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Abstract

Error control coding has been used to mitigateitiggact of noise on the wireless channel.
Today, wireless communication systems have in ttlesign Forward Error Correction (FEC)
techniques to help reduce the amount of retransthitata. When designing a coding scheme,
three challenges need to be addressed, the emecting capability of the code, the decoding
complexity of the code and the delay introducedh®ycoding scheme. While it is easy to design
coding schemes with a large error correcting cdipgbit is a challenge finding decoding
algorithms for these coding schemes. Generallyeasing the length of a block code increases

its error correcting capability and its decodingngbexity.

Product codes have been identified as a mean<iteaise the block length of simpler codes,
yet keep their decoding complexity low. Bit flipgirdecoding has been identified as simple to
implement decoding algorithm. Research has gegdakn focused on improving bit flipping
decoding for Low Density Parity Check codes. Inststudy we develop a new decoding
algorithm based on syndrome checking and bit fligpio use for binary product codes, to
address the major challenge of coding systems, developing codes with a large error
correcting capability yet have a low decoding camjal. Simulated results show that the
proposed decoding algorithm outperforms the conerat decoding algorithm proposed by P.
Elias in BER and more significantly in WER performga. The algorithm offers comparable

complexity to the conventional algorithm in the Régh fading channel.
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Chapter 1 - Introduction

1.1 Introduction

The wireless channel is one of the harshest contation channels. It poses a challenge to
designers of communication systems, as little ocowtrol can be exercised over the external
noise sources and interfering signals interactiity the communication signal. Modern digital
wireless communication systems use Forward ErrereéCtion (FEC) as an option for mitigating
the effect of noise encountered on the channelakentommunication more reliable. Generally
using long block codes increases the error cormgaapability of a FEC system. Unfortunately,
increasing the block length generally tends to alscease the decoding complexity of the FEC
system. Most of the delay in a FEC system is aiteith to the decoding complexity of the

algorithm used.

Product codes have been used to increase the lelogth, thus increasing the error correcting
capability of FEC systems, while keeping the deegdcomplexity low. The conventional
decoding algorithm proposed by Elias [1], in 19B4s been shown to be an effective decoding

algorithm despite its shortcomings. In this studg propose a new decoding algorithm for
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product codes. The algorithm addresses the perrhan@m problem identified by Abramson in
[2], that cannot be corrected by the conventioredoding algorithm. It is based on the bit
flipping decoding algorithm first presented by Gakr [3] for Low-density parity-check (LDPC)
codes. The bit flipping decoding algorithm has bekmtified to be a low complexity decoding
algorithm. This ensures that the proposed decodlggrithm has a low complexity, thereby
addressing the problem of complexity and delayootced by decoding algorithms in modern

communication systems.

1.2 Background

In recent years there has been an increase inrcasea wireless communication. People have
moved away from using fixed line devices for commation, opting for the convenience of
untethered devices like cellular phones, tabletmaers and notebooks [4]. The emergence of
digital wireless communication has been a majoving factor for the move to tetherless
connectivity. Wireless communication has been tgaallopted in developing nations where

there is limited fixed line infrastructure.

The wireless channel is a harsh communication adlaniiwo major aspects of wireless
communication make it challenging to use. The fobtthese is the phenomenon of fading.
Secondly, unlike in the wired channel where théhgag#tween transmitter-receiver pair can be
viewed as an isolated point-to-point link, in wees communication, data is transmitted over the

air. This subjects wireless communication to irgexhce.

Fading is the time variation of the received sigoalver caused by changes in the wireless
channel, or the path taken by the signal. In adfiemvironment, for example, two fixed
microwave towers communicating with line of sigfading can be affected by changes in the
atmospheric conditions, such as rainfall. In aniremvnent where one of the receiving devices is
moving relative to the other, the obstacles inghth between the two devices change over time,
creating complex transmission effects [5]. This emkading a challenging problem in mobile
wireless network design. Fading can be classifgedither fast or slow. Fast fading occurs in the
urban environment where the built up environmentsea rapid variations in signal strength.

Slow fading occurs when the variations in signatregth occur when the mobile user covers
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distances in excess of the wavelength. Fading tsnke classified as flat fading or selective
fading. Flat fading occurs when all the frequenognponents of the received signal fluctuate in
the same proportions. Selective fading affectseddffit spectral components of the radio signal

unequally.

Cellular radio systems are subject to co-channekference because cellular radio systems
make use of frequency reuse. Frequency reuse @iismluces adjacent channel interference.
Adjacent channel interference arises when neighbguwells use carrier frequencies that are
adjacent to each other. Other forms of interferetheg affect wireless systems are multiple-
access interference and narrowband interference) (INRiltiple-access interference is resultant
from multiple users accessing the same wireleswarkt Ultra-wide band (UWB) systems

which operate at very low power spectral densdresaffected by NBI [6].

