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SOMMARIO 

Garantire un servizio in alta affidabilita' e' da sempre uno dei principali problemi di 
un centro di calcolo. Fino ad ora servizi di alta affidabilita' erano ottenuti duplicando 
uno ad uno i vari computer di un centro, metodo altamente dispendioso in termini 
di hardware e tempo uomo. Un nuovo approccio al problema puo' essere offerto 
dalla virtualizzazione. 
Utilizzando la virtualizzazione e' possibile ottenere un sistema di ridondanza per 
tutti i servizi ospitati da un centro di calcolo. questo nuovo approccio all'alta 
affidabilita' permette di distribuire le macchine virtuali attive in determinato 
momento sui soli server attivi e disponibili, sfruttando le caratteristiche del layer di 
virtualizzazione: accensione, spegnimento e spostamento di macchine virtuali tra 
gli host fisici presenti. 
 
Il sistema (3RC), basato su una macchina a stati finiti con isteresi, offre la 
possibilita' di far ripartire ogni macchina virtuale su un determinato host fisico, o 
reinstallare la stessa da zero. Una complessa infrastruttura e' stata realizzata per 
installare sistema operativo e middleware in pochi minuti. Al fine di virtualizzare i 
principali servizi di un centro di calcolo e' stata sviluppata una nuova procedura per 
migrare un host da fisico a virtuale. 
 
L'intero nodo Grid SNS-PISA sta al momento girando in ambiente virtuale in alta 
affidabilita'.  
Come estensione dell'architettura 3RC, sono state testate diverse soluzioni di 
storage per salvare e centralizzare tutti i dischi virtuali, da sistemi NAS a SAN, al 
fine di garantire la sicurezza dei dati e l'accesso da ovunque. 
Sfruttando la virtualizzazione e la capacita' di reinstallare un computer in modo 
completamente automatico, viene fornita una sorta di host a richiesta, dove una 
qualunque azione su una macchina virtuale e' eseguita solo nel momento in cui 
effettivamente succede il disastro. 
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ABSTRACT 

High availability has always been one of the main problems for a data center. Till 
now high availability was achieved by host per host redundancy, a highly 
expensive method in terms of hardware and human costs. A new approach to the 
problem can be offered by virtualization. 
Using virtualization, it is possible to achieve a redundancy system for all the 
services running on a data center. This new approach to high availability allows to 
share the running virtual machines over the servers up and running, by exploiting 
the features of the virtualization layer: start, stop and move virtual machines 
between physical hosts. 
 
The system (3RC) is based on a finite state machine with hysteresis, providing the 
possibility to restart each virtual machine over any physical host, or reinstall it from 
scratch. A complete infrastructure has been developed to install operating system 
and middleware in a few minutes. To virtualize the main servers of a data center, a 
new procedure has been developed to migrate physical to virtual hosts. 
 
The whole Grid data center SNS-PISA is running at the moment in virtual 
environment under the high availability system. As extension of the 3RC 
architecture, several storage solutions have been tested to store and centralize all 
the virtual disks, from NAS to SAN, to grant data safety and access from 
everywhere. 
Exploiting virtualization and ability to automatically reinstall a host, we provide a 
sort of host on-demand, where the action on a virtual machine is performed only 
when a disaster occurs. 
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1 INTRODUCTION 

One of the most critical issues for a computing center is the ability to provide a high 
availability service for all the main applications running on it. Today all the services 
are intended to be 24x7 (24 hours at day, 7 days per week), even those with a 
short life span. 
Someone said "When the world can access your applications, application failures 
are exposed to a much wider community". High availability takes care of the 
strategies to reduce to the minimum the applications' downtime. 
The goal of all availability systems is to maximize the uptime of the various online 
systems for which they are responsible, to make them completely fault tolerant. 
There are several approaches able to maximize availability: redundancy, reliability, 
repairability, recoverability, responsiveness, robustness. 
 
The strong demand for high-availability solutions has generated a lot of design 
strategies to provide a reliable service. These strategies involve systems such as 
heartbeat and cluster computing - very reliable but at the same time very expensive 
solutions in terms of hardware and human cost. 
The basic concept of a heartbeat system is the host per host redundancy of all the 
main servers of a computing center. The cluster computing solution is instead 
based on a middleware cluster suite distributed over a large number of nodes in a 
cluster; it is able to detect errors or failures on one node and automatically transfer 
workload or applications to another active node in the same cluster. Such systems 
typically have redundant hardware and software that make the applications 
available despite failures. 
 
A lot of other commercial solutions exist at the moment to satisfy the needs of 
service availability in a production environment. The problem is often related to the 
low portability of the solution, due to the hard link between the high availability tool 
provided and the operating system, or to the need of a specific software. 
On top of that, a lot of proprietary solutions are not free, with an often too high cost 
for a research computing center or for a small company. 
 
While high availability services are essential for 24x7 mission critical applications, 
the cost issue has to be carefully evaluated. To extend this service level to above a 
99.9 percent (three nines) availability, the cost increases exponentially. Because of 
the high costs and hardware configuration requirements, a five nines availability 
level often implies a strong negative return on investment. 
 
My idea is to satisfy the research and the enterprise needs of high availability with 
a zero cost new solution. This new approach is based on the concept that a 
relaxed system may ensure the application redundancy required in the greater part 
of cases. By "relaxed" I mean a system able to restore any previously running 
application in less than ten minutes from the crash time. 
By analyzing the causes of planned and unplanned downtime of a large computing 
center (INFN Pisa: 2000 CPU, 500 TB disk) for a period of three years, a new 
approach to high availability has been designed, based on hosts running on virtual 
environment. 
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A high availability virtual infrastructure ensures that a service has constant 
availability of network, processors, disks, memory. This way a failure of one of 
these components is transparent to the application, with a maximum time delay of 
five to ten minutes. 
 
3RC is the name of the project, acronym for 3 Re Cycle. The originality of this new 
approach to high availability is that a computing center system manager does not 
have to worry about the system redundancy till the disaster occurs. At that moment 
the system is able to restore the crashed application in a location resulting of a 
choice algorithm. 
The solution has been developed by using a finite state machine with hysteresis, 
where each state plays the role of an action to be performed on the crashed virtual 
machine or on the virtual layer running over the physical hosts. 
With no additional costs in terms of hardware and software for a computing center, 
and light operating costs, this new approach offers the ability to guarantee a 
relaxed high availability level. The whole Grid data center SNS-PISA is running at 
the moment in a virtual environment under this new high availability system. 
 
A complex infrastructure, based solely on servers available in a typical computing 
center, has been developed in order to install the operating system and the 
middleware in a few minutes, by exploiting Preboot Execution Environment (PXE) 
technology, as well as DNS and DHCP services. Using this infrastructure, more 
than 5000 servers have been installed from scratch starting by the only knowledge 
of their MAC address. 
As an extension of the high availability architecture, several storage solutions, from 
Network Attached Storage (NAS) to Storage Area Network (SAN) have been tested 
to store and centralize all the virtual disks, to grant data safety and access from 
everywhere, enhancing the aggregate bandwidth and reducing at the same time 
the downtime period. A lot of possible solutions are available, depending on the 
required availability level, on the financial resources, on the storage redundancy 
method. 
 
As a spin-off of this work, exploiting virtualization and ability to automatically 
reinstall a host, we could provide a sort of Host on-demand, where the user can 
ask for a customized (self configured) host in terms of processor number, RAM, 
disk space, for a given time, with administrator privileges. At the end of the 
scheduled time the machines are destroyed. 
This way it is possible to optimize the resource sharing across a large number of 
users, by simply redistributing load upon all the available machines. 
 
This thesis is organized in several chapters, the first Chapter being this 
"Introduction". 
Chapter 2, "High availability", gives the state of the art of the high availability 
solutions currently present on the market, such as Heartbeat or Clustering 
computing. 
Chapter 3, "Virtualization", presents several available virtualization solutions. 
In chapter 4, "Scenario ad use case", I introduce the scenario of my work: a Grid 
data center, with all its needs, often very similar to other computing center needs. 
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Chapter, 5 "Infrastructure", describes the whole infrastructure to implement an 
efficient PXE environment, to automatically install and manage a large set of hosts 
in parallel. 
Chapter 6, "Storage solutions", analyzes the available storage architectures, from 
cheap Network Attached Storage (NAS) to more expensive Storage Area Network 
(SAN). 
Chapter 7, "Proposal and solutions", analyzes the methods used to implement a 
new and low cost high availability system using virtualization, and shows the 
experimental data resulting from the simulations. 
Chapter 8, "Operation", introduces the measures taken in order to achieve an 
acceptable high availability level, showing a concrete use case. 
Chapter 9, "Spin-off", shows some possible future outcomes resulting from my 
work, such as Host on-demand. 
Chapter 10, "Conclusions", gives a synthetic point of view of this new approach to 
high availability, showing implications and limitations of this system. 
In Appendix there is the kernel source of 3RC High availability project. 
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2 HIGH AVAILABILITY 

2.1 Availability definition  

The term availability (or reliability) refers to the probability that a system is 
operating properly at a given time [from eventhelix.com]. The ability of a system to 
operate despite the failure of one or more of its components is called fault 
tolerance. In my dissertation terms as fault tolerance, high availability, reliability, 
may be used interchangeably. 
A failure is when a service does not work properly, e.g. a state of abnormal 
operation or, more precisely, not in accordance with specifications. 
The main goal of a high availability system is to provide a service in accordance 
with specification despite errors. A solution to this issue is usually achieved by 
introducing a redundancy level. High availability includes all the measures that aim 
to guarantee service availability. 
If it is not possible to avoid incidents, it is very useful to know the time necessary to 
reestablish service. 

2.2 Availability parameters 

2.2.1 MTBF 
Mean Time Between Failures [from eventhelix.com]: the average time between 
failures of hardware modules. It is the average time a manufacturer estimates 
before a failure occurs in a hardware module. MTBF for hardware modules can be 
obtained from the vendor. MTBF for software can be determined by multiplying the 
defect rate with KLOCs (thousand of lines of code) executed per second. 
Failures in time (FITS) is a more intuitive way of representing MTBF. FITS is 
nothing but the total number of failures of the module in a billion hours (i.e. 
1.000.000.000 hours). 

2.2.2 MTTR 
Mean Time To Repair [from eventhelix.com]: the time taken to repair a failed 
hardware module. In an operational system, repair usually means replacing the 
hardware module. Thus the hardware MTTR can be viewed as mean time to 
replace a failed hardware module. Note that a low MTTR requirement entails a high 
operational cost for the system. 
The estimated Hardware MTTR are: 30 minutes to 24 hours for an on site 
operation, 1 day to 1 week for an off site operation. 
The estimated Software MTTR can be computed as the time taken to reboot after a 
software fault is detected: from 30 seconds to 30 minutes, if a manual operator 
reboot is required. 

2.3 Availability measure 

Availability is often expressed by the availability rate (percentage, or number of 
nines), measured by dividing the time the service is available by the total time, or to 
be more precise Availability = MTBF / (MTBF + MTTR). 
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Availability is typically specified in nines notation. An availability of 99.9% (3 nines) 
refers to a downtime of 8.76 hours/year. 
Telecommunications devices need to be guaranteed for an efficiency of 5 nines, 
that is 5 minutes/year. 

2.4 Risk evaluation 

The failure of a computer system can cause losses in productivity, money and in 
critical cases material and human losses. It is therefore necessary to evaluate the 
risks linked to the failure of one or more of the components of a computer system. 
There are several ways in which a computer system can fail. The principal failure 
causes are: physical (i.e. natural disaster, environment weather, humidity, 
temperature, material failure, network failure, power cut), human (intentional or 
accidental: design error, software bug, malicious attack), operational (linked to 
system state at a given moment: software failure). 

2.5 Fault tolerance 

When one of the resources breaks down, other resources can take over in order to 
give operational continuity to the system, and give the administrators the time to 
solve the problem. This technique is called Failover. In an ideal model [1], in case 
of material failures, the faulty devices should be hot swappable, i.e. capable of 
being extracted and replaced without service interruption. 
 
Fig. 2.1 shows a typical Fault tolerant architecture. 
 

 
 

Fig. 2.1: Fault tolerant system 

2.6 Backup 

Setting up a redundant architecture and infrastructure ensures that the service will 
be available, but does not protect the data against errors of whatever nature: 
natural disasters, software corruption, bugs, or malicious attacks. Therefore it is 
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necessary to set up backup mechanisms in order to guarantee data safety. Ideally 
the backup should be stored in a remote location, to avoid the possibility of 
corruption of both the copies in case of natural disaster. 
User errors may cause a system failure or malfunctioning. In certain 
circumstances, a module or a system failure may not be repairable. A backup and 
a recovery facility infrastructure, intended to backup the system at scheduled 
intervals and restore a backup when a disaster occurs, can remedy this kind of 
problem. 
A backup infrastructure can also be used for historical archives storage, to save 
data in a precise state, corresponding to a given time. This solution can be used for 
future recovery of a previous properly operational state of the system. The 
technical name of a backup of a whole computer system is "snapshot". 
By saving a snapshot series at a scheduled time, it is possible to achieve a sort of 
time machine, capable of recovering the state of a computer system at a given 
date. 
 
Fig. 2.2 [VMware] shows a complex storage and backup system, able to provide a 
centralized storage for the virtual machines, and a full backup of the virtual 
machines snapshots. 
 

 
 

Fig. 2.2 Backup infrastructure 

2.7 High availability systems 

High availability solutions can be categorized into local and geographically 
distributed solutions. 
Local solutions provide high availability in a single computing center. 
Geographically distributed solutions, also known as disaster recovery solutions, are 
usually distributed deployments, able to protect application systems from natural 
disasters or network outages. 
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Amongst all possible kinds of failures, software and hardware (single node) failures 
as well as human errors can be protected by local high availability solutions. [2]  
Local solutions will be the core of this dissertation. Local high availability solutions 
ensure a certain level of availability in a single computing center deployment. 
To solve the high availability problem, a number of technologies and strategies are 
needed. The most used solution is based on redundancy, where high availability 
comes from redundant hardware systems and components. Local high availability 
solutions can be categorized into active-active solutions and active-passive 
solutions. 
 
Fig. 2.3 [in2p3.fr] shows the two high availability dual server solutions: active-active 
vs active-passive. 
 

 
 

Fig. 2.3: High availability systems: active-active, active-passive 

2.7.1 Active-Active 
Active-Active solutions are characterized by the presence of two or more active 
nodes, able to balance the process load among them. 
This solution deploys two or more active system instances. It can be used to 
improve scalability as well as provide high availability. All instances handle 
requests concurrently. In normal operation state, where none of the members have 
failed, all the cluster nodes are active and none is on standby state. 
Traffic intended for the failed node is either passed onto an existing node or 
balanced across the remaining nodes. This is possible only if all the nodes utilize a 
homogeneous software configuration and are able to provide the same service. 
Active-Active solutions are also generally referred to as cluster computing. 

2.7.2 Active-Passive 
Active-Passive, or Active-Standby, solutions are characterized by the presence of a 
primary node providing service, and a secondary node sleeping until it has to take 
over from the primary in case of damage of the primary node. 
This solution deploys an active instance, responsible of handling requests, and a 
passive instance, that is on standby state. In addition, a heartbeat mechanism is 
set up between these two instances. This mechanism is provided and managed 
through clusterware applications. 
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The Active-Passive solution provides a fully redundant instance of each node. This 
configuration typically requires an amount of extra hardware. Consequently this 
solution entails a twofold increase of the hardware cost. 
 
Usually cluster agents are also able to automatically monitor and enforce a failover 
solution between cluster nodes; this way, when the active instance fails, an agent 
shuts down the active instance completely, switching off the power supply too, and 
brings up the passive instance, so that applications can successfully resume 
processing. 
A cluster agent is a software running on a node of the cluster, that coordinates 
availability and operations - such as load balance - with other nodes. 
Active-Passive solutions are also generally referred to as heartbeat, or cold failover 
clusters. 

