the num

ber of generations would require a further trade-off of between population and 

evaluation accuracy in order to keep the total runtime fixed, which would rein

troduce the complexities of trying to optimise several different parameters. Our 

results indicate that for the types of fitness function used trading accuracy for 

the number of evaluations does not produce any benefit, and in the case of large 

subsampling factors, significantly reduces performance even when population sizes 

are increased to the maximum allowable. Unless otherwise stated the following 

parameters are now set for each program run: 

POP= 100 GEN = 100 MUT = 0.01 XLN = 6 x MAP- 2 SUB= 1. 

The value of MAP is of course determined by the size of the optimal collage for 

each input shape. 
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6.8 Program Performance 

Having set suitable values for the program parameters we now examme the 

best-so-far performance for each of the fitness functions. We have used another 

set of test shapes consisting of the attractors of known iterated function systems. 

These codes can be found in appendix B together with pictures of their collages 

and attractors. The set includes some well known fractals such as the Sierpinski 

triangle and the 'twin dragon' as used by Barnsley (Barnsley 1986), but also con

tains six 'random' fractals which were generated by choosing arbitrary mapping 

coefficients. Although the exact codes for each of the test shapes are known, we 

do not use this information to normalise the fitness values to fractions of the 

optimum but instead show absolute values. 

Since it is the quickest and simplest of the functions defined, we start with 

function B which keeps average runtimes down to approximately 1800 seconds. Its 

performance in encoding each of the test shapes is demonstrated by graphs C.21-

C.31 which plot average population fitnesses, and by figures 6.1 and 6.2, which 

show the collages and attractors of the best-so-far solutions after one hundred 

generations. 
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Figure 6.1 The best-so-far solutions (at tractors and collages) for encodings 

of the first five shapes of the test set using fitness function 8 The layout is 

the same as that for figure B.l so a direct comparison can be made. 
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Figure 6.2 The best-so-far solutions for encodings of the six randomly 

generated shapes of the test set using fitness function B. Again, the layout 

is the same as that for figure B.2 in appendix B so that a direct comparison 

with the original shapes can be made. 
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The quality of these encodings is in general very poor and especially so for 

the random fractals. One reason for this as demonstrated well by the attempted 

encodings for the fern and square shapes. The fitness function is simply too 

greedy, and insensitive to shape structure. For shapes such as the square where 

a slight modification in one of the mappings will make little difference to the 

number of points it covers, once solutions start to appear for which the number 

of pixels is near the maximum, little extra improvement is then made. This is 

seen clearly in graph C.28 which shows a good rate of average fitness increase 

due to the initial ease with which mappings can be made to cover the shape, 

but convergence is almost complete by the 75th generation. A similar trend is 

shown in the graph for the fern ( C.27) but here the problem is aggravated by 

the tapering of the shape which results in the mappings clustering in regions of 

high point density. It is the more distributed nature of the points of the ran

dom fractals that result in their poor representations, with mappings migrating 

towards high density areas and neglecting the overall form of the shape. 

The tendency for mappings to cluster at high point densities is not the only 

factor in the poor performance of function B. By examining the dimensions of 

the collage mappings in figures 6.1 and 6.2 it becomes apparent that there is 

a tendency for the mappings to be small and square, that is, the contractivity 

of the collages are kept low and in general r1 ~ r2 , 81 ~ 82 , and the mappings 

approximate similitudes, thus preserving the interior angles of the bounding rect

angle. The reasons for these two effects are closely linked and easily explained 

by considering what happens when a relatively good solution occurs in an early 

generation. Bearing in mind that function B rewards low contractivity and high 

shape coverage, it is likely that an good early solution will consist of some small 

mappings which all map onto the shape. The solution thus has a high fitness 
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and is allocated an above average number of offspring which find it easy to im

prove upon their parents fitness value by simply expanding the area of the shape 

covered by each mapping. This is possible since the area of a mapping is given 

by: 

Area( w(S)) = 1· 1r2 ( cos 81 cos 82 +sin 81 sin 82 )Area(S). 

and the contractivity factor for the whole collage is simply the maximum lrl 

value of any of the mappings. Thus each mapping can increase its values of r 1 

and r 2 up to the contractivity factor without imposing any negative effect on 

the fitness of the whole collage. In fact, such action is almost guaranteed to 

increase the fitness of the collage since a larger area is extremely likely to cover 

more shape points. Hence it is understandable that r1 = r2 = s frequently occurs. 

The reason that similitudes are favoured is that the cos 81 cos 82 +sin 81 sin 82 term 

of the area equation is a maximum for 81 = 82 and so again the area of each 

mapping can be increased· without any negative effects. Naturally, this process 

of improvement takes place over many generations, but there is a good chance 

that these continually improving solutions will always be above average and will 

eventually dominate the whole population with the result that by the time the 

limits of improvement have been reached there is insufficient genetic variation for 

further general improvement and hence the poor results. 

Of all the encoding attempts with function 8 perhaps the best is that ob

tained for the Sierpinski triangle since, although the attractor is visually poor, 

the collage is close to one of the optimal. The reason for this above average per

formance is clear in the light of the above explanation. The Sierpinski triangle 

is a 'compact' shape in the sense that it has no thinly tapering parts or jutting 

peninsulas, and has a uniform point density over its whole surface. This alone 

would probably be enough to ensure that its results were above average, but we 
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must also consider that its collage consists of three 'square' mappmgs which are 

identical apart form their translational components, and each of which has three

fold rotational symmetry. The effect of this is that there are at least 27 distinct, 

perfect, three mapping collages. Hence in this case the preference for centralised 

square mappings is beneficial and the number of optimum collages improves the 

chances of getting a near optimal result. 