Another factor that affects wireless communicatisnmultipath propagation. Reflection,
diffraction and scattering play a role in multipgthopagation. Reflection of electromagnetic
waves occurs when the transmitted signal encouatebject that is larger than its wavelength.
Diffraction occurs at the edge of object that igéa than the wavelength of the signal and the
signal cannot pass through the object. The sighakopagated in different directions with the
edge acting as a source. If the object in the pathe signal is smaller than the wavelength of
the signal, scattering occurs. The incoming sigeacattered by the object into several weaker
outgoing signals [5]. For cellular networks, obgestich as lamp posts, and traffic signs scatter
the signals. Multipath propagation results in nmidi copies of the signal arriving at the
receiver’s antenna. If the copies of the signalareof phase, this can reduce the power of the

signal making it difficult for the receiver to detat.

Battery life is also factor in the development obbite devices [7]. Devices connected to a
wired network are usually powered by the electrizables provided in the building. Wireless
devices are generally meant to be portable andlenahd are typically powered by a battery [8].
Although processor and memory development haveeasad in the last couple of years, the
development of batteries has been slower. Accorthn[®], battery capacity doubles after 35
years. Though battery capacity has improved, litlaggs behind in terms of development when
compared to other parts of mobile devices [9]. Qleryears the processing power and memory

in mobile devices has increased, enabling mobilécds to offer more complex operations than
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when they were first conceived. For example thset fget of cellular phones offered voice
communication only. The development of smart pholnas seen the capabilities of cellular
phones increased. Smart phones offer the user gy a0 send and receive multimedia

messages, browse the internet, and connect tougaperipheral devices. The information sent
by smart phones is mainly of the nature where nitie@f the received information must be

maintained. Corruption of the information by theaghel requires the information to be re-sent
thereby consuming more battery power. Users ormther hand require a longer battery life. To
enable this, the mobile devices have to resendtkesdf the received corrupted information as

possible.

Error control is used to mitigate the impact ofsgon the wireless channel and improve the
reliability of the channel [10]. Two error contraoding strategies are used in wireless
communication namely, error detection coding amdrezorrection coding [11]. Error detection
coding is a means where the presence of errorstecigd in received vectors. Error detection
coding is used in conjunction with schemes suchuematic Repeat reQuest (ARQ) to control
errors. In error detection coding a codeword, weatlundant data added, is transmitted to the
receiver. The receiver uses cyclic redundancy chesyndromes, or other means to determine
the presence of errors in the received vectohdfd are any errors, ARQ or error correction can
be used to obtain the correct codeword [12]. Eecamrection coding is a means by which the
receiving device corrects the errors that are thtoced by the communication channel. The
ability of a code to correct errors is relatedtsoability to detect errors [13]. The receiver dtgec
the received vector for the presence of errorshéf exact locations and number of errors are
established, the errors are corrected and the wecttecoded into the original information that
was encoded. If the receiving device cannot esfaliihe exact positions of the errors, the
received vector will be decoded incorrectly [14R@ and forward error correction (FEC), two

techniques used for controlling transmission errars covered in greater detail in Section 2.4.

1.3 Product codes

In the wireless environment, the costly resourdgsoaver and bandwidth make it a challenge
to choose the appropriate error control schemeduetocodes provide a means to obtain long

and powerful codes while keeping the decoding cemfw, by using concatenation of simpler
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constituent codes. They were first presented bgsEh [1]. A product code can be defined as a
multidimensional array of linear block codes. A twaimensional product code can be
represented as a set of matrices where each rawasleword in one constituent code, and each
column is a codeword in another constituent codhe. decoding complexity of the product code
can be kept low by decoding each row and columarsegly [15], [16], [17].

The inherent interleaving in product codes makesmthattractive codes for wireless
communication channels. Wireless communication olBnsuffer from noise and fading due to
multipath propagation of the signal. Fading sewerdegrades the performance of data
transmission in wireless communication systems.[k8}sults in bursty errors in the received
vector. Interleaving is used to spread the errastsunto random errors which can be corrected
by forward error control codes [19], [20]. A bloadhkterleaver arranges the codewords to be
transmitted into a number of rows. The bits arathansmitted column-wise. At the receiver the
bits are re-blocked and decoded row-wise. Intentep\adds further delay to the decoding
process in the communication system. Product cbdes the proper structure to deal with burst
errors without the need for extra interleaving. imave been used in digital versatile discs
where fingerprints and scratches can cause bunsiysd21], [22], [23]. All error patterns where
the burst errors are restricted to a number of r@ss than half the minimum distance of the
column code are correctable when decoding colunse-wr burst errors that are restricted to a
number of columns less than half the minimum distaof the row code are correctable row-
wise [24].