2.8 Controller 

A remote controller (or shared among all the nodes of a cluster) is needed to 
control the state of cluster nodes, processes and applications. Such controllers are 
also generally referred to as agents. 
An agent is responsible for processing death detection and automatic restart, or 
actions aimed at the system recovery. 
Processes may die unexpectedly, due to hardware breakdown, configuration or 
software problems. A proper process - the cluster agent – able to monitor and 
restart the service should constantly check all system processes and restart them if 
any problems appear. 

2.9 State of the art 

Since it is impossible to totally prevent the breakdowns of a computer system, one 
possible solution consists in setting up a redundancy mechanisms by duplicating 
critical resources, hardware, software. Cluster computing, in one of the several 
possible configurations, may accomplish these needs. 
To implement a failover solution, at the moment several technologies are available. 
The most used are solutions such as Heartbeat (active-passive) and Cluster 
computing (active-active). 

2.10 Linux-HA: Heartbeat 

The Linux-HA (High-Availability Linux) project [3] provides a high-availability 
solution for Linux, FreeBSD, OpenBSD, Solaris and Mac OS X which promotes 
reliability, availability, and serviceability. The project's main software product is 
Heartbeat, a GPL-licensed portable cluster management program for high-
availability. 
Heartbeat can detect node failures reliably in less than half a second. With a low-
latency communication infrastructure, such as Infiniband or Myrinet, this time could 
be lowered significantly. 
The architecture is based on an active-passive high availability solution. Each 
service under high availability needs at least two identical servers: a primary host, 
on which the service run, one or more secondary hosts, able to recover the 
application in less than one second. 
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As a result of a failure detection, the active-passive roles are switched. The same 
procedure can be done manually, for planned or unplanned down time, i.e. in case 
of maintenance needs. 
 
A heartbeat keep-alive system is used to monitor the health of the nodes in the 
cluster. Heartbeat monitors node health through communication media, usually 
serial and Ethernet links. It is a good solution to have multiple redundant 
connection links. Each node runs a heartbeat daemon process. When a node 
death is detected, Heartbeat runs a script to start or stop services on the secondary 
node. 
A local disaster recovery solution is typically composed of two homogeneous 
nodes, one active and one passive. The active node is usually called master or 
production node, and the passive node is called secondary or standby node. 
During normal operation, the only working node is the master node; in the event of 
a node failover or switchover, the standby node takes over the production role, by 
taking its IP number, and completely replacing the master one. 
To maintain the standby node for failover, the standby node contains 
homogeneous installations and applications: data and configurations must also be 
constantly synchronized with the master node. 
 
Fig. 2.4 [linux-ha.org] shows a typical dual server heartbeat system. 
 

 
 

Fig. 2.4: Heartbeat 
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2.11 Cluster computing 

Cluster computing is a system that allows its components to be viewed functionally 
as a single entity, from the point of view of a client for runtime services and 
manageability. 
A cluster can be viewed as a set of processes running on multiple computers 
sharing the same environment. There is a very close correlation between clustering 
and redundancy. A cluster provides redundancy for a system and can be used for a 
high availability system [4]. 
High availability clusters (also known as HA Clusters or Failover Clusters) are 
computer clusters implemented to provide high availability of services. They 
operate by having redundant computers or nodes which are used to provide 
service when a system components fails. 
 
When multiple instances of identical services are available, the client requests to 
these components can be balanced. This way ensures that all the application 
instances have approximately the same work load. With a load balancing 
mechanism running on site, all the instances are redundant. If any of the instances 
fails, the requests can be automatically sent to the surviving instances in the 
cluster. For this to work, there must be at least one extra component (a component 
in excess of the service's capacity). 
This approach is less expensive and more flexible than failover approaches as 
Heartbeat, where a single live component is paired with a single backup 
component that takes over in the event of a failure. An analogous in a RAID disk 
controller technology, using RAID1 (mirror) is analogous to the "live/backup" 
approach to failover, whereas RAID5 is analogous to load balancing failover. 
A cluster computing system may be used for several purposes, such as load 
balancing and failover. 
 
Fig. 2.5 shows a Cluster computing architecture with a double redundant switch 
infrastructure. 
 

 
 

Fig. 2.5: Cluster computing 
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2.12 Load Balancing 

 
In computer networking, load balancing is a technique to spread work between two 
or more computers, network links, CPUs, hard drives, or other resources, in order 
to get optimal resource utilization, maximize throughput, and minimize response 
time. 
The use of multiple components and devices with load balancing technique, 
instead of a single component, may increase reliability through redundancy. The 
balancing service is usually provided by a dedicated program or hardware device 
(such as a multilayer switch). 
 
Fig. 2.6 [primustel.ca] shows a load balanced architecture. 
 

 
 

Fig. 2.6: Load balance 

2.13 Failover 

Failover is the capability of a complex system to switch over automatically to a 
redundant or standby computer server, system, or network upon the failure or 
abnormal termination of the previously active server, system, or network. Failover 
must happen in a completely automatic manner, without human intervention. 
Load balancing is often used to implement failover. All the system components are 
continuously monitored (e.g. a server may be monitored by ping, a web service by 
fetching a known page), and when one component becomes non-responsive, the 
main controller is informed and no longer sends traffic to it. 
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After hardware/software fault detection, high availability failover cluster remedies 
this situation immediately by restarting the application on another system, without 
requiring human intervention. In case the broken component comes back on line, 
the load balancer can decide to reintroduce it again in the cluster or not, and if 
necessary begins to route traffic to it again. 
 
A high availability cluster implementation attempts to build redundancy into a 
cluster, in order to eliminate single points of failure, including multiple network 
connections and data storage redundancy [5]. 
Another possible solution to implement a failover architecture is to devolve the 
recover task upon a switch able to assign the same IP address to a secondary 
server, in case of primary server failure. 
 
Fig. 2.7 shows a Failover solution managed via switch (layer 2). 
 

 
 

Fig. 2.7: Failover 

2.14 Related issues: Split-brain 

Every clustering software must be able to handle the "split-brain" problem. Split-
brain occurs when all the private links go down simultaneously, but the cluster 
nodes are still running. If it happens, each node in the cluster may mistakenly 
decide that every other node has gone down and therefore may attempt to start 
services that other nodes are still running. Having duplicate instances of services 
may cause data corruption on the computing model or shared storage. 
To prevent this impasse, every time a controller switches on a secondary service or 
host in substitution of the main one crashed, it attends at the same time to 
definitely kill the main service; this is usually done by switching off the power 
supply of the server owning the interested service. 
High availability clusters usually use a heartbeat private network connection to 
monitor the health and status of each node in the cluster. 
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2.15 Application design requirements 

Not every application can run in a high-availability cluster environment. The 
necessary architecture decisions need to be made in the first software design 
phase. 
In order to run in a high-availability cluster environment, an application must satisfy 
at least the following technical requirements: 
� easy way to start, stop, force-stop, status check - usually via command line 

interface or script, including support for multiple instances of the application; 
� use of shared storage (Network Attached Storage NAS or Storage Area 

Network SAN); 
� store as much as possible of its state on non volatile shared storage - it is 

needed to restart the application on another node at the last safe state before 
failure, using the saved state from the shared storage; 

� avoid data corruption after a crash. 

2.16 Computing center reliability 

High availability clusters usually utilize all available techniques and architectures to 
make systems and infrastructure as reliable/available as possible. These include: 
� disk mirroring: RAID 0, 1, 5, 6 depending on the application safety 

requirements and users needs; 
� redundant network connections with redundant components, so that single 

cable, switch, or network interface failures do not entail network outages; 
� storage area network (SAN) with redundant data path and data connections, to 

avoid loss of connectivity to the storage; 
� redundant electrical power supply on different circuits; 
� uninterruptible power supply (UPS). 
All these features together help to minimize the chances of a clustering failover. 

2.17 Best practices 

In addition to architectural redundancies, the following local high availability 
technologies are also necessary in a comprehensive high availability system: 
� to reduce the number of components or devices apt to break, it is useful to 

remove all unnecessary peripherals, such as keyboard, mouse, graphics and 
audio card, CD, USB devices; 

� a thermal welding between the network interfaces of the nodes involved in a 
high availability cluster system is an additional safety against possible 
disconnections or not well fixed links. 

2.18 Addenda 

A cluster agent should also store the number of restarts within a specified time 
interval. This is very important, since a large number of restarts in a short time may 
lead to additional faults or failures. Therefore a maximum number of restarts within 
a specified time interval should also be planned. 
A cluster of similar nodes often needs to share a common configuration. A proper 
configuration management ensures that components provide the same reply to the 
same incoming request, allows these components to synchronize their 
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configurations, and provides highly available configuration management for less 
administration downtime. 
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3 VIRTUALIZATION 

3.1 Virtualization definition 

The term virtualization was coined in the 1960s, to refer to a virtual machine [6]. 
The creation and management of virtual machines has been called platform or 
server virtualization [7]. 
A virtualization system is an architecture able to separate an operating system from 
the underlying platform resources. 
Server virtualization is performed on a given hardware platform by introducing a 
software layer, which creates a simulated computer environment, a virtual 
machine, for its guest software. The guest software runs just as if it were installed 
on a stand-alone hardware platform. The guest software itself is in many cases a 
complete operating system, and can also be different from the operating system 
hosted by the physical machine. 
Usually, many virtual machines run on a single physical machine; their number is 
limited by the host hardware capability, such as core number, CPU power, RAM 
resources. There is no requirement for a guest operating system to be the same as 
the physical host one. 
The guest system is able to access specific peripheral devices, exploiting 
interfaces to those devices, e.g. hard disk drive, network interface card, graphic 
and audio card. 
 
Fig. 3.1 [VMware] shows the four level of a virtualized architecture - from the 
bottom to the top: hardware and operating system of the host machine, 
virtualization layer, operating system and applications of the virtual hosted 
machines. 
 

 
 

Fig. 3.1: x86 architecture layers 
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3.2 Rings and protection domains 

In computer science, hierarchical protection domains, also called protection rings, 
are a mechanism to protect data and functionality from faults and malicious 
behavior. 
Computer operating systems provide different levels of access to resources. A 
protection ring is one of the hierarchical levels of privilege within the architecture of 
a computer system. This is generally hardware enforced by some CPU 
architectures providing different CPU modes at the firmware level. 
Rings are arranged in a hierarchy from most privileged (most trusted, the ring 0) to 
least privileged (least trusted, the ring 3). Ring 0 is the level with the most 
privileges and interacts directly with the physical hardware such as CPU, memory, 
devices. The kernel of an operating system runs in ring 0. 

3.2.1 The ring problem 
The virtualization software, to be able to directly access the hardware, could run in 
ring 0. The problem is how to run privileged operations in operating systems hosted 
in virtual machines [8]. 
 
Fig. 3.2 [Wikipedia] shows the four operating system ring levels. 
 

 
 

Fig. 3.2: x86 ring levels 

3.3 Virtualization solutions 

A virtualization architecture provides a CPU virtualization system as well as 
memory, device and I/O virtualization component. This involves sharing the 
physical system memory and devices, and dynamically allocating them to virtual 
machines. 
Several virtualization solutions are available today, meeting the requirements of 
several needs. 
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Fig. 3.3 [zdnet.com] shows the differences between a non-virtualized and a 
virtualized computer architecture. 
 

 
 

Fig. 3.3: Virtualization architecture 

3.4 Full virtualization 

In full virtualization, the virtual machine simulates enough hardware to allow an 
unmodified guest operating system to be run in isolation. This approach was 
pioneered in 1966 with the IBM mainframes. 
Full virtualization fully abstracts the guest operating system from the underlying 
hardware (completely decoupled). The guest operating system is not aware it is 
being virtualized and requires no modification. 
Full virtualization offers the best isolation and security for virtual machines, and 
allows simple procedures for migration and portability as the same guest operating 
system instance can run virtualized or on native hardware. 
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While the virtualization layer is executed at the application level, the ring problem is 
solved by the full virtualization systems with the Binary Rewriting technique: the 
flow of the binary instructions performed by the virtual machines is inspected by the 
hypervisor and the privileged instructions are conveniently translated. The Binary 
Rewriting technique is computationally highly expensive. 
More recent full virtualization products include Parallels [9], VirtualBox [10], Virtual 
PC [11], Virtual Server [12], Hyper-V [13], VMware [14], QEMU [15]. 
 
Fig. 3.4 [Tosslab.it] shows a Fully virtualized architecture. 
 

 
 

Fig. 3.4: Full virtualization 

3.5 Paravirtualization 

In a paravirtualized architecture, a light software layer (Hypervisor) runs directly 
over the hardware. The Hypervisor is able to allocate the resources needed by the 
virtual machines. A privileged operating system instance runs over the Hypervisor 
in order to manage all the active virtual machines. 
Paravirtualization enables multiple isolated and secure virtualized servers running 
over the same physical host. 
A paravirtualized system provides a low virtualization overhead, but the 
performance advantage of paravirtualization over full virtualization can vary greatly 
depending on the workload. 
The host and guest operating systems have to be modified in order to replace the 
privileged operations with Hypervisor calls (hypercalls). While the Hypervisor is 
executed at ring level 0, the guest operating systems are executed at level 1. 
As paravirtualization cannot support unmodified operating systems (e.g. Windows), 
its compatibility and portability are limited. 
Examples of paravirtualization systems are XEN [16]  and VMware Infrastructure 
[14]. 
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Fig. 3.5 [Tosslab.it] shows a Paravirtualized architecture. 
 

 
 

Fig. 3.5: Paravirtualization 
 
A XEN system is structured with the Xen Hypervisor as the lowest and most 
privileged layer. Above this layer are one or more guest operating systems, which 
the hypervisor schedules across the physical CPUs. The first guest operating 
system, called "domain 0" (dom0), is booted automatically when the hypervisor 
boots and is given special management privileges and direct access to the physical 
hardware. The system administrator can log into dom0 in order to manage any 
other guest operating systems, called "domain U" (domU) in Xen terminology. The 
device accesses from all the domU are managed through the dom0. 
 
Fig. 3.6 [zdnet.com] shows the dom0 - domU architecture in a paravirtualized 
system. 

 
 

Fig. 3.6: Paravirtualization dom0 - domU 
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3.6 Shared kernel - Operating system level virtualization 

Shared kernel virtualization, also known as Operating system level virtualization, is 
a virtualization method where the kernel of an operating system allows for multiple 
isolated user-space instances, instead of just one. Such instances, called 
containers, may look like a real server, from the point of view of the end users. 
In addition to isolation mechanisms, the kernel is able to provide resource 
management features to limit the impact of one container's activities on the other 
containers. This way multiple instances can run exactly as multiple physical 
servers. 
The guest (virtual machine) operating system environments share the same 
operating system as the host system (physical machine). To be more precise the 
same operating system kernel is used to implement the guest environments. 
Applications running in a given guest environment view it as a stand-alone system. 
The uniqueness of the running kernel solves the ring problem, but forces all the 
guest operating systems to be compatible with the host operating system. 
Examples of Operating system level virtualization systems are Parallels Virtuozzo 
Containers [17], OpenVZ [18], Solaris Containers [19], FreeBSD Jails [20]. 
 
Fig. 3.7 [Tosslab.it] shows a Shared kernel - Operating system level virtualization 
architecture. 
 

 
 

Fig. 3.7: Shared kernel - Operating system level virtualization 

3.7 Hardware-assisted virtualization 

In hardware-assisted virtualization, the hardware provides architectural support 
(libraries included in hardware) that facilitates building a virtual machine monitor 
and allows guest operating systems to be run in isolation. 
In 2005 Intel and AMD provided additional hardware to support virtualization: AMD-
V [21] virtualization architecture for AMD, VT-x [22]  virtualization architecture for 
Intel. 
The implementations of hardware-assisted virtualization are: VMware Workstation, 
Xen 3.x, Linux KVM and Microsoft Hyper-V. Hardware assisted virtualization 



 

21 

solutions allow to guest unmodified operating systems, by introducing a new ring 
level (-1) in the ring stack running the Hypervisor - the kernel may be executed at 
ring level 0. 
 
Fig. 3.8 [Tosslab.it] shows a Hardware-assisted architecture. 
 

