32 research outputs found

    On the optimality of shape and data representation in the spectral domain

    Full text link
    A proof of the optimality of the eigenfunctions of the Laplace-Beltrami operator (LBO) in representing smooth functions on surfaces is provided and adapted to the field of applied shape and data analysis. It is based on the Courant-Fischer min-max principle adapted to our case. % The theorem we present supports the new trend in geometry processing of treating geometric structures by using their projection onto the leading eigenfunctions of the decomposition of the LBO. Utilisation of this result can be used for constructing numerically efficient algorithms to process shapes in their spectrum. We review a couple of applications as possible practical usage cases of the proposed optimality criteria. % We refer to a scale invariant metric, which is also invariant to bending of the manifold. This novel pseudo-metric allows constructing an LBO by which a scale invariant eigenspace on the surface is defined. We demonstrate the efficiency of an intermediate metric, defined as an interpolation between the scale invariant and the regular one, in representing geometric structures while capturing both coarse and fine details. Next, we review a numerical acceleration technique for classical scaling, a member of a family of flattening methods known as multidimensional scaling (MDS). There, the optimality is exploited to efficiently approximate all geodesic distances between pairs of points on a given surface, and thereby match and compare between almost isometric surfaces. Finally, we revisit the classical principal component analysis (PCA) definition by coupling its variational form with a Dirichlet energy on the data manifold. By pairing the PCA with the LBO we can handle cases that go beyond the scope defined by the observation set that is handled by regular PCA

    Descriptor Based Analysis of Digital 3D Shapes

    Get PDF

    Spectral Generalized Multi-Dimensional Scaling

    Full text link
    Multidimensional scaling (MDS) is a family of methods that embed a given set of points into a simple, usually flat, domain. The points are assumed to be sampled from some metric space, and the mapping attempts to preserve the distances between each pair of points in the set. Distances in the target space can be computed analytically in this setting. Generalized MDS is an extension that allows mapping one metric space into another, that is, multidimensional scaling into target spaces in which distances are evaluated numerically rather than analytically. Here, we propose an efficient approach for computing such mappings between surfaces based on their natural spectral decomposition, where the surfaces are treated as sampled metric-spaces. The resulting spectral-GMDS procedure enables efficient embedding by implicitly incorporating smoothness of the mapping into the problem, thereby substantially reducing the complexity involved in its solution while practically overcoming its non-convex nature. The method is compared to existing techniques that compute dense correspondence between shapes. Numerical experiments of the proposed method demonstrate its efficiency and accuracy compared to state-of-the-art approaches

    Making Laplacians commute

    Full text link
    In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Localized Manifold Harmonics for Spectral Shape Analysis

    Get PDF
    The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases
    corecore