2,893 research outputs found

    Sabanci-Okan system at ImageClef 2011: plant identication task

    Get PDF
    We describe our participation in the plant identication task of ImageClef 2011. Our approach employs a variety of texture, shape as well as color descriptors. Due to the morphometric properties of plants, mathematical morphology has been advocated as the main methodology for texture characterization, supported by a multitude of contour-based shape and color features. We submitted a single run, where the focus has been almost exclusively on scan and scan-like images, due primarily to lack of time. Moreover, special care has been taken to obtain a fully automatic system, operating only on image data. While our photo results are low, we consider our submission successful, since besides being our rst attempt, our accuracy is the highest when considering the average of the scan and scan-like results, upon which we had concentrated our eorts

    Loglet SIFT for part description in deformable part models : application to face alignment

    Get PDF
    We focus on a novel loglet-SIFT descriptor for the parts representation in the De- formable Part Models (DPM). We manipulate the feature scales in the Fourier domain and decompose the image into multi-scale oriented gradient components for computing SIFT. The scale selection is controlled explicitly by tiling Log-wavelet functions (loglets) on the spectrum. Then oriented gradients are obtained by adding imaginary odd parts to the loglets, converting them into differential filters. Coherent feature scales and domain sizes are further generated by spectrum cropping. Our loglet gradient filters are shown to compare favourably against spatial differential operators, and have a straightforward and efficient implementation. We present experiments to validate the performance of the loglet-SIFT descriptor which show it to improve the DPM using a supervised descent method by a significant margin

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods
    corecore