As a demonstration of the search processes that occur during the running 

of the program, the next figure shows a sequence of the best-so-far attractors 

found using function 8 on the Sierpinski triangle. They represent a sample of 

the thirty-nine best-so-far solutions that were generated and, to demonstrate the 

convergence better, more examples of early results are shown since the last few 

attractors are all very similar. Also, as a check on whether the poor performances 

of 8 might be a flaw in the program, we used a population size of five hundred 

with the expectation of much improved results. 
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Figure 6.3 A sequence from the set of best-so-far solutions generated 

during a run of the GA using fitness function B, the Sierpinski triangle test 

shape, and a population size of five hundred. 
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A final unexpected result obtained with function B is the production of col

lages for some of the random fractals with fitnesses better than could be achieved 

by the optimal solution. In retrospect however, this can be seen as another effect 

of the tendency of mappings to prefer areas of high point density where they can 

cover the majority of points yet remain small. This is demonstrated by the result 

for the fifth random fractal in figure 6.2. If it is compared with the ideal collage 

in figure B.2 it can be seen that the two small mappings correspond with the 

centres of the streamer-like halves of the shape and thus cover a high percentage 

of points whilst the collage has a contractivity factor of only 0.469. The ideal 

collage naturally covers all points but consists of two large mappings with a con

tractivity factor of 0.882 and so has a maximum fitness of 0.118. The best-so-far 

solution actually covered just 30% of the whole shape but this is enough to give 

it a fitness of 0.159. 

vVe now turn attention to fitness function A which incorporates the evaluation 

of the Hausdorff metric. The results of using this function on five shapes of the 

test set can be seen in the following figure and graphs C.32-C.36. 
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Figure 6.4 The results of encoding (from top left to bottom right) the 

Sierpinski triangle, rand2, rand3, rand4, and rand5 using fitness function A. 

The choice of shapes was based on the number of points contained in each 

in order to minimise runtimes and also on which were good comparisons for 

the results of function B. 

-168 -



Paradoxically, the more sophisticated fitness function gives worse results than 

those obtained previously. In general the collages consist of very small mappings 

distributed evenly over the shapes and resulting in sparse, poor quality attrac

tors. The average fitness plots show a tendency for rapid convergence with little 

possibility of improved results coming from extended runs. The reason for these 

results would appear to be the form of the Hausdorff metric itself. As its defi

nition reveals its value is ultimately just the distance between a pair of points, 

with one in the input shape and the other in the collage, or more specifically, 

in one mapping of the collage. Thus we get bad results similar to those of func

tion B but for the opposite reason. It is now possible that the offspring of good 

solutions can improve their fitness by reducing the sizes of their constituent map

pings since there is a good chance that this will not affect the one collage point 

that is determining the value of the Hausdorff distance, but is guaranteed to de

crease the contractivity factor and hence improve fitness. Again, by the time the 

limit of this process has been reached, genetic variation has been lost and sub

optimal solutions result. Since the area of each mapping is now under pressure 

to be minimised there is less requirement for similitudes and this is confirmed 

by the presence of more skewed and elongated mappings in figure 6.4. Although 

the mapping size is clearly the dominant factor the effect of the Hausdorff term 

is apparent by the positioning of the mappings on the shapes. This is shown 

well in the results for the second, fourth and fifth random fractals of figure 6.4 

where the centres of the mappings in the best-so-far solutions correspond well 

with those of the optimal solutions. The effect of using A is not the generation 

of shape filling collages as might be expected considering the derivation of the 

function, but something akin to a minimum spanning of the input shape by MAP 

number of points. 
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The opposite pressures applied by functions B and A are demonstrated clearly 

by the results for the Sierpinski triangle. As just mentioned this shape gives the 

best result for function B but as figure 6.4 shows probably the worst result for 

A. Graph C.38 indicates an extremely early and rapid convergence confirmed by 

the best-so-far result after one hundred generations having been found during the 

sixteenth. 

The definition of function C is obviously an attempt at combining the two 

previous functions to balance their opposed forces. Results obtained are shown 

in the figure on the following page and in appendix C, graphs C.37-C.41. 
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Figure 6.5 Results obtained usmg fitness function C for the same test 

shapes as in figure 6.4. 
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These results are an improvement on those of both previOus sets although 

m absolute terms the quality of representation is still not good. The reappear-

ance of large square mappings indicates that of the two competing terms the 

contractivity is stronger although the effects of the Hausdorff distance are appar-

ent by their better distribution. The graphs show higher rates of average fitness 

growth, and in some cases sustain them up to the last generation indicating the 

were more computer resource available, better results would follow. As a test of 

this the following figure shows the collage and attractor obtained for the second 

random fractal using a population size of one thousand and a runtime of three 

hundred generations. Although the result is a great improvement on any yet 

achieved, (see the following figure and graph C.42), the runtime for the program 

was approximately sixty hours. 
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Figure 6.6 The representation obtained for the second random fractal 

using fitness function C, a population size of one thousand and a runtime 

of three hundred generations. 
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Since the poor performance of fitness functions A and 8 is in part attributed 

to their contractivity terms it could be suggested that this be dropped from their 

definitions. However, this would allow collages consisting of large mappings with 

contractivity factors approaching unity. It is easy to see that any large mappings 

that are not penalised for their size will be able to achieve high fitness values 

under any of the fitness functions considered and will hence quickly dominate 

the population. This is what in fact happens when the contractivity factors are 

removed from the fitness measures, with the best-so-far solution invariably includ-

' 
ing one of more near 'full size' mappings. Although the collages accurately cover 

the shapes, the attractors are still poor because of the very high contractivity 

factors. 