 
 

Fig. 3.8: Hardware-assisted virtualization 

3.8 Virtualization features 

3.8.1 Server consolidation 
Even if a computational node may need an ever increasing number of processors, 
most of the times a service needs at most only one processor. 
Virtualization can meet this demand, by decoupling software from hardware and 
splitting a multi processor server into more independent virtual hosts, for a better 
utilization of the hardware resources, allowing services to be distributed one per 
processor. 
In case of server consolidation, many small physical servers are replaced by one 
larger physical server, to increase the utilization of expensive hardware resources. 
Each operating system running on a physical server is converted to a distinct 
operating system running inside a virtual machine. This way a single large physical 
server can host many guest virtual machines. 
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Fig. 3.9 shows a typical example of server consolidation in a computing center. 
 

 
 

Fig. 3.9: Server consolidation 

3.8.2 Management ease 
A virtual machine can be more easily managed, configured and controlled from 
outside than a physical one. While it is possible to switch off a physical host 
remotely, it is impossible to switch on a turned off physical machine. In virtual 
environment, you can manage all the actions on virtual machine from a remote 
location, including the power on and power off. This is very useful to test a new 
kernel or for teaching courses. 

3.9 Virtual machine migration 

A virtual machine can easily be moved from one physical machine and relocated to 
another, if needed [23]. Typical examples of virtual machines movement are: virtual 
machine cloning (to copy more instances of the same virtual machine), virtual 
machine relocation (to free the original machine hosting the virtual machine), in 
case of maintenance or break [24]. 
Because of their mobility, virtual machines can be used in high availability and 
disaster recovery scenarios. 
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Fig. 3.10 [VMware] shows a virtual machine movement - migration from one 
physical server to another physical server. 
 

 
 

Fig. 3.10: Virtual machine migration 

3.10 Comparison of available products 

3.10.1 XEN 
Xen [25] is a virtual machine monitor for IA-32, x86, x86-64, IA-64 and PowerPC 
970 architectures. It allows several guest operating systems (including Windows, 
Linux, Solaris, and various versions of the BSD) to be executed on the same 
computer hardware concurrently. Xen provides paravirtualization. 
Xen was initially created by the University of Cambridge Computer Laboratory and 
is now developed and maintained by the Xen community as free software, licensed 
under the GNU General Public License (GPL2). 
 
With Xen virtualization, a thin software (the Xen hypervisor) is inserted between the 
server hardware and the operating system. The hypervisor provides an abstraction 
layer that allows each physical server to run one or more virtual servers, 
decoupling the operating system and its applications from the underlying physical 
server [26]. 

3.10.2 VMware 
Vmware [27] is an enterprise product. It uses two different virtualization 
approaches, using a hosted or a hypervisor architecture. Vmware provides both full 
virtualization and paravirtualization. 
A hosted architecture installs and runs the virtualization layer as an application on 
top of the operating system. It guarantees a great flexibility level.  
 
A hypervisor architecture (bare-metal) installs the virtualization layer directly on a 
virgin x86-based system. Since a hypervisor architecture has a direct access to the 
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hardware resources rather than going through an operating system, it is more 
efficient than a hosted architecture, and it is able to deliver greater performance. 
Examples of hosted architecture are VMware Player and VMware Server. Example 
of hypervisor architecture is VMware ESX Server. 
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4 SCENARIO: GRID DATA CENTER 

4.1 CERN Large Hadron Collider - Geneva 

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle 
accelerator, intended to collide opposing particle beams, protons at an energy of 7 
TeV/particle or lead nuclei at 574 TeV/particle. 
The Large Hadron Collider was built by the European Organization for Nuclear 
Research (CERN) with the intention of testing various predictions of high-energy 
physics, including the existence of the hypothesized Higgs boson and of the large 
family of new particles predicted by supersymmetry. It lies in a tunnel 27 kilometers 
in circumference, as much as 175 meters beneath the Franco-Swiss border near 
Geneva, Switzerland. It is funded by and built in collaboration with over 10.000 
scientists and engineers from over 100 countries as well as hundreds of 
universities and laboratories. 
The Italian National Institute of Nuclear Physics INFN and Scuola Normale in Pisa 
participate in the LHC project, with respect to research activity in physics, 
engineering and information technology. 

4.2 LHC Computing model 

Several Petabytes of data will be collected per year by each of the LHC 
experiments. The computing power to process these data, and to produce and 
process the comparable amounts of simulated data required for analysis, is 
estimated to be equivalent to something like 100.000 of today's personal 
computers. 
These strong hardware requirements lead naturally to the idea of a computing 
model based on Grid [28] [29], whereby geographically dispersed computing 
resources are shared together. 
 
CERN will not have the resources to provide all LHC computing needs. LHC 
experiments will therefore make use of a computing infrastructure which is 
intended to allow transparent access to data sets and computing resources 
regardless of the location. In this respect the correlation with the Grid project [30] 
[31] is clearly very strong. Grid-like applications are such applications that are run 
over the wide area network using several computing and data resources where 
each of the single computing resources can itself be a network of computers. 
 
The purpose of the LHC Computing Grid (LCG) is to provide the computing 
resources needed to process and analyze the data gathered by the LHC 
Experiments. 
The LCG project, aided by the experiments themselves, is addressing this by 
assembling at multiple inter-networked computer centers the main offline data 
storage and computing resources needed by the experiments and operating these 
resources in a shared Grid like manner. One of the project's most important goals 
is to provide common software for this task and to implement uniform means of 
accessing resources. It is useful to classify the computer centers functionally in 
"Tiers" [32] [33] [34]. 
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Fig. 4.1 [INFN Pisa] shows the CERN - EGEE Tiers computing model. 
 

 
 

Fig. 4.1: Hierarchy of resources: Tier0, Tier1, Tier2, Tier3, Tier4 

4.3 Tier0 

Tier0 is at CERN. It receives the raw and other data from the experiments online 
computing farms and records them on permanent mass storage. It also performs a 
first pass reconstruction of the data. It will hold a complete archive of all raw data. 
The raw and reconstructed data are distributed to the Tier1 Centers. 

4.3.1 Tier1 
Tier1 Centers provide a distributed permanent backup of the raw data, permanent 
storage and management of data needed during the analysis process, and offer a 
Grid-enabled data service. They also perform data-heavy analysis and re-
processing, and may undertake national or regional support tasks, as well as 
contribute to Grid Operations Services. A Tier1 is a regional computing center; at 
least one Tier1 center is foreseen for the major countries involved (e.g. USA, Italy, 
France, UK). 

4.3.2 Tier2 
Tier2 centers provide well managed, Grid enabled disk storage and concentrate on 
tasks such as simulation, end-user analysis and high performance parallel 
analysis. It is a regional center similar to a Tier1 center but on a smaller scale. Its 
services would be more focused on local data analysis requirements, and on 
distributed Monte Carlo production. 

4.3.3 Tier3 
A Tier3 center is usually comprised of an Institute or University computing center. 

4.3.4 Tier 4 
A Tier4 is an individual desktop. 
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4.4 Tiers Transfer rate 

The Tiers model approach developed at CERN is based on a robust and reliable 
network infrastructure, able to move data at a sustained rate of some Gb/s 
average. 
The CERN Tier 0 computing center process several thousand concurrent batch 
jobs simultaneously and exports the raw and processed data to 10 Tier 1 sites at 
about 10G/s rate. When all experiments will take data together, the aggregate rate 
out of CERN will be 50 Gb/s and about 40 TB of data will be stored each day. 
 
Fig. 4.2 [CERN] shows the Tiers architecture and the expected transfer rate 
between each couple of levels. 
 

 
 

Fig. 4.2: Tiers architecture and transfer rate 

4.5 Grid data center 

INFN-PISA participates in the LHC experiments as a Tier2 regional center. The 
computer center [35] consists of 2.000 CPU, 500 TB disk and a full 1 GB switching 
infrastructure, and it is expected to reach more than 5.000 CPUs and 1 PB of disk 
space in the next two years. 
We decided to implement the Tier 2 as part of a common infrastructure between 
INFN, Scuola Normale, and Physics Department of Pisa University [36]. By using a 
suitable job fair sharing among all the contributing groups, it has been possible to 
allocate all the computational power under the Grid control. 
The advantages of such an approach are: 
� the power off of all the individual farms shared all around the department; 
� the management ease and centralization, with a great save in human time for 

installation, upgrade, administration. 

4.6 Architecture 

Distributed or Grid computing in general is a special type of parallel computing that 
relies on complete computers (with on board CPU, storage, power supply, network 
interface, etc.) connected to a network by a conventional network card interface, 
such as Ethernet, without any particular sophisticated device. This is in contrast to 



 

28 

the traditional notion of a supercomputer, where many processors are connected 
together by a local high-speed computer bus, or parallel computing, where the 
processors are connected by a low latency network, such as Infiniband or Myrinet. 
 
The scalability of geographically dispersed Grids is usually guaranteed by the low 
need for connectivity between nodes with respect to the capacity of the public 
Internet. 
The middleware provided by LCG [37] / EGEE [38] is based on the Globus project 
[39] [40] [41]. Globus is a community of organizations and individuals developing 
fundamental technologies behind the Grid. 
 
A Grid computing center usually consists of: 
 
� Computing Element  - CE: it is the back-end of the system. It acts as an 

interface between the user and the Grid environment. The Computing Element 
in a Grid computing center is also a batch queue balancer to a centrally 
managed farm of computers. 

 
� Storage Element  - SE: provides uniform access to storage resources. It could 

be simply a disk server, large disk arrays or Mass Storage System such as 
dCache or Castor. The data access authorisation is handled using Grid 
credentials (certificates). File transfer is managed through Grid Security 
Infrastructure File Transfer Protocol GSIFTP, while the native Storage 
Resource Manager SRM protocol allows POSIX-like data access. 

 
� Worker Node  - WN: the computational node, able to run Grid jobs. 
 
� User Interface  - UI: a computer which has the set of user level (typically Linux 

command line) client tools and API libraries installed on it to access the Grid 
environment. It is a gateway between Grid and the end-users. A user must 
have an account on the machine and her/his certificate installed. 

 
� Information System  - IS: a scalable and reliable information system able to 

publish all the Grid resources of a single site or a larger geographical region. 
The Globus Project use a Grid information system based on the LDAP system. 

 
� Resource Broker  - RB / Workload Management System - WMS: examines 

Requirements and Rank expressions (and also any data requirements) in the 
Grid job JDL. All CE are filtered against the Requirements, and the Rank is 
calculated for all the CE which match; on the basis of Rank it determines which 
CE to submit the job to [42]. For that purpose, the RB / WMS must retrieve 
information from the IS and the File Catalog. 

 
� LCG File Catalog  - LFC: a service providing mappings between Logical File 

Names Grid Unique IDentifiers and Storage URLs. 
 
� Replica Catalog  - RC: contains the information about stored and replicated 

data. 
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� Virtual Organisation Membership Service  - VOMS: provides administration 
services for users and administrators of a VO. VOMS is essentially an 
authentication service: the list of VO users authorized to use VO resources 
comes from the VOMS and is propagated to the resources (RB, CE, SE, etc). 

 
Fig. 4.3 [CERN LCG] shows the architecture of the LCG Grid infrastructure. 
 

 
 

Fig. 4.3: Grid elements 
 
A Grid environment is based also on: 
 
� Virtual Organization  - VO: the base idea of a Grid environment. A Virtual 

Organization is a group, typically an experiment, who shares the same 
computing resources. A VO software manager can install centrally the source 
code to make it available to all the nodes. 

 
� Job Definition Language  - JDL: is the language used to specify the resources 

required by a job. To submit a job to the Grid a JDL file is created and passed 
to a RB (Resource Broker) or a WMS (Workload Management System) that 
examines the JDL and determines, with the help of the IS (Information 
Service), the best CE (Computing Element) to run the job. 
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Fig. 4.4 [CERN LCG] shows the flowchart of a Grid Job submission. 
 

 
 

Fig. 4.4: Grid Job submission 
 
� GridFTP : the standard protocol for Grid based file transfers. 

4.7 Relaxed high availability model 

The primary idea on which is based the Grid infrastructure is that each node can be 
purchased as a commodity hardware. A Grid computing center is therefore 
comprised of low cost devices. Based on the idea that each central service is 
critical for the single computing center (not for the whole Grid), but it can bear a 
system down of 5 to 10 minutes, I introduced the new concept of "relaxed" high 
availability. 
A new approach to guarantee a relaxed high availability level to all the services will 
be shown in the next chapters. 



 

31 

5 INFRASTRUCTURE 

A complex infrastructure has been deployed in the last years in order to improve 
the computing center management architecture. The aim of such an infrastructure 
is to ease and centralize the complete computing center maintenance, from hosts 
installation to virtual machine upgrade [44]. 

5.1 PXE architecture 

The Preboot eXecution Environment (PXE) [43] is an environment to boot 
computers using a network interface, independently of available data storage 
devices (e.g. hard disks) or installed operating systems. 
PXE is an open industry standard developed by a number of software and 
hardware vendors (Intel, 3Com, HP, Dell, Compaq, and others). 
PXE works with a network interface card NIC in the target host, and transforms the 
NIC into a boot device. The PXE vision is to "Make the network interface a 
standard, industry-accepted PC boot device". 
By adding the NIC to the list of traditional standard boot devices - such as floppy 
drives, pen drives, hard disks, and CD-ROMs - a new host is able to load the 
operating system or set up programs directly from network. It allows the host client 
to do a "network boot". 
PXE boots the client host from the network by transferring a boot image file from a 
server. This file can be a minimal operating system for the host or a preboot chain 
loader linked to a boot in a preexisting disk operating system. 
Because PXE works with the network interface card NIC, it requires a PXE enabled 
NIC. The PXE protocol is supported by almost all the network interfaces available 
today off  the shelf. 

5.2 System requirements 

In order to implement an architecture able to bootstrap a new host via network 
PXE, there are no other requirements than servers usually involved in the daily 
practice of a computing center, such as DHCP, TFTP, and HTTP servers. 
By modifying the DHCP configuration file, a string is passed to the host at the boot 
moment. 

5.3 How does PXE work? 

The PXE boot process extends the Dynamic Host Configuration Protocol DHCP 
with the additional information needed to a computer remote boot. This information 
includes the client vendor and class enabling the PXE server to select a client-
specific image. 
The system requesting a PXE boot uses the DHCP DISCOVER message to 
identify its vendor and machine class and to request the location and the name of 
an image file. The PXE client identifies its vendor and class of machine because 
there might be multiple images available through the PXE servers. 
 
A PXE boot process involves many information exchanges: 
 
1. The PXE client sends a DHCP DISCOVER with the PXE options filled in. 



 

32 

2. The DHCP server responds with a DHCP OFFER containing TCP/IP 
parameters. 

3. The PXE client replies with a DHCP REQUEST. 
4. The DHCP server responds with a DHCP ACK. 
5. If the DHCP server is also the PXE server, the DHCP ACK will usually contain 

the TFTP server name and boot file name. If the PXE server is a different 
system, there is a separate exchange of requests and replies between the PXE 
server and the PXE client following the initial DHCP process. 

 
Fig. 5.1 [esrf.eu] shows the PXE operations. 
 

 
 

Fig. 5.1: PXE operations 
 
The firmware on the client tries to locate a PXE service on the network, in order to 
receive information about available PXE boot servers. The PXE server watches for 
DHCP discovery requests including a special tag identifying the host as a PXE 
client. When the DHCP request includes the tag, the PXE server replies to the 
client with the configuration information, including the name and the address of a 
boot image file. The boot image file is transferred into the client RAM using the 
Trivial File Transfer Protocol TFTP - a very simple transfer protocol without any 
type of encryption - and this file is used to boot the host. 
 
The PXE may be approximately seen as a combination of DHCP and TFTP, with 
small modifications to both of them. To start a PXE boot session, the PXE firmware 
broadcasts a DHCPDISCOVER packet extended with PXE specific options 
(extended DHCPDISCOVER) to port 67/UDP (DHCP server port). 
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Fig. 5.2 [os3.nl] shows the PXE information flow. 
 

