438 research outputs found

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Storage Virtualization Promises Agility in the Data Center

    Get PDF
    Data storage and protection has moved to the forefront of Information Technology solutions because the business value of data has gained in rank and importance in the world of internet commerce. Modern business models are built around instant and continuous data availability and they would not be able to function without this quality. This level of data availability requires data storage technologies to be of increased flexibility and higher performance. However the more sophisticated technologies pose a greater challenge to the architects of data storage solutions who are required to evaluate products of much higher complexity and administrators who need to manage and monitor these installations. New tool sets are required to leverage the promise of the storage virtualization technologies and extract their full potential for an agile data center. New tool sets for storage virtualization will bring the IT organizations into the position of data service provider for the business groups

    An Analysis of Storage Virtualization

    Get PDF
    Investigating technologies and writing expansive documentation on their capabilities is like hitting a moving target. Technology is evolving, growing, and expanding what it can do each and every day. This makes it very difficult when trying to snap a line and investigate competing technologies. Storage virtualization is one of those moving targets. Large corporations develop software and hardware solutions that try to one up the competition by releasing firmware and patch updates to include their latest developments. Some of their latest innovations include differing RAID levels, virtualized storage, data compression, data deduplication, file deduplication, thin provisioning, new file system types, tiered storage, solid state disk, and software updates to coincide these technologies with their applicable hardware. Even data center environmental considerations like reusable energies, data center environmental characteristics, and geographic locations are being used by companies both small and large to reduce operating costs and limit environmental impacts. Companies are even moving to an entire cloud based setup to limit their environmental impact as it could be cost prohibited to maintain your own corporate infrastructure. The trifecta of integrating smart storage architectures to include storage virtualization technologies, reducing footprint to promote energy savings, and migrating to cloud based services will ensure a long-term sustainable storage subsystem

    High availability using virtualization

    Get PDF
    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows to share the running virtual machines over the servers up and running, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The system (3RC) is based on a finite state machine with hysteresis, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system. As extension of the 3RC architecture, several storage solutions have been tested to store and centralize all the virtual disks, from NAS to SAN, to grant data safety and access from everywhere. Exploiting virtualization and ability to automatically reinstall a host, we provide a sort of host on-demand, where the action on a virtual machine is performed only when a disaster occurs.Comment: PhD Thesis in Information Technology Engineering: Electronics, Computer Science, Telecommunications, pp. 94, University of Pisa [Italy

    Optimizations for Energy-Aware, High-Performance and Reliable Distributed Storage Systems

    Get PDF
    With the decreasing cost and wide-spread use of commodity hard drives, it has become possible to create very large-scale storage systems with less expense. However, as we approach exabyte-scale storage systems, maintaining important features such as energy-efficiency, performance, reliability and usability became increasingly difficult. Despite the decreasing cost of storage systems, the energy consumption of these systems still needs to be addressed in order to retain cost-effectiveness. Any improvements in a storage system can be outweighed by high energy costs. On the other hand, large-scale storage systems can benefit more from the object storage features for improved performance and usability. One area of concern is metadata performance bottleneck of applications reading large directories or creating a large number of files. Similarly, computation on big data where data needs to be transferred between compute and storage clusters adversely affects I/O performance. As the storage systems become more complex and larger, transferring data between remote compute and storage tiers becomes impractical. Furthermore, storage systems implement reliability typically at the file system or client level. This approach might not always be practical in terms of performance. Lastly, object storage features are usually tailored to specific use cases that makes it harder to use them in various contexts. In this thesis, we are presenting several approaches to enhance energy-efficiency, performance, reliability and usability of large-scale storage systems. To begin with, we improve the energy-efficiency of storage systems by moving I/O load to a subset of the storage nodes with energy-aware node allocation methods and turn off the unused nodes, while preserving load balance on demand. To address the metadata performance issue associated with large creates and directory reads, we represent directories with object storage collections and implement lazy creation of objects. Similarly, in-situ computation on large-scale data is enabled by using object storage features to integrate a computational framework with the existing object storage layer to eliminate the need to transfer data between compute and storage silos for better performance. We then present parity-based redundancy using object storage features to achieve reliability with less performance impact. Finally, unified storage brings together the object storage features to meet the needs of distinct use cases; such as cloud storage, big data or high-performance computing to alleviate the unnecessary fragmentation of storage resources. We evaluate each proposed approach thoroughly and validate their effectiveness in terms of improving energy-efficiency, performance, reliability and usability of a large-scale storage system

    Analysis of Computer Network Security Storage System Based on Cloud Computing Environment

    Get PDF
    A fundamental component of cloud computers from a business perspective is that users are allowed to use any desire and pay with a product that desire. Its cloud services were accessible anytime and anywhere consumers needed them. As a result, consumers are free to purchase whatever IT services they want, and they don't have to worry about how easy things can be managed. The remote server is used in a new information storage computing architecture that is considered an Internet generation. Ensuring security, material at resource providers' sites is a challenge that must be addressed in cloud technology. Thus, rather than reliance on a single provider for knowledge storing, this research implies developing construction for protection of knowledge stockpiling with a variation of operations, in which knowledge is scrambled and divided into numerous cipher frames and distributed across a large number of provider places. This support was applied to provide greater security, scalability, or reliability that was suggested according to the new structure. This paper, presented an encoded model for the cloud environment to improve security. The proposed model comprises the parity metadata for the database management provision to the provider. In the developed encoder chunks parity is not stored within the single resources with the provision of the available information chunks. The constructed security architecture in the RAID layer increases the dependability of the data with the deployment of the RAID 10 deployment. The developed RAID-based encoder chunks exhibit improved efficiency for the higher uptime at a minimal cost

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence
    • …
    corecore