6.9 Conclusion 

The results of this chapter have demonstrated the use of a GA in the calcula-

tion of fixed size IFS encodings of whole two-dimensional shapes. No restrictions 

were placed upon the type of shapes used, with both complex natural forms and 

figures of Euclidean geometry being present in the set of test shapes upon which 

the program performance was evaluated. With reference to this specific applica-

tion we can draw the following conclusions: 

1. Once suitable program parameters are set to give best results within the 

constraints imposed by computer resource limitations, the form of the fitness 

function becomes of critical importance determining through its discriminatory 

power the speed of population convergence and ultimately the value of the best-

so-far solution. 
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2. The term derived in the collage theorem which relates the distances of a 

collage and its associated attractor from the initial shape is inadequate in itself 

as a fitness function. 

3. The presence of a contractivity term in the fitness function is necessary to 

prevent the use of large mappings and the subsequent weak bound that is placed 

upon the quality of the attractor. 

4. The presence of a metric distance term in the fitness function is necessary 

to provide the required degree of discrimination for cases where the input shape 

consists of widely distributed and sparse points. 

5. The use of the Hausdorff distance as the metric requues that the fitness 

function include a greedy term which rewards collages with high shape coverage. 

As for the reproductive plan D~, its has demonstrated high quality perfor

mance by producing smoothly increasing average population fitnesses for correctly 

set program parameters. The use of non-arbitrary offspring allocation, and the 

guaranteeing of at least one population share to each solution, has been shown 

to have the desired effect of maintaining population diversity, whilst the use of 

an r = 2 sample size has not adversely effected program performance, and has 

enabled a highly efficient implementation. 

In terms of the general practicality of using a GA for collage construction, we 

have shown that the program is basically 0( n 2 ) in the number of pixels contained 

in the shape but that the expense of evaluating the Hausdorff distance and the 

size of typical shapes results in extended runtimes. For example, using fitness 

function C which incorporates the properties described above, average runtimes 

for one hundred generations using a population size of one hundred solutions were 

of the order of eight hours, whilst sixty hours of processor time were required for 
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the attainment of results of a qualitatively high standard. The length of such 

runtimes and the stochastic nature of a GA which obstructs exact program anal

ysis renders the extensive investigation of encoding performance impractical with 

the current implementation. 

Despite the current speed and accuracy limitations we believe that the basic 

principle of using a GA for the construction of full shape collages is sound, and 

that no theoretical barriers exist to the future development of the present imple

mentation and its ultimate incorporation into a machine vision system as part of 

a shape representation scheme. 
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7 CONCLUSION 

We began with a brief discussion of the requirements of a general machine vi

sion system, concentrating in particular on the representation schemes that such 

a system could be expected to employ, based upon a study of the available psy

chophysical data. Following this and a review of the representation schemes em

ployed by past systems, we suggested the use of iterated function systems as a 

fusion of conventional geometric and pictorial schemes. , 

After a presentation of the theory of IFSs we introduced a formal frame

work within which to construct a two-dimensional shape representation scheme 

and derived the theoretical properties such a scheme would possess, giving ex

amples. We then tackled the fundamental problem of obtaining automatic shape 

en co dings. 

The work of chapter four on an encoding scheme based upon the simplifica

tion of concentrating on a shapes boundary led to the conclusion that, whilst the 

program developed may have applications in computer graphics, the limitations 

on the range of shapes that could be successfully encoded, and the inescapable 

requirement of constructing full shape collages, meant that the implementation 

was inadequate as a basis for a general shape representation scheme. 

An adaptive algorithm was identified as necessary to cope with the complex 

search domain presented by the problem of full collage generation, and a specific 
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type, the genetic algorithm, was selected. A discussion of the theoretical proper

ties and practical limitations of GAs was presented in chapter five, culminating 

in the introduction of a new reproductive plan, D 1 , designed to improve program 

performance and increase implementation efficiency. 

An implementation of a G A incorporating a highly efficient verswn of D 1 

was described in chapter six, and its performance in automatically calculating 

full collages for general shape input was assessed. The conclusions of this chapter 

gave guidelines to the requirements of a GA intended for IFS encoding, including 

the importance of the form of the fitness function and the characteristics that it is 

required to display. The cost of evaluating the Hausdorff metric for typical sets 

was found to be prohibitive using the current hardware, resulting in extended 

program runtimes. However, the general conclusion was that the application of a 

GA to the collage construction problem is fundamentally sound. 

In general we conclude that iterated function systems have the potential to 

form the foundation of a powerful shape representation scheme, combining the 

positive attributes of conventional geometric and pictorial models used in con

temporary machine vision systems. The GA encoding technique has been shown 

to be a possible basis for a practical implementation of such a scheme, with the 

capability of automatically generating shape encodings. 

7.1 Research Directions 

The work presented here suggests the following areas for future research: 

1. The extended runtimes produced by the current implementation are an ef

fect of the large amounts of data that must typically be processed and not the 
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inherent complexity ~f the algorithm itself, which is basically 0( n 2 ) with respect 

to the number of data points. Therefore, the conclusions of chapter six can be 

confirmed by the use of faster hardware so enabling more exhaustive investiga

tion of program performance. The fundamental nature of a GA and the minimal 

evaluation and communication required by the reproductive plan D 1 suggest that 

the current program would transfer well onto a parallel architecture. An order 

of magnitude increase in encoding speed would make the assessment of the pro

gram based on code fidelity a practical proposition. A further order of magnitude 

increase would result in encoding times down to a matter of minutes at which 

point machine vision applications would start to become practical. 

