94,016 research outputs found

    Devito: Towards a generic Finite Difference DSL using Symbolic Python

    Full text link
    Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerful mechanism to speed up scientific Python computation that goes beyond traditional vectorization and pre-compilation approaches, while allowing domain scientists to build applications within the comforts of the Python software ecosystem. In this paper we present Devito, a new finite difference DSL that provides optimized stencil computation from high-level problem specifications based on symbolic Python expressions. We demonstrate Devito's symbolic API and performance advantages over traditional Python acceleration methods before highlighting its use in the scientific context of seismic inversion problems.Comment: pyHPC 2016 conference submissio

    Space-time velocity correlation function for random walks

    Full text link
    Space-time correlation functions constitute a useful instrument from the research toolkit of continuous-media and many-body physics. We adopt here this concept for single-particle random walks and demonstrate that the corresponding space-time velocity auto-correlation functions reveal correlations which extend in time much longer than estimated with the commonly employed temporal correlation functions. A generic feature of considered random-walk processes is an effect of velocity echo identified by the existence of time-dependent regions where most of the walkers are moving in the direction opposite to their initial motion. We discuss the relevance of the space-time velocity correlation functions for the experimental studies of cold atom dynamics in an optical potential and charge transport on micro- and nano-scales.Comment: Phys. Rev. Lett., in pres

    Dynamics of the solar magnetic bright points derived from their horizontal motions

    Full text link
    The sub-arcsec bright points (BP) associated with the small scale magnetic fields in the lower solar atmosphere are advected by the evolution of the photospheric granules. We measure various quantities related to the horizontal motions of the BPs observed in two wavelengths, including the velocity auto-correlation function. A 1 hr time sequence of wideband Hα\alpha observations conducted at the \textit{Swedish 1-m Solar Telescope} (\textit{SST}), and a 4 hr \textit{Hinode} \textit{G}-band time sequence observed with the Solar Optical telescope are used in this work. We follow 97 \textit{SST} and 212 \textit{Hinode} BPs with 3800 and 1950 individual velocity measurements respectively. For its high cadence of 5 s as compared to 30 s for \textit{Hinode} data, we emphasize more on the results from \textit{SST} data. The BP positional uncertainty achieved by \textit{SST} is as low as 3 km. The position errors contribute 0.75 km2^2 s−2^{-2} to the variance of the observed velocities. The \textit{raw} and \textit{corrected} velocity measurements in both directions, i.e., (vx,vy)(v_x,v_y), have Gaussian distributions with standard deviations of (1.32,1.22)(1.32,1.22) and (1.00,0.86)(1.00, 0.86) km s−1^{-1} respectively. The BP motions have correlation times of about 22−3022 - 30 s. We construct the power spectrum of the horizontal motions as a function of frequency, a quantity that is useful and relevant to the studies of generation of Alfv\'en waves. Photospheric turbulent diffusion at time scales less than 200 s is found to satisfy a power law with an index of 1.59.Comment: Accepted for publication in The Astrophysical Journal. 24 pages, 9 figures, and 1 movie (not included

    Subnanosecond spectral diffusion measurement using photon correlation

    Get PDF
    Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date
    • …
    corecore