Finite Element Modeling of Pneumatic Bending Actuators for Inflated-Beam Robots

Abstract

Inflated-beam soft robots, such as tip-everting vine robots, can control curvature by contracting one beam side via pneumatic actuation. This work develops a general finite element modeling approach to characterize their bending. The model is validated across four pneumatic actuator types (series, compression, embedded, and fabric pneumatic artificial muscles), and can be extended to other designs. These actuators employ two bending mechanisms: geometry-based contraction and material-based contraction. The model accounts for intricate nonlinear effects of buckling and anisotropy. Experimental validation includes three working pressures (10, 20, and 30 kPa) for each actuator type. Geometry-based contraction yields significant deformation (92.1% accuracy) once the buckling pattern forms, reducing slightly to 80.7% accuracy at lower pressures due to stress singularities during buckling. Material-based contraction achieves smaller bending angles but remains at least 96.7% accurate. The open source models available at http://www.vinerobots.org support designing inflated-beam robots like tip-everting vine robots, contributing to waste reduction by optimizing designs based on material properties and stress distribution for effective bending and stress management

    Similar works

    Full text

    thumbnail-image

    Available Versions