2. The reproductive plan D 1 avoids the need for arbitrary scaling of offspring 

numbers and, by requiring only the relative evaluation of a subset of the whole 

population, enables highly efficient implementations. It therefore has possible ap

plication to genetic algorithms in general and as such warrants further evaluation, 

especially with reference to the effects of varying the sample size. Even if D 1 is 

proved to have performance not significantly different from more conventional re

productive plans, its improved efficiency and integrity will prove highly valuable. 

3. From the definitions of chapter two it is apparent that the theory of IFSs 

1s applicable to n-dimensional spaces, and thus the logical progression of the 

current work is the extension of the encoding technique to three-dimensional 

forms, thereby permitting the direct modelling of real world objects. This can 

be achieved by reformulating the formalism of chapter three for the space 1i(R3 ). 

This will not however affect the properties of the representation such as stabil

ity and robustness since these are inherent in IFSs of any dimension. The RIA 

algorithm can be simply extended to the three-dimensional case thus preserving 

the ease of model manipulation. Finally, the GA described in chapter six can, in 
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theory, be simply modified to handle three-dimensional input, the only problems 

foreseen being those of increased search domain complexity and the difficulty of 

working with three dimensional data. 
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GLOSSARY OF TERMS 

ACRONYM - a VISion system incorporating model based reasonmg and a 

generalised cylinder object representation scheme. 

Adaptive Algorithm - a class of algorithm in which a set of structures Is 

iteratively updated, and of which a genetic algorithm is an example. 

Arc - a section of a shapes bounding contour produced by segmentation at 

curvature zero crossings. 

Attractor - the limit point of an iterated function system. 

Collage - the name given to any shape specific set of contraction mappmgs 

for which the union of the mappings is equal to the shape itself. 

Crossover - an operator on the population of a genetic algorithm which 

exchanges information between solutions. 

CSG - an acronym for Constructive Solid Geometry, a geometric 

representation scheme in which an object is described by the Boolian 

combination of volumetric shape primitives. 

D1 - a reproductive plan that avoids arbitrary allocation of offspring and 

allows efficient implementation of genetic algorithms. 

Fitness Function - a measure of the value of each solution in the population 

of a genetic algorithm. 
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GA - an abbreviation for Genetic Algorithm, a search algorithm based upon 

a simple model of population genetics. 

GEN - a program parameter specifying the number of generations for which 

a genetic algorithm is to be run. 

Generalised Cylinder - The volume described by a cross-sectional area of 

fixed shape but varying size as it is swept along a space curve. Used as a 

volumetric shape primitive in some geometric representation schemes. 

Generation a time period equal to one iteration of a genetic algorithm. 

Also used to refer to the population during such a time period. 

Glimpse - a v1s1on system incorporating pictorial representations or 'glimpses' 

of objects. 

IFS - an abbreviation for Iterated Function System, a set of contraction 

mappings on a metric space which, when applied iteratively to an any subset of 

the space, always produce the same subset in the limit. 

MAP - a program parameter for the implementation of a genetic algorithm 

that specifies the number of mappings to be used in the collages. 

Matching Set - a set of arcs used to find mappings onto the boundary of a 

shape. 

MUT - a program parameter specifying the mutation probability 111 a genetic 

algorithm. 
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Mutation - an operator on the solutions 111 the population of a genetic 

algorithm that introduces random changes. 

Offspring - the children allocated to a solution on each iteration of a genetic 

algorithm. 

POP - a program parameter specifying the population size for a genetic 

algorithm. 

Population - the set of solutions (structures) modified by a genetic algorithm. 

Population Share - the number of times a solution contributes genetic 

material to the next generation. Since each child has two parents, there are 2N 

share allocations in each population of size N. 

Reproductive Plan - the rules controlling the allocation of offspring and the 

use of genetic operators in a genetic algorithm. 

RIA - an abbreviation for Random Iteration Algorithm, used for obtaining 

the attractor of an iterated function system. 

Schemata - bit patterns treated as formal random variables for the purpose 

of analysis the behaviour of genetic algorithms. 

Shape - defined to be any compact subset of the Euclidean plane. 

SMS - an acronym for Suggestive Modelling System, an object representation 

scheme motivated by the need for 'visual salient' primitives. 
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Solution - one of the trial solutions that constitute the population of GA. 

More formally a structure that represents a solution in some search domain 

which undergoes iterative adaptation. 

String - a string of binary digits that represent a trial solution m a GA. 

Structure - a data element that undergoes successive modification m an 

adaptive system. 

Superquadrics - a family of three-dimensional shapes defined by the surface 

swept out by the tip of the parameterised vector .l'(v,w), where v, and w are 

latitudinal and longitudinal angles respectively. Used as the primitives in some 

CSG implementations. 

VISIONS - a VISion system based on rule based knowledge representation. 

WHISPER - a VISion system incorporating diagrammatic reasomng. 

XLN - a program parameter specifying the maximum crossover length m a 

genetic algorithm. 

-193 -



APPENDIX A 

We present here the C object code for the genetic algorithm described in 

chapter six. The text in normal type is explanatory material and is not part of 

the code itself. C key-words appear in bold type. 