 
 

Fig. 5.2: PXE information flow 

5.4 Advantage of network boot 

There are many advantages in using a boot via network, such as: 
� booting diskless systems - automating system maintenance such as backups, 

or system checking such as virus scanning; 
� deploying software and operating systems for new systems. 
In my research work, the network boot is intended to be used for installing an 
operating system in a brand new host with no operating system on board - or 
reinstalling the operating system in a host where the operating system has failed. 
In order to install a new host, the only operation required is to connect the host to 
the network and power it on. This can dramatically reduce the administration time 
required for a new installation. 

5.5 Auto-installer system 

Exploiting the PXE architecture, at the Italian National Institute for Nuclear Physics 
and Scuola Normale Superiore - Pisa, a complete system has been developed to 
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automatically install operating system and middleware. The system has been 
successfully used for the installation of 2000 CPUs progressing in parallel. 
Due to a continuous development of a production environment, where scripts, 
programs and setup change almost every day, the chosen solution to have an up 
to date system, has been the implementation of an architecture where the 
installation of a host is performed by a single script. 
The centralization of all the installation procedures offers an essential aid to the site 
administrator when the operations involve more than some dozens of hosts 
simultaneously. 

5.6 An improvement to classical architecture 

Exploiting an almost unused field in DNS record, the HINFO (Host Info) field, in 
INFN Pisa we have set up a post install script able to perform all the needed 
operations to install middleware, patches and applications on all the computing 
center servers. 
In the HINFO field, a non compulsory field in DNS record, an indication is stored of 
what the machine is and what it runs. Once the operating system is installed via 
PXE architecture, the post install script reads the HINFO from the DNS server and 
install the needed middleware, coherently with the machine type indicated in 
HINFO note. In this way we completely automated not only the installation of the 
operating system, but also the installation of middleware, applications, and their 
complete configuration. 

5.7 Update management 

In order to have a large set of hosts up to date, an update management system 
has been designed at INFN Pisa section. It may happen that when an upgrade is 
needed, a set of hosts is down for maintenance, or broken. To avoid a corrupted 
state of those hosts at the start up moment - in a few minutes or after a month - an 
update management system is required. 
A central repository contains all the scripts necessary to update all the cluster 
hosts, classified by host type (computational node, storage element, etc), and the 
date to be applied. When a host is switched on, it checks the central scripts 
repository and matches it with its internal update history, applying all the update 
scripts not yet performed. 
The same system may be used also for a scheduled update of all the hosts in a 
computing center, by applying the same script over all the hosts at a given time. 

5.8 A dual boot architecture via PXE 

In order to achieve a dual boot system on a whole 1000 CPU cluster without the 
need of writing a single byte on the existing hard disk devices - it could be a 
constraint imposed by the owner of the cluster you are using - a new procedure 
has been developed at INFN Pisa, from an idea by Enrico Mazzoni. 
Exploiting the PXE architecture and infrastructure used to install all the computing 
center hosts, and adding a single hard disk per host, we pass to the host the 
correct chainloader via PXE at the boot moment, directing the boot from one disk 
rather than the other. 
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To reach this goal, a MEMDISK file is given to the host at the boot time, to allow 
booting legacy operating systems (such as DOS) via PXE. It is used in conjunction 
with PXELINUX. 
MEMDISK is part of the SYSLINUX suite, and provides support for booting legacy 
operating systems. The SYSLINUX Project covers lightweight bootloaders for MS-
DOS FAT filesystems (SYSLINUX), network booting (PXELINUX), bootable El 
Torito CD-ROMs (ISOLINUX), and Linux ext2/ext3 filesystems (EXTLINUX). 
MEMDISK simulates a disk by claiming a chunk of high memory for the disk and a 
(very small - 2K typical) chunk of low (DOS) memory for the driver itself, then 
hooking the INT 13h (disk driver) and INT 15h (memory query) BIOS interrupts. 
MEMDISK is a kernel module used in conjunction with one of the SYSLINUX 
bootloaders, in our case PXELINUX. There is the need of a disk image as well as 
the MEMDISK file itself. As far as the bootloader is concerned, MEMDISK is the 
kernel and the disk image is the initial ramdisk (initrd). 
 
Using GRUB - a boot loader package from the GNU Project which allows a user to 
have several different operating systems on his computer at once, and to choose 
which one to run when the computer starts - the pxelinux.cfg file is used to select 
from different kernel images available on a particular disk device partitions. 
One boot loader can boot another boot loader by chain loading. Chain loading is a 
method used by computer programs to replace the currently executing program 
with a new program, using a common data area to pass information from the 
current program to the new program. At this stage GRUB can also pass control of 
the boot process to another loader. 
 
To select the boot operating system from one rather then the other disk, it is only 
needed to change the PXE link or the MAC address to IP association in DHCP 
configuration file, and reboot the host. 
 
pxelinux.cfg/disk1[2] 
  kernel kernel/memdisk 
  append initrd=grub/grub-disk-hd1[2].img 
 
grub-disk-hd1[2].img/grub.conf 
  default 0[1]  ## boot from label 1/2 
  timeout 10 
  title Boot from disk 1 
    rootnoverify (hd0,0) 
    chainloader +1 
  title Boot from disk 2 
    rootnoverify (hd1,0) 
    chainloader +1 
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6 STORAGE 

6.1 Open issues in storage management 

Digitizing the information stored in every book in the Library of Congress requires 
about 10 terabytes of disk space. Storing all the movies ever made on DVDs needs 
5 petabytes of data. Five petabytes are also the amount of data the Large Hadron 
Collider of CERN expects to collect annually in coming years. Half to one petabyte 
is the space required to store all the virtual machine disks of a medium (1000 CPU) 
computing center. 
High Performance Computing consists of three major subsystems: processing, 
networking and storage. While computing and network are often enough for the 
current requirements, storage is more and more a strong limitation to the overall 
system performance. Improving performance, capability and throughput are the 
biggest engineering challenges for the future of storage [45]. 
 
One of the side effects of putting a lot of data in a single computing center is the 
increase in aggregate bandwidth for the physical storage system, and the growing 
of I/O and RAM requirements for the disk servers providing access to the shared 
storage. Increasing by a factor N the computational power and the storage 
capability in a data center entails in many instances the increase of the aggregate 
bandwidth from/to the storage by a factor N2. 
Optimizing the storage layout can significantly help in the area of High 
Performance Computing and High Availability in virtual environment [46]. 

6.2 Storage media types 

Storage refers to computer devices and recording media able to retain digital data, 
used for computing, for some interval of time. The computer storage provides the 
information retention. For this reason a safe system in absolutely needed, in order 
to prevent any loss of data. 
Storage today commonly refers to mass storage: optical disks as CD or DVD, 
magnetic storage as hard disks, and solid state memory (more fast and expensive 
than other devices). The main feature of a storage system is the permanent nature 
of the saved data. 
The magnetic hard disk uses different patterns of magnetization on a magnetically 
coated surface to save information. Magnetic storage is a kind of non volatile, 
permanent storage. The information is accessed using one or more read/write 
heads moving on the disk surfaces. 

6.3 Magnetic storage 

My dissertation concerns only the magnetic storage solutions: hard disk systems. 
There are at least three magnetic permanent storage options available: Direct 
Attached Storage (DAS), Network Attached Storage (NAS), Storage Area Network 
(SAN). 
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6.4 Storage solutions: from NAS to SAN 

Although the need for storage is evident, it is not always clear which solution is 
suitable for the organization at hand. 
Choosing the right storage solution is not often a simple choice, depending on 
required data capacity, performance in aggregate bandwidth, and last but not least 
hardware and human costs. It is important to focus on the specific needs and long 
term business goals, taking into consideration several criteria: 
 
� Capacity: the amount of data to be stored; 
� Performance: I/O throughput requirements; 
� Scalability: long term data growth; 
� Availability and reliability: how critical are the applications? 
� Data protection: backup and recovery requirements; 
� Staff and resources available; 
� Budget. 
 
Fig. 6.1 [wpcontent.answers.com] shows the DAS, NAS, SAN Storage solutions. 
 

 
 

Fig. 6.1: Storage solutions 

6.5 Direct Attached Storage - DAS 

Direct Attached Storage -DAS is the simplest data storage connection system. 
Typically a Direct Attached Storage system is a disk drive or disk set directly 
attached to the server, and included in the same enclosure as the server. Direct-
attached storage is the most basic level of storage, in which storage devices are 
part of the server providing the storage service. 
Direct Attached Storage is usually connected to its server by a bus. There are 
many technologies used to connect the disk to the computer: the most common are 
SCSI, IDE/ATA, SATA and Fibre Channel. 
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This storage solution is typically made of one or more JBOD (Just a Bunch of 
Disks). Managing how the data on the disks are organized is under control of the 
server. This entails that in a Direct Attached Storage model a server has the dual 
functions of file sharing and application serving, potentially causing data serving 
slowdowns. 
The Direct Attached Storage is the cheapest storage solution , and it can be a 
good solution for a relative small set of data, locally used, without a large I/O data 
requirement. 
While a single Direct Attached Storage offers ease of management and 
administration, the management complexity increases quickly with the addition of 
new Direct Attached Storage servers, since the storage data space for each server 
must be administered and managed separately. 
 
Fig. 6.2 [unixfoo.blogspot.com] shows a Direct Attached Storage - DAS storage 
architecture. 
 

 
 

Fig. 6.2: Direct Attached Storage - DAS 

6.6 Network Attached Storage - NAS 

Network Attached Storage -NAS is one of the easiest and most cost effective way 
of adding shared storage capability to data center. A Network Attached Storage is 
a File Level Data Sharing Across the network. 
By directly connecting a Network Attached Storage to an IP LAN, the storage is 
available to all the servers connected to the LAN, independently of the operating 
system types. On the network, a NAS system appears as a native file server to 
each of its different clients: Windows, Linux or other operating systems. This way 
the files are saved on or retrieved from the NAS system in their native file formats. 
Network Attached Storage is a storage appliance to store and manage data access 
and retrieval through a set of attached dedicated servers, usually sharing the data 
via Network File System (NFS). 
Network Attached Storage is a device comprised of both hard disks and 
management software, dedicated to serving files over a network, but applications 
independent. This way NAS provides a more flexible model in data access. 
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One of the main advantages of a Network Attached Storage system is that it is can 
be attached anywhere to the network, minimizing the costs and the impact on a 
computing center. NAS can be seen as a plug and play solution, cheep, easy to 
install and manage. 
A single NAS system can provide many terabytes of storage in high density form 
factor, making efficient use of the computing and data center space. 
The distribution over a data center of more dishomogeneous network storage 
devices can often limit the performance of the whole system, and thus the system 
scalability. 
 
Fig. 6.3 [unixfoo.blogspot.com] shows a Network Attached Storage - NAS storage 
architecture. 
 

 
 

Fig. 6.3: Network Attached Storage - NAS 

6.7 Storage Area Network - SAN 

A Storage Area Network - SAN is a data storage architecture designed to meet the 
requirement of networking data storage behind the server. 
The Storage Area Network solution is a dedicated, high performance storage 
network able to transfer data between servers and storage devices, separate from 
the local area network. 
The Storage Network Industry Association SNIA definition of a Storage Area 
Network is: A network whose primary purpose is the transfer of data between 
computer systems and storage elements and among storage elements. A Storage 
Area Network consists of a communication infrastructure, which provides physical 
connections, and a management layer, which organises the connections, storage 
elements, and computer systems so that data transfer is secure and robust. 
 
Often a Storage Area Network is used in connection with Fibre Channel (FC) 
technology, a solution able to increase the data transfer rate between disks and 
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server. In a Storage Area Network infrastructure, more storage devices such as 
NAS, DAS, arrays or tape libraries may live together, connected to servers using 
Fibre Channel. 
Fibre Channel has become the infrastructure of choice for Storage Area Network, 
for its ability to deliver large volumes of information in a rapid and efficiently way, 
and with predictable latency time. Fibre Channel is a highly reliable, gigabit 
interconnect technology that enables two way simultaneous communication among 
servers, data storage systems and other peripherals. Without the distance and 
bandwidth limitations of SCSI, Fibre Channel is ideal for moving a large volume of 
data across long distances in a quick and reliable manner. 
With their high degree of sophistication, management complexity and cost, a 
Storage Area Network is traditionally implemented for mission critical applications 
and used in enterprise space or in high level research fields. 
 
In contrast to Direct Attached Storage or Network Attached Storage, optimized for 
data sharing at the file level, the strength of a Storage Area Network architecture 
lies in its ability to move large blocks of data. This is especially important for 
bandwidth intensive applications. 
The distributed architecture of a Storage Area Network is capable of offering higher 
levels of performance and availability than any other storage solution available 
today. By dynamically balancing data load and data transfer across the network via 
a multi path Fibre Channel infrastructure, Storage Area Network provides fast data 
transfer, reducing I/O latency and server workload. The main benefit is that a large 
number of users or applications can simultaneously access data without creating a 
bottleneck on the local area network and servers. 
Storage Area Network is the best way to ensure predictable performance and 24x7 
data availability and reliability, offering at the same time an excellent scalability. 
 
Fig. 6.4 [unixfoo.blogspot.com] shows a Storage Area Network - SAN storage 
architecture. 
 

 
 

Fig. 6.4: Storage Area Network - SAN 
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6.8 iSCSI Storage Area Network - IP SAN 

The iSCSI protocol is the encapsulation of the SCSI protocol within TCP/IP 
packets, mapping of SCSI (Small Computer Systems Interface) block-oriented 
storage data over TCP/IP networks. Developed by the Internet Engineering Task 
Force, iSCSI is a technology designed to carry SCSI commands and data across 
an IP network. 
The iSCSI technology enables a server (initiator) to send SCSI commands and 
data to a storage device (target) over a TCP/IP based network in IP packets. 
More recently iSCSI has emerged as an alternative which affects the more 
ubiquitous IP network. Using IP instead of Fibre Channel entails a large saving in 
cost and infrastructure project. 
With the recent development of the iSCSI protocol, a Storage Area Network 
solution based on IP network is now possible. iSCSI joins the two most widely used 
protocols from the storage (SCSI) and the networking (IP) worlds. 
On the storage side, iSCSI protocol uses the SCSI command set; on the 
networking side, iSCSI uses TCP/IP and Ethernet protocol, enabling application 
over a metropolitan and wide area networking as well. 
 
Unlike some Storage Area Network protocols, iSCSI requires no dedicated cabling; 
it can be run over existing switching and IP infrastructure. As a result, iSCSI is a 
low cost alternative to Fibre Channel storage solutions, which requires a dedicated 
infrastructure. 
Because SCSI is CPU intensive during high I/O load operations, iSCSI Host Bus 
Adapters (HBA) is a technology converting SCSI protocol into IP protocol, acting as 
a Fibre Channel HBA, except that Ethernet is used instead of Fibre Channel. The 
idea is that the SCSI requests are offloaded from the CPU onto the iSCSI HBA. 

6.9 File systems 

In computing technology, a file system is a method for storing and organizing files 
and the contained data to make it easy to find and access. A file system is used 
over a data storage device such as a hard disk in order to maintain the physical 
location of the files. A file system may also provide access to data on a file server 
by acting as clients for a network protocol (e.g.: NFS, SMB), or it may be virtual 
and exist only as an access method for virtual data (e.g.: procfs). More formally, a 
file system is a special purpose database for the storage, organization, 
manipulation, and retrieval of data on a storage device. 
My dissertation analyzes only two of the network file systems, needed to share 
storage over a network storage infrastructure: NFS and GPFS 

6.9.1 NFS - Network File System 
Network File System (NFS) [47] [48] allows a system to share directories and files 
with others over a network. By using NFS, users and programs can access files on 
remote systems almost as if they were local files. 
Network File System allows hosts to mount partitions on a remote system and use 
them as local file systems. This allows the system administrator to store resources 
in a central location on the network, providing authorized users a continuous 
access. 
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One of the most notable benefits that NFS can provide is that local machines may 
use less disk space if commonly used data are stored on a single machine and still 
remain accessible to other machines over the network. There is no need for users 
to have separate home directories on every network machine: users home 
directories can be set up on the NFS server and made available throughout the 
network. 
 
Storage devices such as floppy disks, CDROM drives, pen drives, and Zip drives 
can be used by other machines on the network. This may reduce the number of 
removable media drives throughout the network. 
NFS consists of two parts: a server and one or more clients. The client remotely 
accesses the data stored on the server machine. To function properly, a few 
processes have to be configured and run.  
 
