2,139 research outputs found

    Non-Uniform Rational B-Splines and Rational Bezier Triangles for Isogeometric Analysis of Structural Applications

    Full text link
    Isogeometric Analysis (IGA) is a major advancement in computational analysis that bridges the gap between a computer-aided design (CAD) model, which is typically constructed using Non-Uniform Rational B-splines (NURBS), and a computational model that traditionally uses Lagrange polynomials to represent the geometry and solution variables. In IGA, the same shape functions that are used in CAD are employed for analysis. The direct manipulation of CAD data eliminates approximation errors that emanate from the process of converting the geometry from CAD to Finite Element Analysis (FEA). As a result, IGA allows the exact geometry to be represented at the coarsest level and maintained throughout the analysis process. While IGA was initially introduced to streamline the design and analysis process, this dissertation shows that IGA can also provide improved computational results for complex and highly nonlinear problems in structural mechanics. This dissertation addresses various problems in structural mechanics in the context of IGA, with the use of NURBS and rational BĂ©zier triangles for the description of the parametric and physical spaces. The approaches considered here show that a number of important properties (e.g., high-order smoothness, geometric exactness, reduced number of degrees of freedom, and increased flexibility in discretization) can be achieved, leading to improved numerical solutions. Specifically, using B-splines and a layer-based discretization, a distributed plasticity isogeometric frame model is formulated to capture the spread of plasticity in large-deformation frames. The modeling approach includes an adaptive analysis where the structure of interest is initially modeled with coarse mesh and knots are inserted based on the yielding information at the quadrature points. It is demonstrated that improvement on efficiency and convergence rates is attained. With NURBS, an isogeometric rotation-free multi-layered plate formulation is developed based on a layerwise deformation theory. The derivation assumes a separate displacement field expansion within each layer, and considers transverse displacement component as C0-continuous at dissimilar material interfaces, which is enforced via knot repetition. The separate integration of the in-plane and through-thickness directions allows to capture the complete 3D stresses in a 2D setting. The proposed method is used to predict the behavior of advanced materials such as laminated composites, and the results show advantages in efficiency and accuracy. To increase the flexibility in discretizing complex geometries, rational BĂ©zier triangles for domain triangulation is studied. They are further coupled with a Delaunay-based feature-preserving discretization algorithm for static bending and free vibration analysis of Kirchhoff plates. Lagrange multipliers are employed to explicitly impose high-order continuity constraints and the augmented system is solved iteratively without increasing the matrix size. The resulting discretization is geometrically exact, admits small geometric features, and constitutes C1-continuity. The feature-preserving rational BĂ©zier triangles are further applied to smeared damage modeling of quasi-brittle materials. Due to the ability of Lagrange multipliers to raise global continuity to any desired order, the implicit fourth- and sixth-order gradient damage models are analyzed. The inclusion of higher-order terms in the nonlocal Taylor expansion improves solution accuracy. A local refinement algorithm that resolves marked regions with high resolution while keeping the resulting mesh conforming and well-conditioned is also utilized to improve efficiency. The outcome is a unified modeling framework where the feature-preserving discretization is able to capture the damage initiation and early-stage propagation, and the local refinement technique can then be applied to adaptively refine the mesh in the direction of damage propagation.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147668/1/ningliu_1.pd

    A comprehensive survey on Pose-Invariant Face Recognition

    Full text link
    © 2016 ACM. The capacity to recognize faces under varied poses is a fundamental human ability that presents a unique challenge for computer vision systems. Compared to frontal face recognition, which has been intensively studied and has gradually matured in the past few decades, Pose-Invariant Face Recognition (PIFR) remains a largely unsolved problem. However, PIFR is crucial to realizing the full potential of face recognition for real-world applications, since face recognition is intrinsically a passive biometric technology for recognizing uncooperative subjects. In this article, we discuss the inherent difficulties in PIFR and present a comprehensive review of established techniques. Existing PIFR methods can be grouped into four categories, that is, pose-robust feature extraction approaches, multiview subspace learning approaches, face synthesis approaches, and hybrid approaches. The motivations, strategies, pros/cons, and performance of representative approaches are described and compared. Moreover, promising directions for future research are discussed

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Surface Deformation Potentials on Meshes for Computer Graphics and Visualization