The reasons why we decided to work on binary prododes can be summarized as follows:

» Fading in wireless communication systems introdumest errors. Products codes offer
good error correcting capability in wireless comimgation systems because of their ability to
spread burst errors amongst the rows or columnsiwleeoding. This is because they include
interleaving as an in-built feature in their design

* Most decoding algorithms used for product codesigtbe received vector into an array
of row and column vectors. The decoding algoritlamesstill based on the conventional decoding
algorithm of initially decoding the rows then usitige information obtained from decoding the
rows to decode the columns. Maximum likelihood dkcg algorithms that attempt to decode

the entire codeword at once are avoided becauge @lize of the block. Our aim is to develop a
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new decoding algorithm that is capable of correctiti the errors in the received vector at once,
error pattern permitting, while ensuring that th&RB performance of our algorithm is
comparable to the algorithm proposed by Elias |n [1

* Product codes have been generalized into otherstyge multilevel codes like
concatenated codes, array codes and augmented Sadletsons for decoding product codes are
sometimes extended to concatenated codes and codssucted on the basis of product codes
and concatenated codes like those in [25]. We Hlogiethe new decoding algorithm can also be
modified and used to decode similar multilevel byneodes.

» Product codes can be used to improve the religlofitthe wireless channel. In a noisy
wireless channel, devices have to either increlasie transmitting power or resend any of the
corrupted data. Both methods impact negativelyhenbattery life of mobile devices [26]. FEC
techniques suitable for wireless communicationhsag product codes, can be used to improve
the reliability of the channel, thereby extendihg battery life of the mobile devices [27][28].

Generally, increasing the length of a code impratgesrror correcting capability. As a general
rule, the more powerful a code is, the more difficuis to decode [29]. To increase the block
length of codes while keeping the decoding compydriw, Elias proposed using product codes.
Elias proposed using a decoding algorithm that daldcode the rows then the columns of the
product code. The complexity of decoding would bdingar summation of the decoding
complexities of the rows and columns. Most of teeatling algorithms that have been proposed
for product codes have followed on the algorithragbroposed, only differing in the method
used to decode the constituent codes. Few decattiogthms have been proposed that perform

one step decoding of product codes [29].

In 1962 Robert Gallager proposed Low-density pasitgck codes. Gallager presented a
simple hard decision decoding scheme for LDPC c{2lg29]. By checking the parities of each
bit, he could determine which bit was most likedybe erroneous. If the number of parity fails of
a bit exceeded a given threshold, the bit was ddemrrect and flipped. This algorithm is
referred to as the bit flipping decoding algorith8ince Gallager presented the bit flipping
algorithm, a lot of research has been done onlif32][33][34]. Researchers agree that the bit
flipping algorithm is a simple decoding algorith@b][36]. Bit flipping decoding has generally
been confined to LDPC codes.
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In binary product codes, each bit affects more thia@ syndrome, depending on the number
of dimensions of the product code. Based on syndronecking, it is possible to determine the
possible error locations in the received vectod ase bit flipping for decoding binary product
codes. Little research has been done on devel@higflipping decoding algorithm for binary
product codes other than single parity check prododes [37].

1.4 Problem statement

In this study we investigate how different errottpans affect the parities of two-dimensional
binary product codes. After analysing the errotgras,we aim to develop a decoding algorithm
for binary product codes that is based on syndrahrexking and bit flipping.

Based on the structure of product codes, it shbalgossible for the bit flipping algorithm, in
some cases, to correct all the errors in the redewector in one step. Bit flipping decoding is
simple to implement. In our study we use the siaifyliof bit flipping to develop our decoding
algorithm. Turbo decoding used for product codes eahieve a low error rate close to
Shannon’s limit, but has a high decoding comple}3g].

Our study is restricted to two-dimensional prodcmtles, as they are easier to comprehend.
The results obtained from the two-dimensional pobawdes are scalable to multi-dimensional
codes. The developed decoding algorithm is onlyiementable on binary product codes.

1.5 Scope and objectives of the study

This project aims to study the suitability of praticodes for communication in the wireless
communication channel by developing a decodingrélgo for binary product codes that is
based on syndrome checking and bit flipping. Tlgo@hm is specifically for binary product
codes as they only have two symbols. The algorithith be compared to the conventional
decoding algorithm in the additive white Gaussiais@ (AWGN) and Rayleigh fading channels.
The AWGN channel is often used when developing rpdiystems. It offers a simple channel
model on which to develop coding systems. Radioroamcation systems operating over a

multipath environment, such as indoor wireless comioation or mobile telecommunications,
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are often modelled as a Rayleigh fading channelRinthn fading channel [39]. In this study,
we restrict ourselves to the AWGN and Rayleigh rigdchannel. We also restrict ourselves to
two dimensional product codes. Henceforth, anyresfee to product codes refers to two
dimensional product codes unless otherwise staié@ objectives of the study can be

summarized as follows:

» Study the pattern of the errors that are introdunethe AWGN and Rayleigh fading channel
in a two-dimensional binary product code.