#include < stdio.h > 

#include < math.h > 

MACRO DECLARATIONS 

MAP 

SUB 

POP 

GEN 

MUT 

XLN 

#define MAP 3 

#define SUB 1 

#define POP 100 

#define GEN 100 

#define MUT 0.01 

#define XLN (6 *MAP)- 2 
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number of generations. 
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FUNCTION DECLARATIONS 

The explanation of the operation of each function can be found at the head of 

its definition. 

int rand(); 

void medical(); 

void propagate(); 

void read_image(); 

void initialise(); 

void write_best(); 

GLOBAL VARIABLES 

clx[ ], ely[ ] 

cen[ J 

pixels 

best . 

colour 

oldfit, newfit 

data[ ] . . . 

parentJit[ ] 

childJit[ J 

shape[ ][ ] 

mapped[ ][ ] 

array[ ][ ] 

parents[ ][ ] 

children[ ][ ] 

oldgen, newgen 

extent of shape in x and y directions. 

. . . . centroid of shape. 

. the number shape pixels. 

fitness of best-so-far solution. 

highest pixel value in array[ ][ ]. 

pointers to fitness values. 

powers of 2. 

fitness of parents. 

fitness of children. 

co-ordinates of shape pixels. 

co-ordinates of mapped pixels. 

array representation of image. 

bit-string representation of generation (n). 

bit-string representations of generation (n+l). 

. . . . . . . . . pointers to populations. 
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float dx[2], dy[2]; 

int cen[2], pixels; 

int best = 0, colollr = 1; 

int *oldfit, *new fit, *dummy fit; 

char data[8] = {1,2,4,8,16,:32,64,128}; 

int parenLfit[POP], chi/d_fit[POP]; 

int shape(5000][2], mapped[5000][2], array[512][512]; 

char parents[POP][6 *MAP], children[POP][6 *MAP]; 

char (*newgen)[6*MAP], (*oldgen)[6*MAP], (*dummygen)[6*MAP]; 

MAIN 

The program takes the following combination of parameters: 

image-file [population-file]. 

IMAGE_FILE is the output file of the image processor and must contain the 

following information: the number of pixels in the shape; the position of the 

centroid of the shape in the image plane; and the extent of the shape in the x 

and y directions. POPULATIQN_FILE is optional. If present it must contain a 

population of solutions compatible with the current program parameters. No 

checks for compatibility are made. If the population file is not present then a 

random starting population is generated by INITIALISE(). The image file is 

read by the function READ-IMAGE(). Calculation of successive generations IS 

handled by the function PROPAGATE(). 

main( argc,argv) 

int argc; 

char * * argv; 
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{register int t,J; 

if ((argc < .2) II (argc > 3)) {printJ("inco1-rect argument number \n"); exit(O);} 

read_image(argv[1]); 

initialise( argv [2]); 

oldgen =parents; oldfit = parent_fit; 

newgen =children; newfit = child_fit; 

for (i = 0; i < GEN; i + +) 

{propagate(); 

dummygen = oldgen; dummy/it = oldfit; 

oldgen = newgen; oldfit = newfit; 

newgen = dummygen; new fit = dummyfit;}} 

READ-IMAGE 

Reads image data from output file of image processor. Initialises the global 

arrays shape[ )[ ) and array[ ][ ). The position values in the imagefile are scaled 

by 1024 to allow use of integer maths without loss of accuracy. Other values are 

scaled to match. 

filename 

void read _image(! ilename) 

char *filename; 

{int x, y; 

FILE *in; 

register int i; 

. . . . . . file from which image data 1s read. 
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if ((in= fopen(filename,",.")) ==NULL) {printf("image file error \n"); exit(O);} 

fread(&pixels, 4, 1, in); 

fread(&cen[O], 4, 1, in); fread(&cen[1], 4, 1, in); 

fread(&dx[O], 4, 1, in); f1·ead(&dx[1], 4, 1, in); 

fread(&dy[O], 4, 1, in); f7·ead(&dy[1], 4, 1, in); 

for (i = 0; i <pixels; i + +) 

{!read( &shape[i][O], 4, 1, in); fread( &shape[i][1], 4, 1, in); 

x = (cen[O] + shape[i][0))/1024; y = (cen[1) + shape[i][1])/1024; 

array[x][y] =colour;} 

cen[O]* = 256; cen[1)* = 256;} 

INITIALISE 

Initialises the first population. If a filename is given then the initial population 

is read from that, otherwise a random starting population is generated. 

filename . . . . . . . . . . . . . name of file containing initial population. 

void initialise(fi/ename) 

char *filename; 

{FILE *in; 

register int z,J; 

if (filename == NULL) 

{for (i = 0; i < POP; i + +) 

{for (j = 0; j < 6 *MAP; j + +) 

{parents[i][j] =(char) rand(-128,127);}}} 

else if((in = fopen(Jilename, ",·")) ! =NULL) 
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{for (i=O; i<POP; i++) 

{for (j = 0; j < 6 *!vi AP; j + +) f1·ead(&parents[i)[j], 1, 1, in); 

fread(&parenLfit[i], 4, 1, in);} 

fclose(in);} 

else {printf("population file error \n"); exit(O);}} 

PROPAGATE 

Produces a child for each 'mother' solution within the population. A pair of 

possible mates is chosen at random, and the fitter of the two is selected as the 

'father'. A crossover point and length are chosen at random. The bits between 

the endpoints of the crossover are copied from the father into the mother to 

create the child, which is then placed in the next generation. Masks are created 

for the end bytes of the crossover so that crossover length is not restricted to a 

whole number of bytes. One bit of the child is altered with probability MUT. 

mut . bit of string to be mutated. 

mask 

mate 

void propagate() 

{int mut; 

char mask; 

int mate, k, I, m; 

register int i,j; 

for (i = 0; i <POP; i + +) 

template for crossover. 

. . . . chosen mate. 

