1,066 research outputs found

    Sets of integers in different number systems and the Chomsky hierarchy

    Get PDF
    The classes of the Chomsky hierarchy are characterized in respect of converting between canonical number systems. We show that the relations of the bases of the original and converted number systems fall into four distinct categories, and we examine the four Chomsky classes in each of the four cases. We also prove that all of the Chomsky classes are closed under constant addition and multiplication. The classes RE and CS are closed under every examined operation. The regular languages axe closed under addition, but not under multiplication

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂĽtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Sticker systems over monoids

    Get PDF
    Molecular computing has gained many interests among researchers since Head introduced the first theoretical model for DNA based computation using the splicing operation in 1987. Another model for DNA computing was proposed by using the sticker operation which Adlemanused in his successful experiment for the computation of Hamiltonian paths in a graph: a double stranded DNA sequence is composed by prolonging to the left and to the right a sequence of (single or double) symbols by using given single stranded strings or even more complex dominoes with sticky ends, gluing these ends together with the sticky ends of the current sequence according to a complementarity relation. According to this sticker operation, a language generative mechanism, called a sticker system, can be defined: a set of (incomplete) double-stranded sequences (axioms) and a set of pairs of single or double-stranded complementary sequences are given. The initial sequences are prolonged to the left and to the right by using sequences from the latter set, respectively. The iterations of these prolongations produce “computations” of possibly arbitrary length. These processes stop when a complete double stranded sequence is obtained. Sticker systems will generate only regular languages without restrictions. Additional restrictions can be imposed on the matching pairs of strands to obtain more powerful languages. Several types of sticker systems are shown to have the same power as regular grammars; one type is found to represent all linear languages whereas another one is proved to be able to represent any recursively enumerable language. The main aim of this research is to introduce and study sticker systems over monoids in which with each sticker operation, an element of a monoid is associated and a complete double stranded sequence is considered to be valid if the computation of the associated elements of the monoid produces the neutral element. Moreover, the sticker system over monoids is defined in this study

    The Computational Complexity of Symbolic Dynamics at the Onset of Chaos

    Full text link
    In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behaviour of cellular automata, that the computational basis for modelling this region is the Universal Turing Machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.Comment: 1 reference corrected, 1 reference added, minor changes in body of manuscrip

    Coding-theorem Like Behaviour and Emergence of the Universal Distribution from Resource-bounded Algorithmic Probability

    Full text link
    Previously referred to as `miraculous' in the scientific literature because of its powerful properties and its wide application as optimal solution to the problem of induction/inference, (approximations to) Algorithmic Probability (AP) and the associated Universal Distribution are (or should be) of the greatest importance in science. Here we investigate the emergence, the rates of emergence and convergence, and the Coding-theorem like behaviour of AP in Turing-subuniversal models of computation. We investigate empirical distributions of computing models in the Chomsky hierarchy. We introduce measures of algorithmic probability and algorithmic complexity based upon resource-bounded computation, in contrast to previously thoroughly investigated distributions produced from the output distribution of Turing machines. This approach allows for numerical approximations to algorithmic (Kolmogorov-Chaitin) complexity-based estimations at each of the levels of a computational hierarchy. We demonstrate that all these estimations are correlated in rank and that they converge both in rank and values as a function of computational power, despite fundamental differences between computational models. In the context of natural processes that operate below the Turing universal level because of finite resources and physical degradation, the investigation of natural biases stemming from algorithmic rules may shed light on the distribution of outcomes. We show that up to 60\% of the simplicity/complexity bias in distributions produced even by the weakest of the computational models can be accounted for by Algorithmic Probability in its approximation to the Universal Distribution.Comment: 27 pages main text, 39 pages including supplement. Online complexity calculator: http://complexitycalculator.com

    Ultrametric Distance in Syntax

    Get PDF
    Phrase structure trees have a hierarchical structure. In many subjects, most notably in Taxonomy such tree structures have been studied using ultrametrics. Here syntactical hierarchical phrase trees are subject to a similar analysis, which is much simpler as the branching structure is more readily discernible and switched. The occurrence of hierarchical structure elsewhere in linguistics is mentioned. The phrase tree can be represented by a matrix and the elements of the matrix can be represented by triangles. The height at which branching occurs is not prescribed in previous syntactic models, but it is by using the ultrametric matrix. In other words the ultrametric approach gives a complete description of phrase trees, unlike previous approaches. The ambiguity of which branching height to choose, is resolved by postulating that branching occurs at the lowest height available. An ultrametric produces a measure of the complexity of sentences: presumably the complexity of sentences increases as a language is acquired so that this can be tested. All ultrametric triangles are equilateral or isoceles, here it is shown that \={X} structure implies that there are no equilateral triangles. Restricting attention to simple syntax a minimum ultrametric distance between lexical categories is calculated. This ultrametric distance is shown to be different than the matrix obtained from features. It is shown that the definition of {\sc c-command} can be replaced by an equivalent ultrametric definition. The new definition invokes a minimum distance between nodes and this is more aesthetically satisfying than previous varieties of definitions. From the new definition of {\sc c-command} follows a new definition of {\sc government}

    The Magic Number Problem for Subregular Language Families

    Full text link
    We investigate the magic number problem, that is, the question whether there exists a minimal n-state nondeterministic finite automaton (NFA) whose equivalent minimal deterministic finite automaton (DFA) has alpha states, for all n and alpha satisfying n less or equal to alpha less or equal to exp(2,n). A number alpha not satisfying this condition is called a magic number (for n). It was shown in [11] that no magic numbers exist for general regular languages, while in [5] trivial and non-trivial magic numbers for unary regular languages were identified. We obtain similar results for automata accepting subregular languages like, for example, combinational languages, star-free, prefix-, suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free languages, showing that there are only trivial magic numbers, when they exist. For finite languages we obtain some partial results showing that certain numbers are non-magic.Comment: In Proceedings DCFS 2010, arXiv:1008.127
    • …
    corecore