» Develop a decoding algorithm for binary product e®dto be used in the wireless
communication channel. The decoding algorithm shaiffer comparable error correcting
capability to the conventional decoding algorithm thecoding errors patterns, like the
permanent error pattern, that the conventional diegoalgorithm fails to decode.

* Compare the developed algorithm with conventioralodling algorithm in the AWG channel
to prove that the developed algorithm is comparsibteée conventional decoding algorithm

» Compare the decoding complexity of the developgmrahm to that of the conventional
decoding algorithm. Research on LDPC codes has rshibet the bit flipping algorithm
offers an effective trade-off between error perfance and decoding complexity [35]. To
reduce the complexity of the decoding, the decodilggrithm will be based on syndrome
checking and bit flipping.

» Compare the performance of the developed algorithithat of the conventional decoding
algorithm in the Rayleigh fading channel. Since tleveloped algorithm will be used for
wireless communication, a performance comparisothefbit flipping decoding algorithm
and the conventional decoding algorithm will be el@sing a Rayleigh fading channel. This
will give us an opportunity to see how the algantiperforms in a wireless channel and

handles burst errors in comparison with the congaat algorithm.

1.6 Organization of thesis

Chapter 1 of the thesis introduces the problemstigated in this research. Section 1.2 gives
background information on wireless communicatidatisg the problems encountered on the

wireless communication, namely, interference andinfa Interference can either be inter-
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channel or co-channel. The section also givesd hriroduction of error control techniques that
are available for improving wireless communicati®@ection 1.3 briefly introduces product
codes. Product codes were first presented by Bs.Elihey allow building long block codes,
while keeping their decoding complexity relativébyv. The section also gives the reason why
product codes were chosen for this study. Sectidnd&fines the problem statement. Product
codes are decoded by iteratively decoding the comptocodes. By studying the error patterns,
we devise a new decoding algorithm for product sdaesed on bit flipping. Section 1.5 states
the scope and objectives of the project. The mbjaative of the study is tdevelop a decoding
algorithm for binary product codes that is basedsyndrome checking and bit flippinghe last

section of the chapter describes the scope ofhert.

Chapter 2 of the thesis gives background informmata digital communication systems. It
presents mathematical channel models that arewbed studying digital communication. The
first of these is the AWGN channel. The AWGN chdnseised as a tractable channel to develop
digital communication channels. Other channels taee Linear Filter channel and Rayleigh
fading channel. The chapter presents two errorrabméchniques that are used in wireless
communication namely ARQ and FEC. Three differeRQAmethods are presented. Section 2.5
defines block codes as a FEC technique. This sedefines three types of block codes, namely,
the Repetition codes, Hamming codes and Bose-Chaddbcquenghem (BCH) codes and
their decoding algorithms. The chapter also defipesduct codes, presenting the different
decoding algorithms that are used for them. SecBiah presents the bit flipping decoding
algorithm introduced by Gallager for decoding LD&dtles.

Chapter 3 of this thesis gives a survey of thedttge on product codes and bit flipping. It
starts by giving a brief history on the developmehproduct codes. When product codes were
first proposed by Elias, he proposed them with Hamgncodes as constituent codes. He stated
that other systematic codes like Golay codes cbeldsed as constituent codes. Sections 3.3 and
3.4 provide a literature review on cyclic produotes, that were first presented by Burton and
Weldon, and single parity check product codes, Wet introduced by Bahl and Chien in 1971
respectively. Other codes in Chapter 3 are arrales@and augmented codes. Chapter 3 also
presents literature on the bit flipping decodingogithm. Little work has been done on
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improving the bit flipping decoding algorithm, besa of its simplicity when it was first

presented.

Chapter 4 presents the methodology section of hiesig. Section 4.2.2 introduces the
different error patterns that influenced the depedent of our bit flipping decoding algorithm.
Section 4.2.3 then presents the definitions of Rlesv Parity Check Matrix and the Column
Parity Check Matrix, explaining how they are usedlbtain the Candidate Error Matrix. Section
4.2.3 gives a detailed description of the new liggppfng algorithm for binary product codes. It
shows how the algorithm uses two types of errotepag to converge the area of bits that are

probably in error (the shadow area).

In Chapter 5 we present our results. The chaptersga detailed description of the different
error patterns stating under which channel condltithey are most likely to occur. Section 5.3
describes the different ways for measuring thegoerance of a coded communication system,
namely the bit error rate (BER), block error raBLER) or Word error rate (WER), and the
symbol error rate (SER). Chapter 5 also shows tBR Bnd WER curves of the conventional
and the bit flipping decoding algorithm. Lastly @her 5 gives a detailed description of partial
syndrome decoding, and how it was used in conjanctvith lookup tables to lower the

decoding complexity of the bit flipping decodingyatithm.