Fig. 6.6 [uic.rsu.ru] shows a Network File System - NFS architecture. 
 

 
 

Fig. 6.6: Network File System - NFS 

6.9.2 GPFS - General Parallel File System 
The IBM General Parallel File System (GPFS) [49] [50] is a high performance 
scalable file management solution that provides fast, reliable access to a common 
set of file data from a single computer to hundreds or thousands of systems. 
GPFS provides concurrent high-speed file access to applications executing on 
multiple nodes of clusters, and high I/O throughput by allowing data to be accessed 
over multiple computers at once. 
Most existing file systems are designed for a single server environment, and 
adding more file servers does not improve performance. GPFS provides higher I/O 
performance by striping blocks of data from individual files over multiple disks, and 
reading and writing these blocks in parallel. Other features provided by GPFS 
include high availability, support for heterogeneous clusters, disaster recovery, 
security. 
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GPFS software has to be installed over all the file servers and clients, creating a 
cluster sharing data over the network. 
 
Fig. 6.5 [ibm.com] shows a General Parallel File System - GPFS architecture. 
 

 
 

Fig. 6.5: General Parallel File System - GPFS 

6.10 Grid Storage challenge 

A redundant, secure, standardized Grid storage capability out-of-the-box is one of 
the most desirable technologies for both enterprise and scientific environments. If a 
centralized storage system can surely reduce the time spent  in management and 
backup recovery, moving to a virtual infrastructure with disk space shared all 
around the world implies a new re-routing model and a new paradigm in data 
access. 

6.11 Throughput Performance vs Data Safety 

While RAID technology for servers has been created to protect data against 
hardware failure, some application is primarily focused on the possible 
performance gain. 
Using faster and homogeneous storage technology (Fibre Channel, SCSI, RAID 
controllers) may enhance the throughput of a storage data system. Using smaller 
disks can increase parallelism, and thus the data transfer rate towards the disk 
JBOD. A solid state cache layer can improve local performance. 
 
A multi path infrastructure is needed to guarantee more than one single path to 
reach the storage system. At the same time a multi path architecture may be used 
to increase parallel streaming towards the disk devices. The choice depends on the 
primary purpose to be achieved: data safety or throughput performance. 
In a Grid architecture involving more than 1000 sites spread everywhere in the 
world, data movement and data access mode are at the present time two of the 
biggest problems to solve and a challenge for the future. 
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6.12 RAID technology 

Redundant Array of Independent Disks, also known as RAID, is a system based on 
multiple hard disk drives for sharing or replicating data. 
The main idea is to divide and replicate data among multiple hard disk drives. All 
the various designs of RAID involve two key design goals: increase data reliability 
and increase I/O throughput performance. When multiple physical disks are set up 
to use RAID technology, they are said to be in a RAID array. This array distributes 
data across multiple disks, but the array is seen by the system as one single disk. 
RAID can be set up to serve several different purposes, such as performance 
increasing, or data redundancy. 
 
Data redundancy is achieved by some extra data written across the array. Data are 
organized so that the failure of one (sometimes more) disks in the array will not 
result in loss of data. A failed disk may be replaced by a new one, and the data are 
reconstructed from the remaining data and the extra data. A redundant array allows 
less data to be stored than the sum of all disks capacity. 
For instance, a 2 disk RAID 1 array loses half of the total capacity that would have 
otherwise been available using both disks independently, and a RAID 5 array with 
several disks loses the capacity of one disk over all the available disks. Other RAID 
level arrays are arranged so that they are faster to write to and read than a single 
disk. 
 
There are various combinations of these approaches giving different trade-offs of 
protection against data loss, capacity, and speed. RAID levels 0, 1, 5 and 6 are the 
most commonly used, and cover most requirements. 

6.12.1 RAID 0 
RAID 0 - STRIPE: distributes data across several disks in a way that gives 
improved speed and full capacity, but no data redundancy is available; all data on 
all disks will be lost if any disk fails. It provides improved performance and 
additional storage but no fault tolerance. Any disk failure destroys the array, and 
this becomes more likely with more disks in the array. A single disk failure destroys 
the entire array because when data is written to the array, the data is broken into 
fragments. 
 
The number of fragments is dictated by the number of disks in the array. The 
fragments are written on the same sector of their respective disks simultaneously. 
This allows smaller sections of the entire chunk of data to be read off the drive in 
parallel, giving this type of arrangement a huge bandwidth. RAID 0 does not 
implement error checking so any error is unrecoverable. More disks in the array 
means higher bandwidth, but greater risk of data loss. 
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Fig. 6.7 [Wikipedia] shows a two disk RAID 0 system. 
 

 
 

Fig. 6.7: RAID 0 disk array 

6.12.2 RAID 1 
RAID 1 - MIRROR: a real-time backup solution. Two disks store exactly the same 
data, at the same time, and at all times. Data is not lost as long as one disk 
survives. Total capacity of the array is simply the capacity of one disk. 
 
Fig. 6.8 [Wikipedia] shows a two disk RAID 1 system. 
 

 
 

Fig. 6.8 RAID 1 disk array 

6.12.3 RAID 5 
RAID 5 - STRIPE WITH SINGLE PARITY: distributes a parity check over all the 
array disks; protects data against loss of any disk; requires all drives but one to be 
present to operate; a single drive failure requires replacement, but the array is not 
destroyed. Upon a drive failure, any subsequent reading can be calculated from 
the distributed parity such that the drive failure is masked from the end user. 
 
The array will have data loss in the event of a second drive failure and is vulnerable 
until the data that was on the failed drive is rebuilt onto a replacement drive. The 
storage capacity of the array is reduced by one disk. 
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Fig. 6.9 [Wikipedia] shows a RAID 5 disk array. 
 

 
 

Fig. 6.9: RAID 5 disk array 

6.12.4 RAID 6 
RAID 6 - STRIPE WITH DOUBLE PARITY: distributes two parity checks over all 
the array disks; provides fault tolerance from two drive failures; array continues to 
operate with up to two failed drives. This makes larger RAID groups more practical, 
especially for high availability systems. This becomes increasingly important 
because large-capacity drives lengthen the time needed to recover from the failure 
of a single drive. 
 
Single parity RAID levels are vulnerable to data loss until the failed drive is rebuilt: 
the larger the drive, the longer the rebuild will take. Dual parity gives time to rebuild 
the array without the data being at risk if one drive, but no more, fails before the 
rebuild is complete. 
 
Fig. 6.10 [Wikipedia] shows a RAID 6  disk array. 
 

 
 

Fig. 6.10: RAID 8 disk array 

6.12.5 Other RAID 
� RAID 0+1: striped sets in a mirrored set (minimum four disks; even number of 

disks) provides fault tolerance and improved performance but increases 
complexity. The key difference from RAID 1+0 is that RAID 0+1 creates a 
second striped set to mirror a primary striped set. The array continues to 
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operate with one or more drives failed in the same mirror set, but if drives fail 
on both sides of the mirror the data on the RAID system is lost. 

 
� RAID 1+0: mirrored sets in a striped set (minimum four disks; even number of 

disks) provides fault tolerance and improved performance but increases 
complexity. The key difference from RAID 0+1 is that RAID 1+0 creates a 
striped set from a series of mirrored drives. In a failed disk situation, RAID 1+0 
performs better because all the remaining disks continue to be used. The array 
can sustain multiple drive losses so long as no mirror loses all its drives. 

 
� RAID 5+0: stripe across distributed parity RAID systems. 
 
� RAID 5+1: mirror striped set with distributed parity. 

6.13 RAID notes 

RAID can involve significant computation power when reading and writing data. 
With traditional RAID hardware, a separate controller does this computation. In 
other cases the operating system requires the host computer processor to do the 
computing, and this reduces the computer performance on applications highly CPU 
intensive. 
RAID systems with redundancy continue working without interruption when one or 
sometimes more disks of the array fail. When the bad disk is replaced by a new 
one, the array is rebuilt while the system continues to operate normally. 

6.14 Mirror over network - Distributed Replicated Block Device 

The Distributed Replicated Block Device (DRBD) [51] is a software-based, 
replicated storage solution mirroring the content of block devices (hard disks, 
partitions, logical volumes, etc.) between servers over the network. 
DRBD mirrors data in real time. Replication occurs continuously, while applications 
modify the data on the device. 
Transparently to the end user, the applications store their data on the mirrored 
device, duplicating stored data on several computers. 
 
Data mirror can be performed synchronously or asynchronously. With synchronous 
mirroring, a writing application is notified of write completion only after the write has 
been carried out on both computer systems. In asynchronous mirroring the writing 
application is notified of write completion when the write is completed locally, but 
before the write has propagated to the peer system. 
The DRBD core functionality is implemented by way of a Linux kernel module. 
Specifically, DRBD constitutes a driver for a virtual block device, so DRBD is 
situated right near the bottom of a system's I/O stack. Because of this, DRBD is 
extremely flexible and versatile, which makes it a replication solution suitable for 
adding high availability to any application. 
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Fig. 6.11 [drbd.org] shows a Distributed Replicated Block Device - DRBD system. 
 

 
 

Fig. 6.11: Distributed Replicated Block Device - DRBD 

6.15 Case studies and solutions 

A set of experimental data taken during the last five years at the Italian National 
Institute of Nuclear Physics INFN and Scuola Normale Pisa, several architectural 
storage solutions have been tried, and a lot of storage performance tests have 
been carried out. 
While Direct Attached Storage DAS can be useful for a small set of data shared 
from a single server, Network Attached NAS and Storage and Storage Area 
Network SAN are the best choice for a large set of data to be shared over a large 
number of hosts. The use of NAS rather than SAN depends essentially on the 
available budget. At the moment a single NAS system can reach an I/O throughput 
of 4 Gb/s, while a complex - and too expensive - SAN can reach an I/O throughput 
of 100 Gb/s. 
 
A multi path infrastructure to reach the disk array has been deployed with a set of 
redundant switching systems. This way a failure of a single switch does not affect 
the correct operation. 
With respect to data redundancy and reliability, the chosen solution has been 
almost always the RAID 6 technology, due to the high capability of the single disks 
today. In case of a very limited budget, a Distributed Replicated Block Device 
DRBD has been developed to reach the same data reliability with no additional 
costs. 
A great attention must be payed for the network configuration, in order to 
guarantee the required I/O data throughput and to avoid bottlenecks between disk 
devices and servers. 
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6.15.1 GPFS over SAN + RAID 6 
At Italian National Institute of Nuclear Physics INFN Pisa a computing center has 
been created in the last three years for the study of Elementary Particle Physics. 
The computing center comprises today more than 2.000 CPU, 500 TB disk and a 
full 1 GB switching infrastructure. 
 
A Storage Area Network with double redundant Fibre Channel head, four GPFS 
server with 10 Gb network card on board and four 2 Gb Fibre Channel each one, 
are used to reach 16 Gb/s I/O sustained throughput. This rate has been held for a 
24 hours stress test without any failure in the data chain. RAID 6 has been the 
choice to guarantee a good data reliability without performance reduction. 
This storage architecture can be seen as a high level cost solution, not 
recommended in case of low budget project. 

6.15.2 NFS over DAS + DRBD 
At Scuola Normale I developed my research work on High Availability using virtual 
environment. Given that the main goal on my research has been to reach a 
satisfactory availability level with the minimum expense, a low cost storage solution 
has been studied. 
 
A mirror over network, exploiting a Distributed Replicated Block Device DRBD, has 
been developed to reach the same data reliability of a Storage Area Network with 
multi path with no additional costs. The main differences between this solution and 
a more expensive Storage Area Network solution are the data capacity (1 TB of 
data vs 500 TB), the I/O data aggregate throughput (30 MB/s vs 2 GB/s), the 
system scalability. 
Such a solution has been considered suitable  for the resources demand of the 
project. 

6.16 Conclusions 

With such a variety of storage technologies available, the best way to determine 
which one - DAS, NAS, or SAN - is the best choice for the required application field 
is to investigate pro and contra of every storage solution. 
The first step is to consider the nature, the amount, and the transfer rate of the data 
and applications, how critical they are, and what are the minimum required levels of 
performance and availability. After that, another important characteristic to 
investigate is the data localization or distribution across the network. 
 
An optimal storage configuration is not an easy choice. A lot of factors have to be 
taken into consideration: how many TB per server? which RAID configuration? A 
fine tuning of parameters is needed in disk arrays, controllers and servers (cache, 
block sizes, buffer sizes, kernel parameters). With respect to the storage pool 
architecture: is one disk pool large enough, or is it necessary to split? 
The optimal configuration depends strongly on the application: for a data intensive 
application, an important role is played by the size and the rate of data to be 
transferred. Different file systems have been developed to improve data transfer in 
case of small or large data sets. 
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Disaster recovery is today the top of data storage challenges. A cheap solution will 
be shown in the next chapters. 
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7 PROPOSAL AND SOLUTIONS 

7.1 Background and motivations 

One of the most critical issues for a computing center is the ability to provide a high 
availability service for all the main applications. Today all services are intended to 
be by definition 24x7 (24 hours at day, 7 days per week), even those with a short 
life span. 
The goal of all availability systems is to maximize the uptime of the various online 
systems for which they're responsible, to make them completely fault tolerant. 
There are several approaches able to maximize availability of a single service 
running on a single host. The real problem is originated by the needs of high 
availability of a whole computing center, running many services over 
heterogeneous operating systems. 
 
A lot of business solutions exist at the moment to satisfy the needs of service 
availability in production environment. The problem is often related to the low 
portability and flexibility of the solution. On top of that, a lot of proprietary solutions 
are not free, with a cost often too high for a research computing center or for a 
small company. 
By analyzing the causes of planned and unplanned downtime of a large computing 
center (INFN Pisa: 2000 CPU, 500 TB disk) for a period of three years, a new 
approach to high availability has been supplied, based on the features of virtual 
machine running on virtual environment [52]. 

7.2 High availability using virtualization 

Since a not critical availability level is often required by almost all services running 
on web, Grid, or other technological environments, an interesting solution is offered 
by a new availability idea: a system able to restore an application in a few minutes. 
Usually a 2 to 3 minutes blackout is not critical for most part of the production 
applications. By paying for the non immediate recover of a crashed application, a 
new approach to high availability is offered by intensively exploiting all the features 
of a virtual environment. 
 
The idea is to satisfy the research and the enterprise needs of high availability with 
a zero cost new solution, based on the idea that a relaxed system may ensure the 
application redundancy required in the greater part of the cases. "Relaxed" means 
a system able to restore any previously running application in less than ten minutes 
from the crash time. While usually high availability services as cluster or heartbeat 
are able to recover a failure in a few seconds, a relaxed system is a solution able to 
restore a service in a few minutes. 
 
The originality of this new approach to high availability is that a computing center 
system administrator has not to worry about the system redundancy till the disaster 
occurs. Only at that moment the system is able to restore the crashed application 
in a location result of a choice algorithm. 3RC is the name of the project, acronym 
for 3 R Cycle [53]. 
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The aim of my work is to provide a high availability system - architecture, software, 
methodology - for all non critical services, without charging a computer center with 
the cost of the classical heartbeat host per host redundancy. 
 
High availability virtual infrastructure ensures that a service has constant 
availability of network, processors, disks, memory. This way a failure of one of 
these components is transparent to the application, with a maximum time delay of 
two to ten minutes. 
 
Fig. 7.1 [thanks to Claudio Atzeni] shows the 3RC logo. 
 

 
 

Fig. 7.1: 3RC logo 
 
Using virtualization, it is possible to achieve a redundancy system for all the 
services running on a data center. This new approach to high availability needs 
only one remote controller and one backup server - also shared among the hosts in 
the computing center - running a virtual environment, to recover services usually 
distributed on several physical hosts. 
Exploiting virtualization and ability to install a host from scratch in a few minutes, it 
is possible to do a sort of host on-demand, where the start-up of a backup virtual 
machine is done only when the disaster occurs. 

