120 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Bit flipping decoding for binary product codes

    Get PDF
    Error control coding has been used to mitigate the impact of noise on the wireless channel. Today, wireless communication systems have in their design Forward Error Correction (FEC) techniques to help reduce the amount of retransmitted data. When designing a coding scheme, three challenges need to be addressed, the error correcting capability of the code, the decoding complexity of the code and the delay introduced by the coding scheme. While it is easy to design coding schemes with a large error correcting capability, it is a challenge finding decoding algorithms for these coding schemes. Generally increasing the length of a block code increases its error correcting capability and its decoding complexity. Product codes have been identified as a means to increase the block length of simpler codes, yet keep their decoding complexity low. Bit flipping decoding has been identified as simple to implement decoding algorithm. Research has generally been focused on improving bit flipping decoding for Low Density Parity Check codes. In this study we develop a new decoding algorithm based on syndrome checking and bit flipping to use for binary product codes, to address the major challenge of coding systems, i.e., developing codes with a large error correcting capability yet have a low decoding complexity. Simulated results show that the proposed decoding algorithm outperforms the conventional decoding algorithm proposed by P. Elias in BER and more significantly in WER performance. The algorithm offers comparable complexity to the conventional algorithm in the Rayleigh fading channel

    Distributed Turbo Product Coding Techniques Over Cooperative Communication Systems

    Get PDF
    In this dissertation, we propose a coded cooperative communications framework based on Distributed Turbo Product Code (DTPC). The system uses linear block Extended Bose-Chaudhuri-Hochquenghem (EBCH) codes as component codes. The source broadcasts the EBCH coded frames to the destination and nearby relays. Each relay constructs a product code by arranging the corrected bit sequences in rows and re-encoding them vertically using EBCH as component codes to obtain an Incremental Redundancy (IR) for source\u27s data. Under this frame, we have investigated a number of interesting and important issues. First, to obtain, independent vertical parities from each relay in the same code space, we propose circular interleaving of the decoded EBCH rows before reencoding vertically. We propose and derive a novel soft information relay for the DTPC over cooperative network based on EBCH component codes. The relay generates Log-Likelihood Ratio (LLR) values for the decoded rows are used to construct a product code by re-encoding the matrix along the columns using a novel soft block encoding technique to obtain soft parity bits with different reliabilities that can be used as soft IR for source\u27s data which is forwarded to the destination. To minimize the overall decoding errors, we propose a power allocation method for the distributed encoded system when the channel attenuations for the direct and relay channels are known. We compare the performance of our proposed power allocation method with the fixed power assignments for DTPC system. We also develop a power optimization algorithm to check the validity of our proposed power allocation algorithm. Results for the power allocation and the power optimization prove on the potency of our proposed power allocation criterion and show the maximum possible attainable performance from the DTPC cooperative system. Finally, we propose new joint distributed Space-Time Block Code (STBC)-DTPC by generating the vertical parity on the relay and transmitting it to the destination using STBC on the source and relay. We tested our proposed system in a fast fading environment on the three channels connecting the three nodes in the cooperative network
    corecore