Chapter 6 concludes the report, discussing hovolhectives of the project were met. It also

presents further work that can be done to imprbeestudy and the developed algorithm.
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Chapter 2 - Background Information

2.1 Introduction

In most communication, errors will occur. In son@mnunication, the message has some
inherent redundancy so the communication systematarate some of the errors that will occur
[40]. For example in a voice communication systéme, context of the conversation introduces
the redundancy. Digital communication systems asghed with a method to recover from the

errors that will occur from time to time during isamission.

Errors in data communication or storage systemsectwom different sources. The errors
could be from random noise, impulse noise, chafau#hg or physical defects of the media. The
communication system must be designed in a mahiagérctirbs these errors. In this chapter we
present the digital communication system by disogsthe two ways that are used to mitigate
the impact of noise. The two ways are used sepgratecan be combined as a hybrid system.
The two methods, error detection coding and eroorection coding are collectively known as
error control coding. Both offer different advargaghence in some cases a hybrid of the two is

used. In error correction coding, the errors whimhy be introduced into the data by the
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transmission through the communication channelaarected based on the redundancy in the

received data. In error detection coding, the erimtroduced are detected [30].

2.2 Overview of a digital communication system

The objective of error control coding in digital mmunication systems is to detect the
presence of errors in the received data, and ireszases correct the errors. Error control coding
adds complexity to a communication system. It imesladding redundancy to the message to be
transmitted. The redundancy is added in a manrar that the validity of the received message

can be checked thereby detecting the presence @frtors [41].

A typical communication system has only three elas\ethe source device, the channel, and
the destination device. The source device coulteeibe a storage device or a device sending
information across a network. The channel is thdiom through which the information will be

transmitted to the destination device.

Figure 2.1 shows the elements of a typical digitmhmunication system. Error control coding
is applied after the data is converted into a digibrmat by the source encoder. Though
represented as separate steps in Figure 2.1wibrih noting that usually the digital modulation
and channel coding are designed together [41].rAftedulation the data is transmitted on the

channel and the steps are carried out in revetss at the receiving side.

Channel Digital
——— > Source encoder > >
encoder modulator
Information
source
A 4
Channel
Sink v
Channel Digital
<«— Source decoder < <
h decoder | demodulator

Figure 2.1: Elements of a digital communication
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Source encoding In source encoding, the information is convertei ia digital message.
Redundancy is removed from the digital messagegusampression techniques. In the case of
speech, video, or images, lossy compression tegbsigcan be used. Lossy compression
techniques do not reproduce the original informmabo decompression. Rather the reconstituted
message will differ from the original in a way the final user does not lose the relative
message that was transmitted initially. In the azfsext, executable files or documents, lossless
compression techniques can be used. The recoedtitnessage matches exactly the original
message that was compressed. Lossy compressiomicieed are more effective when

compressing information [41].

Channel coding- Channel coding can be referred to as error cbotaing. The objective of
error control coding is to average the effects lohrmel noise of several transmitted signals.
Redundancy is added into the transmitted sequersaling in more bits being transmitted than
those needed to represent the actual informatibe. redundancy allows the detection of the

presence of errors in the received information.[42]

Modulation— Modulation can be considered as a way of mapamuonformation signal on to
a carrier signal. Initially the digital symbols azenverted into a baseband information signal.
The rate of the baseband signal changes at agatpazable with the digital symbols. Examples
of baseband signals include Non Return to Zero-LENRZ-L), Manchester and Differential
Manchester format. Baseband signals are low freggueignals. They can be either digital or
analogue. Figure 2.2 shows a representation ofipigs using three digital baseband signals
[43].

Digital
Symbols

NRZ-L

Manchester _‘
Differential ~ ] ] ] B
Manchester

Figure 2.2: Digital signal encoding formats

—

13|Page



It is possible to transmit the information signalitis, but usually it is modulated on to a
carrier signal with a higher frequency. This allogrggineers to design communication systems
that use specific frequencies for the transmitigdads thereby enabling spectrum management.
Higher frequency signals have a smaller wavelengtlowing for smaller antennas on the
communicating devices and allowing portability onse devices. When wireless communication
was first introduced, it could only be used forpshbecause they were large enough to carry the
antennas required [44]. The introduction of smadfletennas has led to mobile communication
via smaller devices like modern cellular phones.ingscarrier signals also allows the
transmission of data across some media, like dpfiicees that do not carry signals at some

frequencies [43].

In modulation techniques, the data varies eitherftaquency or the amplitude or the phase of

the carrier signal. The three basic classes ofaligiodulation are

* Amplitude-shift keying (ASK),
* Frequency-shift keying (FSK), and
* Phase-shift keying (PSK).