{for (j = 0; j < 6 *MAP; j + +) newgen[i][j] = oldgen[i][j]; 

newfit[i] = 0; 
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l = 1·and(O, POP- 1); if (oldfit[l] == 0) medical(/); 

k = rand(O, POP- 1); if (oldfit[k] == 0) medical(k); 

mate= (oldfit[l] > o/dfit[k]) ? l: k; 

I= rand(O, (6 *MAP- 1)); k = 1'and(O, X LN); 

for (j =I; j <(I+ k); j + +) newgen[i][j%(6 *MAP)]= o/dgen[mate][j%(6 *MAP)]; 

m = (/- (1 + 6 * MAP))%(6 * AIAP); 

mask= data[rand(O, 7)]- 1; 

newgen[i][m] = (o/dgen[mate][m] & mask)+ (o/dgen[i][m] & C mask)); 

m = (/ + k)%(6 *MAP); 

mask= -data[rand(O, 7)]; 

newgen[i][m] = (o/dgen[mate][m] & mask)+ (o/dgen[i][m] & C mask)); 

if (rand(O, 10000) < 10000 * MUT) 

{mask= data[rand(O, 7)]; 

mut = rand(O, (6 *MAP- 1)); 

newgen[i][mut] = ( newgen[i][mut] & C mask))+ (C newgen[i][mut]) & mask);}}} 
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MEDICAL 

Evaluates the fitness of a structure m the current population. The bit-string 

is decoded into MAP mappings each with five coefficients, sx, sy, 0, x0 , Yo· These 

values are then used to find the six parameters needed to define each affine 

mapping. When the fitness of a structure exceeds that of any previously found, 

the IFS it represents is output by the function WRITE_BEST. 

n 

smax 

tmp[] 

map[] 

points 

n11ll 

maxl, max2 

void medical(n) 

int n; 

{int x, y; 

float smax; 

register int j, k; 

int map[M AP](6]; 

float tmp[B]; 

int dummy[2], points; 

int min, max1, max2, dist; 

for (j = 0, smax = 0.0; j < 6 * MAP; j+ = 6) 

{tmp[O] =(float) (oldgen[n][j]) * 1.414; 

if (tmp[O] > smax) smax = tmp[O]; 

else if ( -tmp[O] > smax) smax = -tmp[O]; 
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tmp(1] =(float) (oldgen[n](j + 1]) * 1.414; 

if (tmp(1] > smax) smax = tmp[1]; 

else if ( -tmp(1] > smax) smax = -tmp(1]; 

tmp(2] =sin( (float) (oldgen[n](j + 2]) * M _PJ/128.0); 

tmp[3] = cos((float) (oldgen[n](j + 2]) * /'vLPI/128.0); 

tmp[4] =sin( (float) (oldgen[n](j + 3]) * M _PI/128.0); 

tmp[5] = cos((float) (oldgen[n](j + 3]) * M_PJ/128.0); 

tmp[6] =((float) (oldgen[n][j + 4]) + 128.0) * (dx[O]- dx(1]) + 255.0 * dx[1]; 

tmp[7] =((float) (oldgen[n][j + 5]) + 128.0) * (dy[O]- dy(1]) + 255.0 * dy(1]; 

map(j/6](0] = (int)(tmp[O] * tmp(3]); 

map(j/6](1] = (int)(-tmp[1] *tmp(4]); 

map(j/6](2] = (int)(tmp[O] *tmp[2]); 

map(j/6](3] = (int)(tmp[1] * tmp(5]); 

map(j/6](4] = (int)(tmp[6] * 1024.0); 

map(j/6](5] = (int)(tmp[7] * 1024.0);} 

for (k = 0, max2 =points= oldfit[n] = 0; k <MAP; k + +) 

{for (j = 0; j <pixels; j+ = SUB) 

{x = (map[k][O] * shape[j][O] + map[k][1] * shape[j][l] + map(k](4] + cen(0])/262144; 

y = (map[k][2] * shape[j][O] + map[k][3] * shape[j][1] + map[k][5] + cen(1])/262144; 

if ((array[x][y] > 0) && (array[x][y] <=colour)) 

{oldfit[n] + +; array[x][y] =colour+ 1; 

mapped(points][O] = x * 1024- cen(0]/256; 

mapped(points][1] = y * 1024- cen(1]/256; 

points++;} 

else if ((array[x][y] <= 0) && (array[x][y] >-colour)) 

{ anay[x ][y] = -colour; 
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mapped[points][O] = x * 1024- cen(0]/256; 

mapped[points][l] = y * 1024- cen[l]/256; 

points++;}}} 

for (k = 0, max 1 = 0; k <pixels; k+ =SUB) 

{for (j = 0, min= 262144; j <points; j + +) 

{dist = (shape[k][O]- mapped[j][O]) * (shape[k][O]- mapped[j][0])/262144; 

+ (shape[k][l]- mapped[j][l]} * (shape[k][l]- mapped[j](l])/262144; 

if (dist < max1) {min= maxl; break;} 

if (dist <min) min= dist;} 

maxi= min;} 

for (k = o, max2 = o; k <points; k + +) 

{for (j = 0, min= 262144; j <pixels; j+ =SUB) 

{dist = (shape[j][O]- mapped[k][O]) * (shape[j][O]- mapped[k][0])/262144; 

+ (shape(j](1]- mapped[k][l]) * (shape[j][1]- mapped(k](1])/262144; 

if (dist < max2) {min= max2; break;} 

if (dist <min) min= dist;} 

max2 =min;} 

colour++; 

if (max2 > maxl) maxi= max2; 

oldfit[n] = (int) (oldfit[n] * (256.0- smax)/(256.0 *pixels* (1.0 + sqrt((Jloat) maxl)))); 

if (oldfit[n] >best) {best= oldfit[n]; write..best(best, map);}} 
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WRITE-BEST 

