3,163 research outputs found

    CSGNet: Neural Shape Parser for Constructive Solid Geometry

    Full text link
    We present a neural architecture that takes as input a 2D or 3D shape and outputs a program that generates the shape. The instructions in our program are based on constructive solid geometry principles, i.e., a set of boolean operations on shape primitives defined recursively. Bottom-up techniques for this shape parsing task rely on primitive detection and are inherently slow since the search space over possible primitive combinations is large. In contrast, our model uses a recurrent neural network that parses the input shape in a top-down manner, which is significantly faster and yields a compact and easy-to-interpret sequence of modeling instructions. Our model is also more effective as a shape detector compared to existing state-of-the-art detection techniques. We finally demonstrate that our network can be trained on novel datasets without ground-truth program annotations through policy gradient techniques.Comment: Accepted at CVPR-201

    Training an adaptive dialogue policy for interactive learning of visually grounded word meanings

    Full text link
    We present a multi-modal dialogue system for interactive learning of perceptually grounded word meanings from a human tutor. The system integrates an incremental, semantic parsing/generation framework - Dynamic Syntax and Type Theory with Records (DS-TTR) - with a set of visual classifiers that are learned throughout the interaction and which ground the meaning representations that it produces. We use this system in interaction with a simulated human tutor to study the effects of different dialogue policies and capabilities on the accuracy of learned meanings, learning rates, and efforts/costs to the tutor. We show that the overall performance of the learning agent is affected by (1) who takes initiative in the dialogues; (2) the ability to express/use their confidence level about visual attributes; and (3) the ability to process elliptical and incrementally constructed dialogue turns. Ultimately, we train an adaptive dialogue policy which optimises the trade-off between classifier accuracy and tutoring costs.Comment: 11 pages, SIGDIAL 2016 Conferenc

    Learning Grammars for Architecture-Specific Facade Parsing

    Get PDF
    International audienceParsing facade images requires optimal handcrafted grammar for a given class of buildings. Such a handcrafted grammar is often designed manually by experts. In this paper, we present a novel framework to learn a compact grammar from a set of ground-truth images. To this end, parse trees of ground-truth annotated images are obtained running existing inference algorithms with a simple, very general grammar. From these parse trees, repeated subtrees are sought and merged together to share derivations and produce a grammar with fewer rules. Furthermore, unsupervised clustering is performed on these rules, so that, rules corresponding to the same complex pattern are grouped together leading to a rich compact grammar. Experimental validation and comparison with the state-of-the-art grammar-based methods on four diff erent datasets show that the learned grammar helps in much faster convergence while producing equal or more accurate parsing results compared to handcrafted grammars as well as grammars learned by other methods. Besides, we release a new dataset of facade images from Paris following the Art-deco style and demonstrate the general applicability and extreme potential of the proposed framework

    Learning with Latent Language

    Full text link
    The named concepts and compositional operators present in natural language provide a rich source of information about the kinds of abstractions humans use to navigate the world. Can this linguistic background knowledge improve the generality and efficiency of learned classifiers and control policies? This paper aims to show that using the space of natural language strings as a parameter space is an effective way to capture natural task structure. In a pretraining phase, we learn a language interpretation model that transforms inputs (e.g. images) into outputs (e.g. labels) given natural language descriptions. To learn a new concept (e.g. a classifier), we search directly in the space of descriptions to minimize the interpreter's loss on training examples. Crucially, our models do not require language data to learn these concepts: language is used only in pretraining to impose structure on subsequent learning. Results on image classification, text editing, and reinforcement learning show that, in all settings, models with a linguistic parameterization outperform those without
    corecore