7.3 Redundancy in virtual environments - 3RC 

The 3RC system offers several possibility of redundancy strategies, depending on 
the desired high availability level. There is not a unique solution for all possible 
requirements; each use case needs a different processing solution. 
The system is able to recover all the managed services running in virtual 
environment in case of crash or failure. The unavailability of the original physical 
host providing the virtual machine - e.g. due to a physical machine fault - is 
managed in an absolutely transparent manner. 
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Dividing host crashes into operating system and applications faults, my work 
covers the only operating system crash case. 

7.3.1 Operating system level 
The host status (up or down) is determined by the host operating system response 
by checking the operational state of a set of specific applications, such as ping, 
health monitor state. The 3RC system is able to recover only a crashed operating 
system status. 

7.3.2 Application level 
No check is performed at application level. The recovery of a crashed application in 
a working operating system has to be managed by the application itself, or rather 
by a controller script running on the same host. It is a programmer's task to ensure 
that an application is able to check its correct operational status. Usually this is 
achieved by an extra controller scheduled to periodically run in background; this 
script checks the application response via simple controls, and must be able to 
perform operations such as the application start or stop. 

7.4 Architecture 

The solution has been improved in a virtual environment by using a remote 
controller and an application based on a finite state machine. Each state plays the 
role of an action which can be performed on the single virtual machine hosting the 
crashed application or on the whole virtual layer running over the physical hosts. 
Moreover a zero cost storage redundant solution has been deployed in order to 
guarantee a certain level of data reliability and availability in case of damage of one 
system device, and to reduce the possible bottlenecks. 
The whole PXE infrastructure described in a previous chapter has been used to 
allow a virtual machine to be installed in a few minutes from scratch. 

7.5 Controller 

The remote controller is the main core of the 3RC high availability system. It is 
responsible of checking and monitoring all the hosts involved in the high availability 
service. 
The only requirement for the controller is the ability to access as administrator all 
the involved hosts. Usually this can be performed by a public key exchange 
between the controller and each node of the cluster, in order to guarantee the 
access without the password request by the accessed host in case an operation is 
required. 

7.6 Virtualization layer 

An accurate preliminary study of all available virtualization architecture has been 
performed. The evaluated solutions has been essentially XEN and VMware. 
While XEN is a complete free and open source software, VMware is a business 
closed source solution, with a free release available. 
My end choice for the virtualization layer has fallen to the VMware free server 
solution. The reasons for that choice have been the VMware business reliability 
and the guarantee of a continuous software package update. 
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7.7 Operating systems 

While the main controller of the high availability system needs a Linux based host, 
the only requirement for the servers hosting the virtual machines is to run the 
VMware server. The virtual machines can run whatever kind of operating system, 
from Unix to Windows. 

7.8 Infrastructure 

A complex infrastructure, based solely on servers ever available in a typical  
computing center, has been developed to install operating system and middleware 
in a few minutes, by exploiting Preboot Execution Environment PXE technology, as 
well as DNS and DHCP services. Using this infrastructure more than 5000 servers 
have been installed from scratch by the knowledge of their only MAC address. 
A redundant controller system periodically checks all the virtual machines running 
in a high availability status. 

7.9 Storage 

Several storage solutions, from Network Attached Storage NAS to Storage Area 
Network SAN have been tested to store and centralize all the virtual disks, to grant 
data safety and access from everywhere, enhancing the aggregate bandwidth and 
reducing at the same time the downtime period. Depending on the required 
availability level, the financial resources, the storage redundancy method, a lot of 
possible solutions are available. 
The Storage Area Network solution is certainly the best solution in terms of 
performance, reliability, availability, but the cost of such a solution is generally 
prohibitive for a research institute or university. While today the cost per TB is 
about 100 € for low cost disk, it can increase till 10.000 € per TB in case of a high 
performance Storage Area Network. For the Network Attached Storage, the best 
solution in my opinion for a medium computing center, the cost per TB is between 
500 and 1.000 €. 
A zero cost solution - the adopted one in my research - is played from the DRBD 
mirror over network. 

7.9.1 Mirror over network 
The Distributed Replicated Block Device (DRBD) is a software-based, replicated 
storage solution able to mirror a whole disk, a partition or a logical volume between 
servers across the network. DRBD mirrors data in real time, in a transparent way to 
the end user, duplicating stored data on several computers. 
This is performed by adding a module to the Linux kernel. 

7.10 Monitor service 

A lot of monitoring systems have been tested to check the hosts status. Even if 
someone of them is able to perform action on the analyzed machines, the chosen 
solution has been the Ganglia Monitoring System [54]. 
Ganglia is a distributed monitoring system for high performance computing 
systems such as clusters and Grids. For this reason it reasonably meets the 
system requirements: check and report any host failure in an acceptable time. 
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Ganglia is a scalable distributed monitoring system for high performance 
computing systems such as clusters and Grid. It is based on a hierarchical design 
and uses technologies such as XML for data managing, and RRDtool for data 
storage and visualization. The system uses very light data structures and 
algorithms to achieve very low per node overheads and high concurrency. 
 
The tests performed over five years have proved that the implementation is robust 
enough: more than 99.9% of the crashed cases are discovered and announced in 
an average time of 70 seconds. The default polling interval (the hosts check 
sampling interval) is 15 seconds. 
An additional plugin has been developed to make Ganglia information available for 
a Linux shell script. It periodically analyzes the XML Ganglia log in order to manage 
the information in a more flexible and usable way. 
 
Fig. 7.2 [SNS] shows a typical Ganglia monitor screenshot. 
 

 
 

Fig. 7.2: Ganglia monitor screenshot 
 
The developed plugin extracts in text format all the needed information related to 
physical and virtual host, to be passed to the remote controller 3RC. The extracted 
information are: host name, average load in the last 5 minutes, seconds from the 
last ping received. 
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HOSTS STATUS 
 

hostname;load;last_ping; 
 
alfa01.sns.it;2.94;25; 
alfa02.sns.it;1.13;18; 
alfa03.sns.it;0.01;24; 
bibe.sns.it;0.01;13; 
bussolo.sns.it;0.00;20; 
gridce.sns.it;1.55;15; 
gridse.sns.it;0.28;26; 
lcg.sns.it;0.00;13; 
pbs01.sns.it;2.00;13; 
pbs02.sns.it;1.04;19; 
pbs03.sns.it;5.74;21; 
vrt1.sns.it;0.00;15; 
vrt2.sns.it;0.00;28; 

 

7.11 Time schedule 

A control script (the remote controller) is scheduled to run every 60 seconds on a 
single host - the host can be both internal or external to the cluster. 70 seconds is 
the average time needed from Ganglia to be aware of a machine operating system 
fault. The consequent average total time from a machine crash to its awareness by 
the 3RC controller is 30 + 70 seconds, with a confidence interval of ± 30 seconds. 
It means 100 +/- 30 seconds needed to be aware of a machine crash. 

7.12 Finite state machine approach 

The intervention level on a crashed machine, in 3RC project, goes from a simple 
host reboot till a complete operating system and middleware re-installation,  
through a restart service. 
A finite state machine with cyclic states has been developed to meet the required 
intervention levels. Sequentially switching the three provided states, in a sort of 
intervention escalation, it allows to operate in three different manners on the 
crashed system. The three levels provided are: reboot, restart, reinstall. 
 
The remote controller scans once per minute the whole cluster. In case of a failure 
detected, it checks the previous state of the virtual machines involved in the failure, 
and acts consequently. Only if the reboot or restart procedures have already been 
tried, the reinstall procedure starts. 
For a typical Linux environment, a 3 minutes time wait between the reboot or 
restart and the reinstall procedure has been setup. 

7.12.1 Reboot 
The first and simplest solution for a high availability service is to reboot the 
machine when an operating system crash occurs. It could be very difficult to 
achieve: the reason is that if an operating system crashes, with a large probability it 
is not contactable from outside. In case of machine isolation, the reboot cannot be 
induced from outside. 
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The reboot  intervention level, in case of virtual machines running over a physical 
host, is almost unworkable. It can be easily removed from the action list to be 
performed on a failed host. 

7.12.2 Restart 
The term "restart" in my work means the restart of the virtual layer managing the 
crashed virtual machine. This way is it possible to manage a virtual machine switch 
on and off, as a real one. While a human intervention is needed to switch on a 
turned off physical host - with the exception of servers provided with remote 
hardware controller listening on the network - the switch on a turned off virtual 
machine can be done also from a remote controller. 
By acting a restart of the virtualization layer managing the virtual machine, the 
system can easily operate a complete restart of the virtual machine, including the 
beginning bootstrap procedure. 
 
The restart of a virtual machine can be performed on the same physical host 
previously hosting the virtual machine, or on another physical host, depending on a 
choice algorithm based on: 
� physical hosts availability; 
� average load of physical hosts in the last 5 minutes; 
� number of virtual machines already hosted by the single physical host. 
 
A threshold load level is given for each physical server, depending on its CPUs 
number, RAM availability, internal processor architecture. 
This way, if a physical host serving one or more virtual machines crashes, the 
hosted virtual machines can be easily moved to another physical host as soon as 
the controller detects the failure (the control check is scheduled once per minute). If 
no one of the available physical hosts in the cluster are at the moment free, the 
virtual machine waits to be restarted till a physical host reaches an under-threshold 
load level. 

7.12.3 Reinstall 
As a last chance, the system can provide a complete reinstall procedure, exploiting 
the whole PXE infrastructure previously described. After the reboot and / or the 
restart procedure have been performed unsuccessfully, the remote controller 
changes the link between the crashed virtual machine MAC address and the 
installation configuration required in the tftpboot/pxelinux.cfg path. The information 
about which operating system and middleware are required for a specific host are 
provided by a configuration file. 
 
After the restart of the virtual machine, at the bootstrap time, the new kernel is 
loaded and the new installation starts from scratch. 
The reinstall procedure can be disabled on a set of virtual machines, depending on 
the specific requirement - e.g. in case of non automatic installation provided for that 
kind of host. 
As for the restart procedure, the reinstallation can be performed on the same or on 
another physical host, depending on the physical host availability, average load 
and status. 
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7.13 Recovery time 

More than 15.000 crash test have been performed over 4 different testbed during a 
two week stress test period. Both the host and the guest operating system used 
are Linux: Debian the host, Red Hat the guest one. 
Two crash cases will be analyzed: 
� non destructive crash; 
� destructive crash. 

7.13.1 Non destructive crash 
For a simple non destructive crash the chosen procedures have been: 
� simple switch off: the virtual machine is switched off by a halt, or shutdown 

command; 
� high load increase: a recurrent procedure aimed at increasing the virtual 

machine load until the system crashes or does not respond. 
 
The time for a virtual machine Red Hat operating system Reboot is about 80 
seconds [10 seconds for the PXE network setup procedure + 70 seconds for the 
boot] ± 10 seconds 
The boot time added to the time the controller needs to recognize a failure gives 
the total recovery time in case of non destructive crash: 180 seconds ± 30 
seconds. 
The Gaussian (normal) distribution fitting the observational data has a mean of 181 
seconds and a standard deviation (sigma) of 10 seconds. 
 
Fig. 7.3 [experimental data] shows the recovery time after 10.000 non destructive 
crashes. 
 

 
 

Fig. 7.3: Recovery time - 10.000 crash test 
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Fig. 7.4 [experimental data] shows the recovery time distribution after 10.000 non 
destructive crashes. 
 

 
 

Fig. 7.4: Recovery time distribution - 10.000 crash test 
 

7.13.2 Destructive crash 
For a destructive crash the chosen procedure used has been a reboot after the 
/boot partition has been erased. This is, in my opinion, the only safe way to 
certainly destroy a Linux based system. 
 
The time for a virtual machine Red Hat operating system Reinstall is about 442 [10 
seconds for the PXE network setup procedure + 352 seconds for the installation + 
80 seconds for the boot] ± 17 seconds 
The install time added to the time the controller needs to recognize a failure gives 
the total recovery time in case of destructive crash: 542 seconds ± 45 seconds. 
The Gaussian (normal) distribution fitting the observational data has a mean of 542 
seconds and a standard deviation (sigma) of 17 seconds. 
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Fig. 7.5 [experimental data] shows the recovery time after 5.000 destructive 
crashes. 
 

 
 

Fig. 7.5: Reinstall time distribution - 5.000 destructive test 
 
Fig. 7.6 [experimental data] shows the recovery time distribution after 5.000 
destructive crashes. 
 

 
 

Fig. 7.6: Reinstall time distribution - 5.000 destructive test 
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7.14 Advantages 

By using an automated system to reinstall from scratch a damaged host, the 
administrator no longer has to physically put hands on the software or hardware 
problems when a computer crashes. A network boot does the reinstall in a 
complete automatically way. 
In a lot of cases, it is more efficient to reinstall operating system and software than 
to try to determine the problem with the existing installation. 
By booting from the network, you get a guaranteed clean operating system, with no 
viruses or user modified files. 

7.15 Physical to virtual migration 

To virtualize the main servers of a data center, the first requirement to satisfy is the 
ability to virtualize a single host. 
At Scuola Normale and INFN Pisa, in the last years I developed a new procedure 
for a semi-hot swap physical to virtual migration. The procedure provides: 
� physical to virtual host migration. with a system downtime lower than 30 

seconds in production environment; 
� virtual to physical migration (vice versa) - never used at the moment. 
 
The implemented procedure  steps for a Physical to Virtual migration are 
essentially based on: 
� virtual machine creation: via virtual layer cloning or setting up from scratch; 
� synchronizing tool to hot synchronize original physical and new virtual host; 
� new sync with both physics and virtual host down, in order to have a new 

system completely up to date. 
 
The physical to virtual migration procedure has already been tested and used in 
LCG CERN Computing Grid environment. 
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8 OPERATION 

8.1 Environment 

The 3RC high availability service is aimed at taking care of services running over a 
computing cluster - a set of physical hosts serving more virtual machines in virtual 
environment. 
Ganglia is the monitor used to check the machine (both physical and virtual) health 
status. A redundant remote controller - the core of my project - attends to the 
system overview, and manages the actions to be taken in case of failure of one or 
more of the system components. 

8.2 Hysteresis based finite machine state 

Hysteresis: tendency of a system to respond differently to the same stimulus 
depending on the initial state of the system. [definition by Claudia Guida, Molecular 
Biologist @ IEO Milan]. 
 
A system with hysteresis can be summarized as a system that may be in a finite 
number of states, independent of the inputs to the system. A system with 
hysteresis exhibits path dependence. It' s not possible to predict the output without 
looking at the history of the input - i.e. the state of the system for a given input. In 
order to predict the output, the algorithm must look at the path followed by the 
output before it reached its current value. 
 
From this point of view, the choice algorithm of the 3RC core is able to perform an 
action - among the possible - based on the knowledge of the current and the 
previous states of the failed host. The algorithm, based on a finite state machine 
with hysteresis, is responsible of the action to be performed on each failed virtual 
host, in order to recover in the lowest time period the failed machines. 
 
The steps performed from the remote controller are: 
 
� REBOOT: simple reboot - in case of previous correct operational status of the 

virtual machine. 
 
� RESTART: restart of the virtual layer managing the virtual machine (similar to 

a turn off and turn on of the virtual machine) - in case of an already reboot 
action performed in the last hour - the restart can be performed on the same 
physical host or on another one if the load of the original physical server is 
higher than a selected threshold level. 

 
� REINSTALL : complete operating system and middleware reinstallation - this 

action is performed (only if expected in the configuration file) as the last choice, 
and only if all the previous action have already been performed. 

 
It is possible to set up a variable number of cycles for each action to be performed 
before passing the control to the next action step. 
 



 

63 

Fig. 8.1 shows the 3RC finite state machine with hysteresis. 
 

 
 

Fig. 8.1: 3RC finite state machine with hysteresis 

8.3 Operational steps in case of host failure 

What happens when a physical or virtual host crashes? 
When a host fails, the controller is able to detect the failure in less than one minute 
after the Ganglia monitor event detection. A choice algorithm is responsible to 
decide on the best solution to be provided in order to recover the failed host(s). 
As a consequence of a typical crash event - e.g. an overload of the virtual machine 
running a specific service - the monitor detects the failure 70 seconds after the 
failed host becomes unresponsive. The controller notices the failure with a delay of 
0 to 60 seconds and starts the recovery procedure. 
 