Outputs the best-so-far solution in two different formats. IMAGE is an ascii file 

and gives the code and its fitness in a readable form. IMAGE.IFS contains just 

the raw IFS data and could be used directly by a pattern recognition program 

as one of its library codes. 

value 

data( ] 

void write_best(value,data) 

int value; int (*data)[6]; 

{int i,j; 

FILE * outl, *Out2; 

short numbe1' =MAP; 

outl = fopen( "image", "w" ); 

out2 = fopen("image.ifs", "w"); 

fp1'intf(out1, "%s", ''image \n"); 

fw1'ite(&numbe1', 2, 1, out2); 

for (i=O; i<MAP ;i++) 

fitness value of best solution. 

. . . - mapping coefficients. 

for (j = 0; j < 4; j + +) fp1'intf(out1, "%/",(float) (data[i][j])/256.0); 

for (j = 4; j < 6; j + +) fp1'intf(outl, "%!",(float) (data[i][j])/262144.0); 

fp1'intf(out1, "%s", ''\n"); 

for (j = 0; j < 6; j + +) fw,·ite(&data[i][j],4, 1,out2);} 

fp1'intf(out1, "%d\n", value); 

fclose(out2); fclose(outl);} 
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RAND 

Generates pseudo-random integers in the range (a, b]. 

seed ..... . 

int rand( a, b) 

int a, b; 

{float c; 

static short seed; 

{seed= ((int) seed* 25173 + 13849)%65536; 

c =(float) seed/32768.0; 

c = 0.5 * (b * c- a* c + c + b +a+ 1.0); 

return ((int) c);} 
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APPENDIX B 

The following IFS codes are those used to test the GA implementation in 

chapter six. Using the normalised fitness functions as described in the text, the 

fitness of each of these exact codes is dependent on its minimum contractivity 

factor, s, and so this quantity is given for each case. 'vVe also supply the 

probabilities, p(i) for i = 1, 2, ... , N, used in the rendering of the codes, together 

with the number of points, n, that were produced. 

Renderings of the attractors and representations of the collages for the set of 

test IFS's are given in the figures that follow directly after the tables of codes. 

a b c d e f p( i) 

W1 0.50 0.00 0.00 0.50 0.00 18.00 0.333 

W2 0 .. 50 0.00 0.00 0.50 -15.00 -8.00 0.333 

W3 0.50 0.00 0.00 0.50 15.00 -8.00 0.333 

Table B.l The IFS code for a Sierpinski triangle with s = 0.500 and n = 779. 

a b c d e f p( i) 

wl 0.50 0.00 0.00 0.50 15.00 15.00 0.250 

W2 0 .. 50 0.00 0.00 0.50 15.00 -15.00 0.250 

W3 0.50 0.00 0.00 0.50 -15.00 15.00 0.250 

w4 0.50 0.00 0.00 0.50 -15.00 -15.00 0.250 

Table B.2 The IFS code for a. square with s = 0.500 and n = 3291. 
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a b c d e f p( i) 

Wt 0.20 -0.26 0.23 0.22 0.00 24.00 0.111 

w2 -0.1.5 0.28 0.26 0.24 0.00 6.60 0.116 

WJ 0.8.5 0.04 -0.04 0.8.5 0.00 24.00 0.773 

Table B.3 The IFS code for a fern with s = 0.851 and n = 4030. 

a b c d e f p(i) 

Wt 0.59 -0.:37 0.:37 0 . .59 60.00 0.00 0.500 

w2 0 . .59 -0.37 0.37 0.59 -60.00 0.00 0.500 

Table B.4 The IFS code for the twin-dragon fractal with s = 0.696 and p = 1809. 

a b c d e f p( i) 

Wt 0.00 0.50 0.50 0.00 15.00 15.00 0.333 

W2 0.50 0.00 0.00 0.50 15.00 -1.5.00 0.333 

WJ -0 .. 50 0.00 0.00 0.50 -15.00 -15.00 0.333 

Table B.5 The IFS code for the 'L' shaped fractal with s = 0.500 and p = 1128. 

a b c d e f p(i) 

Wt 0.32 -0.16 0.2.5 0.49 5.60 19.96 0.236 

w2 0.53 -0.25 0.13 0.68 -12.43 16.98 0.472 

WJ -0.18 -0.83 0.33 0.18 14.25 10.14 0.292 

Table B.6 The IFS code for random fractal, randl, with s = 0.849 and n = 880. 
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a b c d e f p( i) 

Wt 0.01 -0.07 0.18 0.27 30.00 34.00 0.038 

W2 0.40 0.43 -0.53 0.22 24.00 -21.00 0.768 

-w3 -0.03 0.51 -0.15 -0.12 -1.5.00 20.00 0.194 

Table B.7 The IFS code for random fractal, rand2, with s = 0.664 and n = 346. 

a b c d e f p( i) 

Wt 0.34 -0.21 0.21 0.34 -8.92 13.43 0.274 

w2 0.36 0.37 0.37 -0.36 20.41 6.29 0.456 

W3 0.39 0.07 -0.07 0.39 -23.61 -2.52 0.270 

Table B.8 The IFS code for random fractal, rand.3, with s = 0.500 and n = 508. 

a b c d e f p( i) 

W1 0.65 0.33 -0.12 0.56 13.45 -34.21 0.523 

W2 0.33 -0 .. 50 0.66 0.11 -15.89 6.53 0.477 

Table B.9 The IFS code for random fractal, rand4, with s = 0.738 and n = 1316. 