In ASK the amplitude of the carrier is varied ispense to information. The other parameters
of the carrier signal are kept fixed. In FSK, tiheguency of the carrier is changed. A particular
frequency is used for a 1 and another frequenagesl for a O if we are producing a binary FSK
signal. In PSK, we change the phase of the cawi@ndicate information. The change in phase

denotes a change in the bit being transmitted.

An example would be to multiply the NRZ basebanghal by a sinusoidal carrier whose
frequency is a multiple of the transmitted bit redeensure that a whole number of carrier cycles
are contained in a single bit interval. The trartedisignal over a single-bit interval is eithes th
sinusoidal carrier or a phase shift of 18@he inverse of the carrier. This scheme is knasn
Binary Phase Shift Keying (BPSK). BPSK is variatmfrPSK and is represented by the equation

s = Zfb cos(Zf.t +n(1- n)), wheren =0 or 1,
b
(2.1)
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whereE), is the energy per bif}, is the bit durationf; is the frequency of the carrier signal
is time andn is the binary bit being transmitted. Figure 2.8wh the resultant wave for BPSK

modulation.

Digital data 1 0 1 1 0 0 1 0

NRZ-L

N AAAAAARAAAAAAAARAAAAAAAAQA AN
e VUUUUVUUUVUUYUUUUUUUUUUUUUUUu I

oskmodated [\ |ANINA AAANAAAMANAARA DAAM
sgnal VUV VUUWUUVUYUU UUUUUUYWUYY VU

Figure 2.3: BPSK modulation

The modulation technique used in a communicatistesy is determined to some extent by
the channel’s anticipated noise, interference, distbrtion characteristics. In bandwidth limited
channels, multilevel modulation schemes such asryMRhase Shift Keying (MPSK) and
Quadrature Amplitude Modulation (QAM) may be usé8][41].

The channel There are a various number of channels. Thelydectwisted copper pairs,
high frequency radio links, microwave links, elégty lines used in power-line communication,
satellite links and optical fibres. It is worth mg, in information theory storage devices can be
considered to be channels. Each channel presentswih challenges to the transmission of
information. In twisted copper pairs, the transedtisignal can be distorted by crosstalk from
other communicating lines, thermal noise, poor teation of the cable and other factors [41].
The way in which the channel impacts on the trattenhisignal is described using a number of
mathematical models like:

* Symmetric channel,
» Additive White Gaussian Noise (AWGN) channel,

* Bursty channel,
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» and Fading channel [14].

Demodulation— Demodulation is performed by the receiving devilt is the opposite of
modulation. The receiving device attempts to retaos the digital codewords that were
transmitted by the sending device before modulasonthat they can be passed to the decoder.
The receiving device compares the received signtile carrier signal to enable it to reconstruct

the baseband signal [41].

Channel decoding- In the decoding process, the redundancy that aded by the
transmitting device is used to determine whetherrtteived vector has errors or none. If the
encoding technique is an error correcting technighe codeword is corrected for errors,
provided that the errors are within the error octirgy capability of the code. The decoder is able
to determine if the codeword has errors becauge tBea limited number of codewords within
the space of possible codewords. If the receivediesece is not a valid codeword, then errors
have occurred during the demodulation stage ottdmemunication process. The simplest error
correcting decoding method is known as maximumihked decoding. The received erroneous
sequence of symbols is compared with all the ptssidlid codewords. The codeword with the
closest match to the received sequence is deemeduk tthe original codeword that was
transmitted [41][14].

Source decoder Finally the information from the channel decodeiorwarded to the source
decoder. The source decoder uses this informatidrnytand reconstruct the original message.
[41].

2.3 Mathematical models for communication channels

The communication channel provides the link betw#en transmitting and the receiving
devices. It is the physical medium that is useddnd the signal. Examples of communication
channels include telephone lines, optical fibrescrowave radio channels, cellular phone
channels, satellite communication channels, etcicliéver the physical medium used to
transmit the signal, there is a probability tha¢ gignal will be corrupted in a random manner

[45]. The channel introduces a number of effecthss attenuation, distortion, interference, and
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noise. These effects of the channel manifest awsein the demodulated data stream [41].
Mathematical models are used to represent the cameation channel in the design of
communication systems. The models are used tosepiréhe most important characteristics of

the channel. In this section we represent some eonmation channel models.

