29 research outputs found

    Finite Element Modeling of Pneumatic Bending Actuators for Inflated-Beam Robots

    Full text link
    Inflated-beam soft robots, such as tip-everting vine robots, can control curvature by contracting one beam side via pneumatic actuation. This work develops a general finite element modeling approach to characterize their bending. The model is validated across four pneumatic actuator types (series, compression, embedded, and fabric pneumatic artificial muscles), and can be extended to other designs. These actuators employ two bending mechanisms: geometry-based contraction and material-based contraction. The model accounts for intricate nonlinear effects of buckling and anisotropy. Experimental validation includes three working pressures (10, 20, and 30 kPa) for each actuator type. Geometry-based contraction yields significant deformation (92.1% accuracy) once the buckling pattern forms, reducing slightly to 80.7% accuracy at lower pressures due to stress singularities during buckling. Material-based contraction achieves smaller bending angles but remains at least 96.7% accurate. The open source models available at http://www.vinerobots.org support designing inflated-beam robots like tip-everting vine robots, contributing to waste reduction by optimizing designs based on material properties and stress distribution for effective bending and stress management

    Stable Real-Time Feedback Control of a Pneumatic Soft Robot

    Full text link
    Soft actuators offer compliant and safe interaction with an unstructured environment compared to their rigid counterparts. However, control of these systems is often challenging because they are inherently under-actuated, have infinite degrees of freedom (DoF), and their mechanical properties can change by unknown external loads. Existing works mainly relied on discretization and reduction, suffering from either low accuracy or high computational cost for real-time control purposes. Recently, we presented an infinite-dimensional feedback controller for soft manipulators modeled by partial differential equations (PDEs) based on the Cosserat rod theory. In this study, we examine how to implement this controller in real-time using only a limited number of actuators. To do so, we formulate a convex quadratic programming problem that tunes the feedback gains of the controller in real time such that it becomes realizable by the actuators. We evaluated the controller's performance through experiments on a physical soft robot capable of planar motions and show that the actual controller implemented by the finite-dimensional actuators still preserves the stabilizing property of the desired infinite-dimensional controller. This research fills the gap between the infinite-dimensional control design and finite-dimensional actuation in practice and suggests a promising direction for exploring PDE-based control design for soft robots

    The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle

    Get PDF
    This article presents the design of a novel Extensor-Contractor Pneumatic Artificial Muscle (ECPAM). This new actuator has numerous advantages over traditional pneumatic artificial muscles. These include the ability to both contract and extend relative to a nominal initial length, the ability to generate both contraction and extension forces and the ability to vary stiffness at any actuator length. A kinematic analysis of the ECPAM is presented in this article. A new output force mathematical model has been developed for the ECPAM based on its kinematic analysis and the theory of energy conservation. The correlation between experimental results and the new mathematical model has been investigated and show good correlation. Numerous stiffness experiments have been conducted to validate the variable stiffness ability of the actuator at a series of specific fixed lengths. This has proven that actuator stiffness can be adjusted independently of actuator length. Finally a stiffness-position controller has been developed to validate the effectiveness of the novel actuator

    Vine Robots: Design, Teleoperation, and Deployment for Navigation and Exploration

    Full text link
    A new class of continuum robots has recently been explored, characterized by tip extension, significant length change, and directional control. Here, we call this class of robots "vine robots," due to their similar behavior to plants with the growth habit of trailing. Due to their growth-based movement, vine robots are well suited for navigation and exploration in cluttered environments, but until now, they have not been deployed outside the lab. Portability of these robots and steerability at length scales relevant for navigation are key to field applications. In addition, intuitive human-in-the-loop teleoperation enables movement in unknown and dynamic environments. We present a vine robot system that is teleoperated using a custom designed flexible joystick and camera system, long enough for use in navigation tasks, and portable for use in the field. We report on deployment of this system in two scenarios: a soft robot navigation competition and exploration of an archaeological site. The competition course required movement over uneven terrain, past unstable obstacles, and through a small aperture. The archaeological site required movement over rocks and through horizontal and vertical turns. The robot tip successfully moved past the obstacles and through the tunnels, demonstrating the capability of vine robots to achieve navigation and exploration tasks in the field.Comment: IEEE Robotics and Automation Magazine, 2019. Video available at https://youtu.be/9NtXUL69g_

    Highly Manoeuvrable Eversion Robot Based on Fusion of Function with Structure

    Get PDF
    Despite their soft and compliant bodies, most of today’s soft robots have limitations when it comes to elongation or extension of their main structure. In contrast to this, a new type of soft robot called the eversion robot can grow longitudinally, exploiting the principle of eversion. Eversion robots can squeeze through narrow openings, giving the possibility to access places that are inaccessible by conventional robots. The main drawback of these types of robots is their limited bending capability due to the tendency to move along a straight line. In this paper, we propose a novel way to fuse bending actuation with the robot’s structure. We devise an eversion robot whose body forms both the central chamber that acts as the backbone as well as the actuators that cause bending and manoeuvre the manipulator. The proposed technique shows a significantly improved bending capability compared to externally attaching actuators to an eversion robot showing a 133% improvement in bending angle. Due to the increased manoeuvrability, the proposed solution is a step towards the employment of eversion robots in remote and difficult-to-access environments

    A Dexterous Tip-extending Robot with Variable-length Shape-locking

    Full text link
    Soft, tip-extending "vine" robots offer a unique mode of inspection and manipulation in highly constrained environments. For practicality, it is desirable that the distal end of the robot can be manipulated freely, while the body remains stationary. However, in previous vine robots, either the shape of the body was fixed after growth with no ability to manipulate the distal end, or the whole body moved together with the tip. Here, we present a concept for shape-locking that enables a vine robot to move only its distal tip, while the body is locked in place. This is achieved using two inextensible, pressurized, tip-extending, chambers that "grow" along the sides of the robot body, preserving curvature in the section where they have been deployed. The length of the locked and free sections can be varied by controlling the extension and retraction of these chambers. We present models describing this shape-locking mechanism and workspace of the robot in both free and constrained environments. We experimentally validate these models, showing an increased dexterous workspace compared to previous vine robots. Our shape-locking concept allows improved performance for vine robots, advancing the field of soft robotics for inspection and manipulation in highly constrained environments.Comment: 7 pages,10 figures. Accepted to IEEE International Conference on Rootics and Automation (ICRA) 202

    EPAM: Eversive Pneumatic Artificial Muscle

    Get PDF
    Pneumatic Artificial Muscles, which are lightweight actuators with inherently compliant behavior, are broadly recognized as safe actuators for devices that assist or interact with humans. This paper presents the design and implementation of a soft pneumatic muscle based on the eversion principle - Eversive Pneumatic Artificial Muscle (EPAM). The proposed pneumatic muscle exerts a pulling force when elongating based on the eversion (growing) principle. It is capable of extending its length by a minimum of 100% when fully inflated. In contrast to other soft pneumatic actuators, such as the McKibben’s muscle, which contract when pressurized, our EPAM extends when pressure is increased. Additionally, important advantages of employing the eversion principle are the capability to achieve high pulling forces and an efficient force to pressure ratio. In a pivoting joint/link mechanism configuration the proposed muscle provides motion comparable to human arm flexion and extension. In this work, we present the design of the proposed EPAM, study its behavior, and evaluate its displacement capability and generated forces in an agonistic and antagonistic joint/link arrangement. The developed EPAM prototype with a diameter of 25 mm and a length of 250 mm shows promising results, capable of exerting 10 N force when pressurized up to 62 KPa
    corecore