a b c d e f p(i) 

Wt 0.25 0.33 -0.72 0.56 1.45 -14.21 0.538 

W2 0.33 -0.35 0.16 0.81 -15.89 16.53 0.462 

Table B.lO The IFS code for random fractal, randS, with s = 0.882 and n = 1102. 
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a b c d e f p( i) 

W[ -0.34 0.21 -0.42 -0.40 5.63 -14.31 0.37.5 

W2 0.23 -0.55 0.21 0.66 -23.77 29.40 0.448 

WJ -0.33 0.59 -0.09 -0.16 :30.12 -6.51 0.177 

Table B.ll The IFS code for random fractal, rand6, with s = 0.859 and n = 1032. 
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EB 

Figure B.l The collages and attractors for the first five IFS codes of the 

test set. (Top line from left) - The Sierpinski triangle, a square, and a fern. 

(Bottom left) - The twin-dragon fractal used by Barnsley. (Bottom right) - an 

'L' shaped fractal. 
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Figure B.2 The collages and attractors for the randomly generated fractals in 

the test set. They are labelled randl to rand6 from top left to bottom right. 
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Graph C.l The increase in average population fitness over one hundred 
generations for zero mutation a.nd other parameters fixed as described in the 
text. -
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Graph C.2 The effect on average population fitness of introducing a mutation 
probability of 0.25 whilst keeping all other parameters fixed. 
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Graph C.3 Increasing mutation rate to MUT = 0.5 shows severe impairment of 
performance. 
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Graph C.4 The effect of setting MUT = 0.75. (Notice the change of scale). 
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Graph C.5 When all solutions are mutated the algorithm becomes little better 
than a random search. 
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Graph C.6 The finally selected value of MUT = 0.01 which maintains diversity 
without impairing the smooth increase of average fitness. 
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Graph C.7 The result of setting X LN = 0 whilst retaining a mutation rate of 
one percent. 
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Graph C.8 Inreasing the crossover length to two gives only slightly improved 
performance. 
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Graph C.9 XLN = 4 and the underlying increase in average fitness starts to 
become apparent. 
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Graph C.lO With the crossover length set at half of the full string length, the 
graph begins to smooth out and the absolute fitness values rise appreciably. 
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Graph C.ll XLN= 12 and a. smoothly increasing plot emerges. 
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Graph C.12 Allowing crossover to extend over the whole length of a solution 
clearly leads to the best performance within the imposed constraints. 
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Graph C.13 A vera.ge population fitness increase using accurate evaluation for 
each solution. 
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Graph C.14 The effect of subsa.mpling the input shape by a. factor of two. 
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Graph C.15 SUB= 5 and detrimental effects become apparent. 
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Graph C.16 Taking only every tenth image point results in rapid convergence 
to a low average fitness population. 
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Graph C.17 Fitness increase for accurate evaluation with a population size of 
one hundred. 
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Graph C.18 The change in performance obtained using a population of 175 
with a subsampling facto1· of 2. 
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Graph C.19 Results of using POP= 310 and SUB= 5. 
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Graph C.20 The performa.nce obtained with a population of 417 and a 
subsampling factor of 10. 
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Graph C.21 Average population fitness as a function of generation for the first 
random fractal and fitness function B. 
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Graph C.22 Average population fitness as a function of generation for the 
second random fractal and fitness function B. 
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Graph C.23 A vera.ge population fitness as a function of generation for the 
third random fractal and fitness function B. 
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Graph C .24 Average population fitness as a function of generation for the 
fourth random fractal and fitness function B. 
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Graph C.25 Average population fitness as a function of generation for the fifth 
random fractal and fitness function B. 
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Graph C.26 Average population fitness as a function of generation for the 
sixth random fractal and fitness function B. 
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Graph C.27 Average population fitness as a function of generation for the fern 
fractal and fitness function B. 
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Graph C.28 Average population fitness as a function of generation for the 
square test shape a.nd fitness function B. 
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Graph C.29 Average population fitness as a function of generation for the 
Sierpinski triangle a.nd fitness function B. 
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Graph C.30 Average population fitness as a function of generation for the 
twin-dragon fractal and fitness function B. 
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Graph C.31 Average population fitness as a function of generation for the 'L' 
test shape and fitness function B. 
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Graph C .32 Average population fitness a.s a. function of generation for the 
second ra.ndom fra.cta.l a.nd fitness function A. 
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Graph C .33 A vera.ge population fitness a.s a. function of generation for the 
third random fractal a.nd fitness function A. 
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Graph C.34 A vera.ge population fitness a.s a. function of generation for the 
fourth random fra.cta.l a.nd fitness function A. 
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Graph C .35 Average population fitness as a. function of generation for the fifth 
random fra.cta.l a.nd fitness function A. 
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Graph C.36 Average population fitness as a function of generation for the 
Sierpinski triangle and fitness function A. 

Average 
Fitness 
(fit) 

0.01 

0 100 
Generation (g) 

Graph C.37 Average population fitness as a function of generation for the 
second random fractal and fitness function C. 
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Graph C.38 Average population fitness as a function of generation for the 
third random fractal and fitness function C. 
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Graph C.39 Average population fitness as a function of generation for the 
fourth random fractal and fitness function C. 
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Graph C.40 Average population fitness as a function of generation for the fifth 
random fractal and fitness function C. 
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Graph C.41 Average population fitness as a function of generation for the 
Sierpinski triangle and fitness function C. 
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Graph C .42 Average population fitness as a function of generation for the 
second random fractal, fitness function C, and a population size of 1000. 
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