2.3.1 The additive noise channel

One of the most used mathematical models for a agmweation channel is the additive noise

channel illustrated in Figure 2.4. The transmiteghal s(t) is corrupted by an additive random

noisen(t).

s(t) <+> > r(t) = s(t) + n(t)

Figure 2.4 : The additive noise channgi5]

The noise may come from electronic components anglieers at the receiver of the
communication system or from interference encowdtem transmission. Equation (2.2)

describes the additive noise channel as:

r(t) = S(t) + n(t)
(2.2)
Channel attenuation can be incorporated into thiaenaatical model. If the signal undergoes
attenuation by an attenuation factor, the received signal can be described using th@img
equation:

r(t) = wB(t) + n(t)
(2.3)
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The noise signaln(t), is random in nature. It is commonly describechgsis mean and

variance. To find the mean and variance of a rand@mnal, we need to know its probability
distribution. The primary source of noise in theamhel is thermal noise generated by the
electronic components at the receiver. This typenoise is characterized by a Gaussian
distribution. The model also assumes that in teguency domain, the power spectrum of the
random noise signal is uniform over the whole festry range where communication takes
place. The resulting mathematical model of the okhms usually called the additive white
Gaussian noise (AWGN) channel. This channel moslepplied to a broad class of physical
communication channels and because of its matheahdtiactability, this is the most used
channel model in the analysis and design of comaatioin systems [45][46]. The AWGN
channel offers a platform to develop other commannels. It also offers a starting point when

studying the basic performances of a coding system.

2.3.2 The linear filter channel

In some physical channels, filters are used totltme bandwidth of the signals to prevent
interference among signals. The filters are useshBure that transmitted signals are confined to
specific bandwidth limitations and do not interfevith other signals at different frequencies. In
such cases, the channels are generally charackérysa linear filter channel model as shown in

Figure 2.5:

Channel

s(t) Linear filter )

(0 (+) ————— r(t) = s(t)*c(t) + n(t)

n(t)

Figure 2.5: Linear filter channel with additive noise[45]

The channel output(t) for a channel inpus(t) and a filter response(t) is given by
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r(t)=s)Uc(t)+n(t),

(2.4)

where [0 represents convolution. In this model the chargsttes of the filter representing the

channel does not change with time. This meansiiltee impulse response does not depend on

the time elapsed between observation and applicafithe input [45][46].

2.3.3 Linear time-variant filter channel

Channels such as mobile cellular radio channelsna@elled as linear variant filter channels.

The signal in such channels travels through diffepaths and arrives at the receiving device at

different times. The impulse response of the chbmages with the elapsed time hence the

various signals are affected by different channbbracteristics. The linear filters are

characterised by a time-variant channel impulspaesec(7;t), wherec(7;t) is the response

of the channel at a time due to an impulse applied at time-7 andr represents the elapsed

time variable. The linear time-variant channel vathditive noise is illustrated in Figure 2.6.

s(t)

Channel

Linear filter
c(t; t)

n(t)

The model is described mathematically as

r(t) =s(t) Oo(r; t) + n(1).

This equation can be written as

> r(t) =s(t)*c(t) + n(t)

Figure 2.6 :Linear time-variant filter channel with additive noise[46]

(2.5)
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(@)= c(@s(t-r)dr+ n(y.
(2.6)
A good model for multipath signal propagation tigbuphysical channels, such as mobile

cellular radio channels is a special case of (@&yhich the time-variant impulse response has
the form

c(r:¢) :j%(r) o -7, (1),
(2.7)

where {@(t} represents the time-variant attenuation factor ther k™ propagation path

among L multiple paths and7,} are the corresponding time delays. If (2.7) isssitited into

(2.6) the received signal has the form

r(¢) =S, (¢)s(e-7,)+n@).
2.8)

The received signal consists d&f multipath components, where the" component is

attenuatedw, (¢)} by and delayed bz} [45][46][47]

2.3.4 Rayleigh fading channel

In wireless communication, the signal can travehfrthe transmitter to the receiver over
multiple reflective paths. This is known as multlpgropagation. Multipath propagation can
result in multipath fading. In designing a wirelessnmunication system, the Rayleigh fading
channel can be used for estimating the effects wfipath fading and noise on the wireless
communication channel. The Rayleigh channel is usedodel wireless communication in
channels where there is no distinct dominant géta,wireless communication with no line of
sight. For wireless communication with a direcelof sight the Rician fading channel model can
be used [48].

20|Page



Time-variant multipath channels can be represestatistically using the Rayleigh fading
channel. Let the transmitted bandpass signal be

S() = Re[ 5 ()e*™ |,

(2.9)
where s (1) is the baseband signal, is the carrier frequency artdis the time. We assume

the transmitted signal reaches the receiver throogtiple paths. The received signal for thie

path with a propagation delay,(t), and an attenuation factag, (t), and is given by:

rt) => a®)s[t-r,(1)].

(2.10)
Substituting (2.9) into (2.10), we get
r(t) = Re(z% ¢ s,[t—7, )] ejz”fc[t‘%“’]] :

(2.12)

The baseband equivalent of the received signal is
L) =D at)e Vs [t-7 (9],

(2.12)

where g, (t) = 277f 1, (t) is the phase of the" path. The impulse response is
C(7,;) =D ().
(2.13)

Large dynamic changes in the medium are requiredJf@) to change sufficiently to cause a

significant change in the received signal [45]shibuld be noted thaf,(t) can change by

radian when the delay, (t) changes byfi. Sincefi is a small numberg,(t) can change by

[ Cc

2rr radians with relatively small motions of the mediuwhen there are a large number of

paths, the central limit theorem can be appliedchEpath can be modelled as circularly
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symmetric complex Gaussian random variable witletas the variable. This model is called the

Rayleigh fading channel model [45][49].