If the previous host state (the state of the virtual machine at the previous check, 
usually one minute before) was "up and running", the system try to do a reboot of 
the virtual machine involved in crash, hoping the machine is still reachable via ssh. 
After that, the system is in a sort of standby state, waiting till the end of T1 (3 
minutes). 
At the first check scheduled after T1, if the failed host is still unresponsive and no 
feedback comes back, the controller performs a restart of the virtual layer involving 
the failed virtual machine; this is equivalent to physically turn off and on the host, in 
order to restart operating system and all the loaded modules and applications. 
If after a T2 (3 minutes) waiting time the host does not become responsive, 
compatibly with the system configuration permissions, the controller starts the 
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complete reinstall procedure, performing a full installation from scratch: disk 
partition, disk formatting, operating system installation, post configuration process, 
middleware installation and configuration, services start up. 
 
Each of the previous procedures can be performed a configurable number of time. 
In my opinion, the reboot attempt can be omitted; best practice could be to study 
the use case to determine if a single reboot can be performed or not - usually if an 
application crashes with a system overload, the whole system becomes 
unresponsive to any external signal, included a reboot command. 
At each operation preformed by the system on a virtual machine, a log is written on 
a shared area. 
After one hour of proper operation, all the logs are cleared, and the normal 
operation status is restored for the hosts involved in a previous failure. 

8.3.1 Virtual machine failure 
When a virtual machine fails - e.g. in case of system crash, software overload, 
virtual device failure - the remote controller, after the detection - via monitor - of the 
host failure, performs one of the three possible  steps in order to recover the host. 
Based on the previous state of the virtual machine (the information is stored on a 
shared log file), the controller decides which action is the best one at the moment: 
reboot, restart, or reinstall. 

8.3.2 Physical machine failure 
In case of physical machine failure - e.g. broken hardware - the system detects, 
based on a choice algorithm, the most appropriate host in the cluster to recover the 
hosted virtual machines. The virtual machines involved in the physical machine 
crash are moved to a backup physical host in the cluster. 

8.4 Remote controller 

The remote controller - the 3RC core - is the main actor of the project. It has to be 
guaranteed the access without any password requirement to all the hosts (physical 
and virtual) involved in the cluster running the high availability service. The 
controller can run on whatever physical host, both as user or administrator. 
A single controller can be responsible for the health status of all the nodes of a 
cluster, or a double control may be deployed in order to prevent a single point of 
failure - even if a secondary point of failure: in case of controller failure the whole 
cluster continues its usual operation, and only a joint failure of host and remote 
controller can affect the correct operation. 

8.5 Time schedule 

A remote controller performs a complete scan of all the hosts involved in the cluster 
at a scheduled interval period of 60 seconds. 
After each action taken from the controller, a configurable inactivity period is 
expected to prevent a repetitive action, until a feedback is returned from the 
crashed host: 3 minutes after a reboot or restart of the virtual layer are waited 
before performing the next action step; 10 minutes is the maximum time period 
expected for a complete reinstallation of the host. In the meanwhile the controller is 
in standby, and no actions are performed over the cluster. 
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After one hour when non action are performed over a single virtual machine, the 
virtual machine status is reset to the original one - the correct operation one. 

8.6 Redundancy in 3RC system 

8.6.1 Monitor 
Ganglia monitor provides an intrinsic redundancy strategy: the monitor information 
is natively shared among several hosts belonging to the cluster. By setting the 
optional parameters in gmetad.conf (collector configuration file) and gmond.conf 
(client to be monitored configuration file) the Ganglia information are stored in more 
than one collector node. 
 
/etc/gmetad.conf 
 
  # List of machines this gmetad will share XML with 
    trusted_hosts 127.0.0.1 192.168.1.10 my.node.org 

 
/etc/gmond.conf 
 
  # Enable any host connected to the gmond XML to receive data 
    all_trusted on 

8.6.2 Controller 
A new approach in redundancy systems used to control the health state of a cluster 
has been developed, in order to avoid the service unavailability in case of the 
control failure. 
The strategy lies in doubling the controller service by running the same control 
service on two different nodes. The idea is to set up the two controllers time 
schedules at alternating time steps, in order to guarantee an unique performed 
action at a certain time. Considering that a single controller action does not require 
more than 10 seconds, a time rotation of 1 minute is an appropriate alternating 
time. 
 
This way the controller A acts at the even minutes, and the controller B acts at odd 
minutes. Both the controllers A and B write the performed actions on a common 
shared log area, independently from the action performer. 
As a consequence of such an architecture, for the single controller is not interesting 
if the other controller is dead or alive; it can act independently. If one controller 
fails, the only effect on the system is the scheduled check frequency halving, 
passing the period by 1 to 2 minutes. It is acceptable for my production 
environment, and compliant with specification requirements. 

8.6.3 Storage 
The storage has to be redundant and reliable by default. To achieve a reliable 
solution, several methods have been shown in chapter "Storage solutions". 

8.7 Kernel software source 

The 3RC main core (kernel) software source is written in bash shell script, the 
native Linux based system language. The language choice depends on the needs 
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of a robust system infrastructure, minimizing the new software layers addiction. 
Each software addiction can become an error source. 
The whole project, from the PXE architecture to the 3RC main core, is available as 
open source free software. 
The main core source of the 3RC remote controller is provided in Appendix. 

8.8 Installation 

The 3RC core installation procedure is very simple. After the controller - cluster 
hosts public key exchange, the service runs as a scheduled script. No root 
privileges are required to proper operation. 
For the Preboot eXecution Environment PXE architecture set up, a brief How To - 
available online - is recommended. 

8.9 Configuration 

The 3RC high availability service configuration step entails the set up of the hosts 
(both virtual and physical) features, such as: 
� host type: physical host (PH) or virtual machine (VM); 
� hostname; 
� physical host load threshold; 
� reinstallation flag: only if set to 1 the virtual machine is reinstallable from 

scratch; 
� operating system: distro + architecture (32/64 bit); 
� middleware needed by the virtual machine in order to run the proper service. 
 
hosts.def 
 
  # TYPE HOSTNAME  MAXL INST OS      MW 
  
    PH   physic01   10 
    PH   physicNN   10 
    VM   virtual1        0   sl4-32  ig_CE 
    VM   virtualN        1   sl4-64  ig_WN 
  
  # MAXL: max load 
  # INST: VM reinstallable 

 
The service time scheduling is provided by 
 
crontab or /etc/cron.d/ha 
 
  # High Availability - every 1 minute 
    * * * * *  user  /<PATH>/<HIGH_AVAILABILITY_script> 

8.10 Log 

The 3RC service log reports the date, the virtual machine, the physical host and 
the performed action: 
 
date                   vm - ph1 ph2   last_r               f  action 
YYYY-MM-DD/HH:MM:SS -- VM - PH1 PH2 - YYYY-MM-DD/HH :MM:SS [0] ACT/...wait 
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     ACTION VM <VM> on PH <PH>2 [from PH <PH1>] 
EX: LOG after CRASH VM vrt1 
>> Clear history 
>> REBOOT  VM vrt1 on PH alfa01 
2000-01-01/00:00:00 -- vrt1 - alfa01 alfa01 - 2007- 01-01/00:00:00 [1] REBOOT 

 
A comprehensive log example will be shown in the next paragraph with a real 
crash examination. 

8.11 Operation in a real crash example 

 
A real crash example is reported. 
At 4:e00 AM (night local time) gridce, the computing element - the main server - of 
the SNS-PISA CERN LCG/EGEE Grid environment turns off for an electrical power 
glitch in the computing room (unknown are the causes of the electrical problem, as 
often happens). 
 
Figures 8.2, 8.3, 8.4 show respectively the CPU, RAM and Network state of the 
failed virtual machine gridce.sns.it. 
 

 
 

Fig. 8.2: gridce host CPU monitor 
 

 
 

Fig. 8.3: gridce host Memory monitor 
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Fig. 8.4: gridce host Network monitor 
 
At the electrical power glitch moment the virtual machine gridce was hosted by the 
physical server alfa01. At that moment the alfa01 load was higher than maximum 
load acceptable (the information is stored in the hosts configuration file). The 3RC 
choice algorithm searches for another host inside the computing cluster running 
virtual environment a physical host with a load level lower than threshold: alfa04. 
After an unsuccessful reboot try via ssh (the host is down), the virtual environment 
involving the crashed virtual machine gridce is restarted on alfa04 physical host. 
In less than eight minutes the service is completely restored. The time could have 
been reduced, by omitting the reboot step, till about 3 - 4 minutes. 
 
Fig. 8.5 shows the gridce crashed virtual machine, and alfa01 alfa04 physical hosts 
status during the 24 hours including the electrical power glitch. 
 

 
 

Fig. 8.5: Crash involved machines status 
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The operation log of the gridce virtual machine recovery and movement - from 
physical host alfa01 to physical host alfa04 - shows: 
� the clear history: no operations have been performed in the last hour, the 

virtual machine is supposed to work properly; 
� virtual machine reboot try via ssh - no successful due to virtual machine 

unreachability (the host is down); 
� 3 minutes time wait; 
� physical hosts load level check; 
� virtual layer (involving the only gridce virtual machine) restart on the available 

physical host alfa04; 
� 3 minutes time wait; 
� the virtual machine gridce becomes responsive - the service is recovered. 
 

------------ 
GRIDCE CRASH 
------------ 
 
* TRY TO REBOOT 
 
 >> Clear history 
 >> REBOOT VM gridce on PH alfa01 
 2008-12-14/04:31:01 -- gridce - alfa01 alfa01 - 20 08-12-13/13:12:01 [1] REBOOT 
 
* WAIT 
 
 2008-12-14/04:32:01 -- gridce - alfa01 alfa01 - 20 08-12-14/04:31:01 [1] ..wait 
 2008-12-14/04:33:01 -- gridce - alfa01 alfa01 - 20 08-12-14/04:31:01 [1] ..wait 
 2008-12-14/04:34:01 -- gridce - alfa01 alfa01 - 20 08-12-14/04:31:01 [1] ..wait 
 
* RESTART VM 
 
 >> RESTART VM gridce on PH alfa04 [from OLD PH alf a01] 
 2008-12-14/04:35:01 -- gridce - alfa01 alfa04 - 20 08-12-14/04:31:01 [2] RESTART 
 
* WAIT 
 
 2008-12-14/04:36:01 -- gridce - alfa01 alfa04 - 20 08-12-14/04:35:01 [2] ..wait 
 2008-12-14/04:37:01 -- gridce - alfa04 alfa04 - 20 08-12-14/04:35:01 [2] ..wait 
 2008-12-14/04:38:01 -- gridce - alfa04 alfa04 - 20 08-12-14/04:35:01 [2] ..wait 
 
* VM RECOVERED !!! 
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9 SPIN-OFF 

9.1 Host on-demand 

As a spin-off of this work, exploiting virtualization and ability to automatically install 
and configure a host in a few minutes, we could provide a sort of "host on-
demand". In a such architecture, the user can ask for a self configured host in 
terms of processor number, RAM, disk space, operating system and middleware 
for a given time, with the administrator privileges. At the end of the scheduled time 
the machines are destroyed. 
This way it is possible to optimize the resources sharing across a large number of 
hosts shared by a large number of users, by simply redistributing the load upon all 
the available machines [55]. 
 
Fig. 9.1 [netdigix.com] shows a typical cloud architecture aimed at providing a host 
on-demand service. 
 

 
 

Fig. 9.1: Host on-demand 

9.1.1 Note 
This meaning of Host on-demand is not to be confused with the IBM WebSphere 
Host On-Demand software [56]: a Web browser based access to host applications 
and data. 

9.2 Architecture 

A front-end web server manages the users requirements: how many servers you 
need? how many CPUs, RAM, disks? which operating system? how much time 
for? 
The kernel of 3RC project can be used, with some little modifications, to allocate 
the required disk space on the storage repository and to instantiate the required 
number of virtual machines. 
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VMware allows to create a new virtual machine at once, by passing to the system 
the hardware specifications. Once the virtual machine has been created, using the 
whole PXE infrastructure is it possible to install the operating system required by 
the end-user. If the required host is compliant with a known configuration, the 
system can automatically install the middleware applications too, in order to 
provide a full operational machine in a few minutes. 
This way, in a time from 3 to 5 minutes a user can require and achieve as 
administrator whatever number of hosts, compatibly with the computing center 
physical CPU availability and the users policy. 
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10 CONCLUSIONS 

Exploiting virtual environment and its features, a high availability service (3RC) has 
been developed with no additional costs in terms of hardware or software for a 
computing center, and a very low human effort. This new approach - compliant with 
the starting requirements - is able to guarantee a relaxed high availability level, with 
a recovery time of about three minutes for a non destructive crash, and lower than 
ten minutes if a compromised host needs to be completely reinstalled. The whole 
Grid data center SNS-PISA is running at the moment in virtual environment, 
controlled by the 3RC high availability system. 
 
The main difference with respect to the pre-existing solutions is that no operations 
are required on the computing center hosts in order to guarantee the high 
availability service. On the other hand the 3RC high availability system does not 
provide a hot-swap host redundancy. It allows hosts to be restarted or reinstalled in 
a few minutes, but the operational continuity is not guaranteed. 
 
I would like to refer to a statement by Luigi Picasso, Theoretical Physics Professor 
at University of Pisa: "It is important to know what a theorem states, but it is 
probably more important to know what a theorem does not state". As a 
consequence of this statement, what my project is not intended to be used for? 
3RC high availability system does not provide a zero downtime recovery service; it 
provide a relaxed recovery solution. Therefore, it is not a reliable solution for 
mission critical applications, such as financial transactions, security certificates 
management, real time controllers, human health related applications. 
 
As well as the recovery service is able to restart the virtual layer or reinstall the 
virtual machine from scratch, with a small addition to my software it is possible to 
implement different recovery solutions. With a scheduled snapshot policy, the 
system could be restarted, in case of crash, in a previously saved state. 
With respect to the storage solutions, an improvement in read/write performance 
can be achieved using the Logical Volume Manager LVM architecture instead of an 
image file living on the physical host file system. The use of LVM removes the 
physical host file system layer, reducing the overhead in the I/O operations. 
 
An interesting future research area will be the study of other virtual environment 
solutions, such as XEN - not yet mature enough when I started working in virtual 
environment - or KVM - a very promising module embedded in the Linux kernel. 
During the last year, a 3RC similar solution based on open source software 
Heartbeat over a XEN cluster [57] has been developed. Operationally this solution 
needs a backup dedicated server or a certain amount of free resources shared 
over the cluster hosts; this entails a non full exploitation of the computing center 
resources, and needs a larger number of CPUs than my solution. 
 