    Get PDF
    Shape deformation models have been used in computer graphics primarily to describe the dynamics of physical deformations like cloth draping, collisions of elastic bodies, fracture, or animation of hair. Less frequent is their application to problems not directly related to a physical process. In this thesis we apply deformations to three problems in computer graphics that do not correspond to physical deformations. To this end, we generalize the physical model by modifying the energy potential. Originally, the energy potential amounts to the physical work needed to deform a body from its rest state into a given configuration and relates material strain to internal restoring forces that act to restore the original shape. For each of the three problems considered, this potential is adapted to reflect an application specific notion of shape. Under the influence of further constraints, our generalized deformation results in shapes that balance preservation of certain shape properties and application specific objectives similar to physical equilibrium states. The applications discussed in this thesis are surface parameterization, interactive shape editing and automatic design of panorama maps. For surface parameterization, we interpret parameterizations over a planar domain as deformations from a flat initial configuration onto a given surface. In this setting, we review existing parameterization methods by analyzing properties of their potential functions and derive potentials accounting for distortion of geometric properties. Interactive shape editing allows an untrained user to modify complex surfaces, be simply grabbing and moving parts of interest. A deformation model interactively extrapolates the transformation from those parts to the rest of the surface. This thesis proposes a differential shape representation for triangle meshes leading to a potential that can be optimized interactively with a simple, tailored algorithm. Although the potential is not physically accurate, it results in intuitive deformation behavior and can be parameterized to account for different material properties. Panorama maps are blends between landscape illustrations and geographic maps that are traditionally painted by an artist to convey geographic surveyknowledge on public places like ski resorts or national parks. While panorama maps are not drawn to scale, the shown landscape remains recognizable and the observer can easily recover details necessary for self location and orientation. At the same time, important features as trails or ski slopes appear not occluded and well visible. This thesis proposes the first automatic panorama generation method. Its basis is again a surface deformation, that establishes the necessary compromise between shape preservation and feature visibility.Potentiale zur Flächendeformation auf Dreiecksnetzen für Anwendungen in der Computergrafik und Visualisierung Deformationsmodelle werden in der Computergrafik bislang hauptsächlich eingesetzt, um die Dynamik physikalischer Deformationsprozesse zu modellieren. Gängige Beispiele sind Bekleidungssimulationen, Kollisionen elastischer Körper oder Animation von Haaren und Frisuren. Deutlich seltener ist ihre Anwendung auf Probleme, die nicht direkt physikalischen Prozessen entsprechen. In der vorliegenden Arbeit werden Deformationsmodelle auf drei Probleme der Computergrafik angewandt, die nicht unmittelbar einem physikalischen Deformationsprozess entsprechen. Zu diesem Zweck wird das physikalische Modell durch eine passende Änderung der potentiellen Energie verallgemeinert. Die potentielle Energie entspricht normalerweise der physikalischen Arbeit, die aufgewendet werden muss, um einen Körper aus dem Ruhezustand in eine bestimmte Konfiguration zu verformen. Darüber hinaus setzt sie die aktuelle Verformung in Beziehung zu internen Spannungskräften, die wirken um die ursprüngliche Form wiederherzustellen. In dieser Arbeit passen wir für jedes der drei betrachteten Problemfelder die potentielle Energie jeweils so an, dass sie eine anwendungsspezifische Definition von Form widerspiegelt. Unter dem Einfluss weiterer Randbedingungen führt die so verallgemeinerte Deformation zu einer Fläche, die eine Balance zwischen der Erhaltung gewisser Formeigenschaften und Zielvorgaben der Anwendung findet. Diese Balance entspricht dem Equilibrium einer physikalischen Deformation. Die drei in dieser Arbeit diskutierten Anwendungen sind Oberflächenparameterisierung, interaktives Bearbeiten von Flächen und das vollautomatische Erzeugen von Panoramakarten im Stile von Heinrich Berann. Zur Oberflächenparameterisierung interpretieren wir Parameterisierungen über einem flachen Parametergebiet als Deformationen, die ein ursprünglich ebenes Flächenstück in eine gegebene Oberfläche verformen. Innerhalb dieses Szenarios vergleichen wir dann existierende Methoden zur planaren Parameterisierung, indem wir die resultierenden potentiellen Energien analysieren, und leiten weitere Potentiale her, die die Störung geometrischer Eigenschaften wie Fläche und Winkel erfassen. Verfahren zur interaktiven Flächenbearbeitung ermöglichen schnelle und intuitive Änderungen an einer komplexen Oberfläche. Dazu wählt der Benutzer Teile der Fläche und bewegt diese durch den Raum. Ein Deformationsmodell extrapoliert interaktiv die Transformation der gewählten Teile auf die restliche Fläche. Diese Arbeit stellt eine neue differentielle Flächenrepräsentation für diskrete Flächen vor, die zu einem einfach und interaktiv zu optimierendem Potential führt. Obwohl das vorgeschlagene Potential nicht physikalisch korrekt ist, sind die resultierenden Deformationen intuitiv. Mittels eines Parameters lassen sich außerdem bestimmte Materialeigenschaften einstellen. Panoramakarten im Stile von Heinrich Berann sind eine Verschmelzung von Landschaftsillustration und geographischer Karte. Traditionell werden sie so von Hand gezeichnet, dass bestimmt Merkmale wie beispielsweise Skipisten oder Wanderwege in einem Gebiet unverdeckt und gut sichtbar bleiben, was große Kunstfertigkeit verlangt. Obwohl diese Art der Darstellung nicht maßstabsgetreu ist, sind Abweichungen auf den ersten Blick meistens nicht zu erkennen. Dadurch kann der Betrachter markante Details schnell wiederfinden und sich so innerhalb des Gebietes orientieren. Diese Arbeit stellt das erste, vollautomatische Verfahren zur Erzeugung von Panoramakarten vor. Grundlage ist wiederum eine verallgemeinerte Oberflächendeformation, die sowohl auf Formerhaltung als auch auf die Sichtbarkeit vorgegebener geographischer Merkmale abzielt

    Generalized ellipsoids and anisotropic filtering for segmentation improvement in 3D medical imaging

    Get PDF
    Deformable models have demonstrated to be very useful techniques for image segmentation. However, they present several weak points. Two of the main problems with deformable models are the following: (1) results are often dependent on the initial model location, and (2) the generation of image potentials is very sensitive to noise. Modeling and preprocessing methods presented in this paper contribute to solve these problems. We propose an initialization tool to obtain a good approximation to global shape and location of a given object into a 3D image. We also introduce a novel technique for corner preserving anisotropic diffusion filtering to improve contrast and corner measures. This is useful for both guiding initialization (global shape) and subsequent deformation for fine tuning (local shape).This work was supported by the Spanish Government and the Xunta de Galicia by projects TIC2000-0399-C02-02 and PGIDT99PXI20606B, respectively.2005-04-01S

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation
    • …
    corecore