Future work can be done in order to improve the system performance or add some 
extra features. A solution to decrease the time needed for a failed host recovery 
could be great, maybe not too hard to implement, but would it be really useful? 
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APPENDIX 

Kernel source code 
 
#!/bin/sh 
# HIGH AVAILABILITY SERVICE 
 
# Monitor hosts down, then reboot or restart (reset  power/virtual or start on another 
Virtual host) 
 
# ------------------------------------------------- ------------------- #** 
# 
#  PROC:  High Availability 
#  PROG:  Controller, Restart hosts 
# 
#  AUTH:  FEDERICO CALZOLARI - Scuola Normale Super iore - Pisa [Italy] 
#         federico.calzolari@sns.it 
# 
#  DATE:  2008 
# 
# ------------------------------------------------- ------------------- # 
 
 

Program Flowchart 
 
# ---------- PROGRAM FLOWCHART -------------------- ------------------- #** 
# 
#  IF DELTA_T < RESTART_TIME 
#     NO ACTION (to prevent reinstall after reboot)  
#  FI 
#  IF DELTA_T > RESTART_TIME 
#     IF DELTA_T > 1h 
#        flag = 0 (CLEAR history) 
#     FI 
#     CHECK VMware on Physical host & RESTART VMwar e if not running 
#     IF flag = 0 
#        REBOOT    via SSH 
#        flag = 1 
#     ELSE 
#     IF flag = 1 
#        RESTART   via VMware 
#        flag = 2 
#     ELSE 
#     IF flag = 2 AND inst = 1 
#        REINSTALL via PXE 
#        flag = 0 
#     FI 
#     FI 
#     FI 
#  FI 
#     SET reset time 
# 
#  - get monitor info from Ganglia                         > HA_mon 
#  - extract info (load,heartbeat,status) using sed ,awk    > HA_load 
#  - get info on host max_load,services                    < ha_host.def 
#  - perform CONTROL on 
#    - status off  ==> reboot / switch / reinstall 
#    - lock file for selected host 
#    - if NOT     rebooted ==> reboot 
#    - if already rebooted ==> reinstall 
#      - call ACTION 
# 
# ------------------------------------------------- ------------------- # 
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Configuration 
 
# ---------- CONFIGURATION ------------------------ ------------------- #** 
# 
# SETTINGS 
# 
#   HA_DIR        /var/spool/ha    HA dir: host def inition ha_host.def, LOG 
#   RESTART_TIME  600              max time needed for host restart 
#   DEBUG         0,1              debug  mode (0:O FF 1:ON) 
#   ACTION        0,1              action mode (0:O FF 1:ON) 0:FAKE, NO action taken 
# 
# 
# FILES 
# 
#   /usr/bin/ha                    main High Availa bility controller/action 
#   HA_DIR/host.def                host definition (TYPE HOSTNAME OS MW) 
#   HA_DIR/log                     log 
#   HA_DIR/vm/<VM>                 virtual machines  hosted by, restarted at, flag 
# 
#   --------- 
# > hosts.def 
#   --------- 
#   # TYPE HOSTNAME  MAXL INST OS      MW 
#     PH   physic01   10 
#     PH   physicNN   10 
#     VM   virtual1        0   sl4-32  ig_CE 
#     VM   virtualN        1   sl4-64  ig_WN 
#   # VM   extra          0/1  [# NOT included in H A service] 
#   # MAXL: max load 
#   # INST: VM reinstallable 
# 
#   ----- 
# > vm/VM 
#   ----- 
#   PH_owner_VM last_restart FLAG 
# 
# 
# SCHEDULER: crontab 
#   > /etc/cron.d/ha 
#     # High Availability - every 1 minute 
#     * * * * *  root  /bin/ha 
#   OR 
#   > /etc/cron.d/ha                 cron scheduler  
# 
# ------------------------------------------------- ------------------- # 
 
 

Install HowTo 
 
# ---------- INSTALL ------------------------------ ------------------- #** 
# 
# INSTALL [as root/user] 
# 
#   mkdir -p        /var/spool/ha/vm 
#   chmod -R ugo+rw /var/spool/ha/ 
# 
#   SET: 
#     /usr/bin/ha 
#     /var/spool/ha/ 
#     /var/spool/ha/vm 
#     /var/spool/ha/vm/<VM> 
# 
# ------------------------------------------------- ------------------- #  
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Events Log 
 
# ---------- LOG ---------------------------------- ------------------- #** 
# 
# LOG 
# 
# date                   vm - ph1 ph2   last_r               f  action 
# YYYY-MM-DD/HH:MM:SS -- VM - PH1 PH2 - YYYY-MM-DD/ HH:MM:SS [0] ACT/...wait 
#      ACTION VM <VM> on PH <PH>2 [from PH <PH1> 
# 
# EX: LOG after CRASH VM vrt1 
# 
# >> Clear history 
# >> REBOOT  VM vrt1 on PH alfa01 
# 2000-01-01/00:00:00 -- vrt1 - alfa01 alfa01 - 200 7-01-01/00:00:00 [1] REBOOT 
# 2000-01-01/00:01:00 -- vrt1 - alfa01 alfa01 - 200 8-01-01/00:00:00 [1] ..wait 
# 2000-01-01/00:02:00 -- vrt1 - alfa01 alfa01 - 200 8-01-01/00:00:00 [1] ..wait 
# >> RESTART VM vrt1 on PH alfa02 [from OLD PH alfa 01] 
# 2000-01-01/00:03:00 -- vrt1 - alfa01 alfa02 - 200 8-01-01/00:00:00 [2] RESTART 
# 2000-01-01/00:04:00 -- vrt1 - alfa02 alfa02 - 200 8-01-01/00:00:00 [2] ..wait 
# 2000-01-01/00:05:00 -- vrt1 - alfa02 alfa02 - 200 8-01-01/00:00:00 [2] ..wait 
# >> REINSTALL VM vrt1 on PH alfa03 [from OLD PH al fa02] 
# 2000-01-01/00:06:00 -- vrt1 - alfa02 alfa03 - 200 0-01-01/00:03:00 [0] REINSTALL 
# 2000-01-01/00:07:00 -- vrt1 - alfa03 alfa03 - 200 0-01-01/00:03:00 [0] ...wait 
# 2000-01-01/00:18:00 -- vrt1 - alfa03 alfa03 - 200 0-01-01/00:03:00 [0] ...wait 
# 2000-01-01/00:09:00 -- vrt1 - alfa03 alfa03 - 200 0-01-01/00:03:00 [0] ...wait 
# 2000-01-01/00:10:00 -- vrt1 - alfa03 alfa03 - 200 0-01-01/00:03:00 [0] ...wait 
# [VM RECOVERED] 
# 
# ------------------------------------------------- ------------------- # 
 
 

Test procedure 
 
# ---------- TEST --------------------------------- ------------------- #** 
# 
# set ACTION=0 
# 
# echo "PH DATE/TIME FLAG" > /var/spool/ha/vm/<VM> 
# EX:  echo "alfa01 2008-01-01/00:00:00 0" > /var/s pool/ha/vm/vrt1 
# 
# . ha 
# 
# ------------------------------------------------- ------------------- # 
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Settings 
 
# ---------- SETTINGS ----------------------------- ------------------- #** 
# 
# -------- # 
# SETTINGS # 
# -------- # 
# 
  set -o nounset 
   DEBUG=0              ## DEBUG  mode [0/1] 
  ACTION=1              ## ACTION mode [0/1] 
  RESTART_TIME=600      ## min uptime (sec) to be s ure that the host has really 
restarted 
 
  # HA path 
  HA_DIR=/var/spool/ha 
 
 

Functions 
 
# ---------- FUNCTIONs START ---------------------- ------------------- #** 
# 
#   function DEBUG 
    function DBG() { [ $DEBUG = 1 ] && echo -e "   @@ DEBUG: $1" >&2; } 
 
#   function LOG($vm $ph $ph2 $LAST_R $FLAG $ACT) 
    function LOG() { 
 
           vm=$1 
          ph1=$2 
          ph2=$3 
       LAST_R=$4 
         FLAG=$5 
          ACT=$6 
 
      #cho -e "# ----------------------------- #" |  tee -a $HA_DIR/log 
      echo -e "`date '+%F/%T'` -- $vm - $ph1 $ph2 -  $LAST_R [$FLAG] $ACT" | tee -a 
$HA_DIR/log 
    } 
 
#   function CHECK_LOAD 
    function CHECK_LOAD() { 
        ph=$1 
        maxl=`grep $ph $HA_DIR/hosts.def | awk '{pr int $3}'` 
        load=`grep $ph /tmp/HA_load      | awk -F"; " '{print $2}'` 
        maxl=`echo $maxl *100 | bc -l    | awk -F". " '{print $1}'` 
        load=`echo $load *100 | bc -l    | awk -F". " '{print $1}'` 
        beat=`grep $ph /tmp/HA_load      | awk -F"; " '{print $3}'` 
    } 
# 
# ---------- FUNCTIONs END ------------------------ ------------------- # 
 
 

Actions 
 
# ---------- ACTION FUNCTIONs---------------------- ------------------- #** 
# 
    function VMrestart() { 
           # RESTART VM via VMware [FUNCTION] 
              vm=$1 
             ph1=$2 
             ph2=$3 
             ssh root@$ph1 "nn=\`vmware-vim-cmd vms vc/getallvms | grep $vm | awk 
'{print \$1}'\`; 
                            # echo VMid: \$nn; 
                            vmware-vim-cmd vmsvc/po wer.off \$nn > /dev/null 2>&1; 
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                            [ `ps auxww | grep -v g rep | grep -i $vm | wc -l` != 0 ] && 
ps auxww | grep -v grep | grep -i $vm | awk '{print  \$2}' | xargs kill -9; 
                            rm -f /opt/vmware/$vm/$ vm.vmdk.lck/*; 
                            " & 
             sleep 10 
             ssh root@$ph2 "nn=\`vmware-vim-cmd vms vc/getallvms | grep $vm | awk 
'{print \$1}'\`; 
                            # echo VMid: \$nn; 
                            vmware-vim-cmd vmsvc/po wer.off \$nn > /dev/null 2>&1; sleep 
10; 
                            [ `ps auxww | grep -v g rep | grep -i $vm | wc -l` != 0 ] && 
ps auxww | grep -v grep | grep -i $vm | awk '{print  \$2}' | xargs kill -9; 
                            rm -f /opt/vmware/$vm/$ vm.vmdk.lck/*; 
                            vmware-vim-cmd vmsvc/po wer.on  \$nn > /dev/null 2>&1; 
                            " & 
    } 
 
    function REBOOT() { 
           # REBOOT VM via SSH 
              vm=$1 
             ph1=$2 
             ph2=$3 
             echo ">> REBOOT  VM $vm on PH $ph1" | tee -a $HA_DIR/log 
             [ $ACTION = 1 ] && ssh root@$vm "reboo t" & 
    } 
 
    function RESTART() { 
           # RESTART VM via VMware 
              vm=$1 
             ph1=$2 
             ph2=$3 
             echo ">> RESTART VM $vm on PH $ph2 [fr om OLD PH $ph1]"   | tee -a 
$HA_DIR/log 
             [ $ACTION = 1 ] && VMrestart $vm $ph1 $ph2 
    } 
 
    function REINSTALL() { 
           # REINSTALL VM via PXE 
              vm=$1 
             ph1=$2 
             ph2=$3 
             echo ">> REINSTALL VM $vm on PH $ph2 [ from OLD PH $ph1]" | tee -a 
$HA_DIR/log 
           # SET PXE environment 
             IP2HEX=`perl /var/lib/tftpboot/pxelinu x.cfg/iphex.pl $vm | awk '{print 
$3}'` 
             OS=`grep $vm $HA_DIR/hosts.def | awk ' {print $4}'` 
             [ $ACTION = 1 ] && ln -fs $OS /var/lib /tftpboot/pxelinux.cfg/$IP2HEX 
             [ $ACTION = 1 ] && VMrestart $vm $ph1 $ph2 
    } 
# 
# ---------- END ACTION FUNCTIONS ----------------- ------------------- # 
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Main program 
 
# ---------- PROGRAM ------------------------------ ------------------- #** 
 
 

Ganglia monitor 
 
# --- MONITOR ------------------------------------- ------------------- # 
# 
# GET MONITOR INFO 
  wget -q http://bibe.sns.it/ganglia/?hc=1\&p=3\&c= cluster -O /tmp/HA_mon 
 
# EXTRACT INFO 
  grep -A2 "<td><a href" /tmp/HA_mon | sed -e 's/.* ">//g; s/<\/a>.*//g;  
s/.*<small>//g; s/<\/small>.*//g;  s/heartbeat s/he artbeat 9999s/g; s/.*beat //g;  
s/s<\/font.*//g;' | sed 'N;s/\n/;/g' | sed 'N;s/\n/ ;/g' | sed -e 's/--//g' > 
/tmp/HA_load 
# 
# ------------------------------------------------- ------------------- # 
 
 

Check control 
 
# --- CONTROL ------------------------------------- ------------------- # 
# 
# CHECK OFFLINE MACHINEs 
 
  ## vm: virtual machine 
  ## ph: physical host 
 
  for hh in `grep 9999 /tmp/HA_load | awk -F";" '{p rint $1}' | awk -F"." '{print $1}'`; 
do 
 
   # check if host is a VM 
     if [ `grep $hh $HA_DIR/hosts.def | grep -v "#"  | grep "VM" | wc -l` != 0 ]; then 
        vm=$hh 
        ph=`awk '{print $1}' $HA_DIR/vm/$vm` 
 
      # ORIG PH 
        ph1=$ph 
 
      # set PH to restart VM --> ph2 
      # check if vm physical host owner is up and i ts load is lower than MAXL 
        CHECK_LOAD $ph 
        if [ $beat != 9999 ] && [ $load -le $maxl ] ; then 
         # the SAME PH $ph2 is available 
           ph2=$ph 
 
        else 
         # #ANOTHER PH $ph2 selected 
         # search for lower load PH 
           for pbk in `grep "PH" $HA_DIR/hosts.def | grep -v "#" | grep -v "$ph" | awk 
'{print $2}'`; do 
               CHECK_LOAD $pbk 
               if [ $beat != 9999 ] && [ $load -le $maxl ]; then 
                  ph2=$pbk 
               fi 
           done 
        fi 
        #echo "PH: $ph2 selected to restart" | tee -a $HA_DIR/log 
 
      # check last restart --> DELTA_T 
        NOW=`date '+%F/%T'` 
        NOW2=`date +%s` 
        LAST_R=`awk '{print $2}' $HA_DIR/vm/$vm` 
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        LAST_R2=`date -d "\`awk '{print $2}' $HA_DI R/vm/$vm | awk -F"/" '{print $1 " " 
$2}'\`" '+%s'` 
          FLAG=`awk '{print $3}' $HA_DIR/vm/$vm` 
        let DELTA_T=$NOW2-$LAST_R2 
 
      # SET RESTART_TIME depending on last action 
        if [ $FLAG = 1 ]; then RESTART_TIME=200; fi   # after reboot 
        if [ $FLAG = 2 ]; then RESTART_TIME=200; fi   # after restart 
        if [ $FLAG = 0 ]; then RESTART_TIME=600; fi   # after reinstall OR clear 
# 
# ------------------------------------------------- ------------------- # 
 
 

Operation 
 
# --- ACTION -------------------------------------- ------------------- # 
# 
      # IF LAST RESTART <  RESTART_TIME 
        if [ $DELTA_T -le $RESTART_TIME ]; then 
           ACT="...wait" 
           LOG $vm $ph1 $ph1 $LAST_R $FLAG $ACT 
        fi 
 
      # IF LAST RESTART >  RESTART_TIME 
        if [ $DELTA_T -gt $RESTART_TIME ]; then 
           ACT="ACT" 
 
         # LAST RESTART > 1H  ==> Clear history 
           if [ $DELTA_T -ge 3600 ]; then 
              echo ">> Clear history" | tee -a $HA_ DIR/log 
              FLAG="0" 
              echo "$ph2 $LAST_R $FLAG" > $HA_DIR/v m/$vm 
           fi 
 
         # CHECK/Restart VMware on Physical host 
           [ $ACTION = 1 ] && \ 
           ssh root@$ph2 "if [ `ps auxw | grep vmwa re | grep -v 'grep' | wc -l` = 0 ]; 
then 
                             /etc/init.d/vmware res tart; 
                          fi" 
 
         # ------ # 
         # ACTION # 
         # ------ # 
           if [ $FLAG = 0 ]; then 
              REBOOT    $vm $ph1 $ph1 
              ACT="REBOOT" 
              FLAG="1" 
           else 
           if [ $FLAG = 1 ]; then 
              RESTART   $vm $ph1 $ph2 
              ACT="RESTART" 
              FLAG="2" 
           else 
           if [ $FLAG = 2 ]; then 
            # chech if VM is one which can be reins talled 
              INST=`grep $vm $HA_DIR/hosts.def | aw k '{print $3}'` 
              [ $INST = 1 ] && REINSTALL $vm $ph1 $ ph2 
              [ $INST = 1 ] && ACT="REINSTALL" 
              FLAG="0" 
           fi 
           fi 
           fi 
 
         # LOG write 
           LOG $vm $ph1 $ph2 $LAST_R $FLAG $ACT 
 
         # SET reset time 
           echo   "$ph2 $NOW $FLAG" > $HA_DIR/vm/$v m 
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        fi 
# 
# ------------------------------------------------- ------------------- # 
     fi 
  done 
# 
# ---------- END PROGRAM -------------------------- ------------------- #  