For the purposes of our research, we will initialge the AWGN channel. This channel has a
linear addition of white noise with a constant dpecdensity and a Gaussian distribution of
amplitude. The channel does not account for attemuaf the signal, nor interference and
dispersion. It provides a simple and tractable evadtical model for studying the proposed
decoding algorithm [41]. Its simplicity enablestoslook into the performance of the decoding

algorithm in comparison with the decoding algorithroposed by Elias.

2.4 Error control techniques

In the preceding section, the elements of a digitmhmunication system were presented. In

any communication system there will be errors mhiced by noise in the channel.

In this section we present two methods that hawen hesed to mitigate the impact of errors
introduced by the channel on communication. Th& fs automatic repeat request (ARQ) and

the second is forward error correction (FEC).

2.4.1 Automatic repeat request (ARQ)

In ARQ the receiving device uses an error detectemimnique to determine if the received
data has any errors. If errors are detected, teviag device sends a request to the transmitting
device to resend the data. For ARQ to work, thesivéieg device has to have a means of
informing the sending device that the data wasivedewith errors. ARQ only works in half
duplex or full duplex communication systems tha&tvalcommunication in both directions. Like
FEC, ARQ works by adding redundancy to the trarteahitiata. The redundancy is then used to

detect the presence of errors at the receivingcdd@.

An example of an error detecting communicationesystvould be a single parity check code.
A single parity bit is appended to the end of thesgage bits being transmitted. Assuming the

message is a single Wtor 1. A single bit is appended to the message to createdeword
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which has a modulo sum 6f If the message i$, 1 is appended resulting in a codewdrt, if

the message 0, another0 is appended and the transmitted codewor@0isIf the received
codeword is eithed0 or 01, the receiving device detects that codeword ha®raor, and
requests the sending device to resend the codeWdla: received codeword has no err@®,

or 11 is received, the receiving device sends an ackeaydment back to the sending device.

All ARQ systems work in the manner defined by tlaraple, they only differ in the manner

in which they recover the codewords with errorseghtypes of ARQ exist:

» Stop-and-wait ARQ,
* Go-Back-N ARQ,
» and Selective repeat ARQ.

Stop-and-wait ARQ

In stop-and-wait ARQ, the transmitting device semadsingle codeword, and waits for an
acknowledgement (ACK) from the receiving device.oTsituations could occur, the first being
the codeword is received with errors. On receiangpdeword with errors, the receiving device
sends a negative acknowledgement (NAK) back totrtéwesmitting device. On receiving the
NAK, the transmitting device resends the codewdtravill continue to resend the codeword,
until it receives an ACK from the receiving devidée second situation that could occur is that
the receiving device receives the codeword withewbrs and sends an ACK back to the
transmitting device. The ACK is damaged by nois¢éhim channel, making it unrecognizable by
the transmitting device. The transmitting devicesua timer to handle this situation. On sending
the codeword, the transmitting device starts a tomwn timer. If the timer expires without the
transmitting device receiving either a NAK or ACKye transmitting device assumes the

codeword was never received by the receiving dewicd resends the codeword [50][14].

Go-back-N ARQ

This type of ARQ uses sliding windows in its opamat The transmitter and receiver establish
a window size at the beginning of transmission. Wiadow size N) is the number of
codewords the transmitting device sends beforedbeiving device sends an ACK. Assume the
window size between two communicating devices A Bnid three codewords, with Device A

transmitting and B receiving. If A sends the fitetee codewords, B only sends the ACK
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denoting that it has received all three codewordbout errors. After A receives the ACK, it

sends the next three codewords. If a codeword nvithe window is detected to have errors, the
receiving device sends a NAK to the transmittingicks and discards all codewords that follow
the codeword with errors. The transmitter on rdogithe NAK responds by sending a new set
of codewords equal to the window size, startinghwifie codeword that was rejected by the

receiving device.

Go-back-N ARQ has better efficiency when compa@dtop-and-wait ARQ. Less time is
wasted waiting for acknowledgements. Using a sfjdimndow allows the communicating
devices to negotiate the window size during comeation. The window size can be increased
when the channel is not noisy. This increases hh@ughput of the communication system. As

the channel becomes noisier, the devices can ra¢gath a smaller window size [50][14].

Selective-repeat ARQ

Selective-repeat ARQ is sometimes referred to kstbee-reject ARQ. In this type of ARQ,
the sending device only resends the codewordsaiteatreceived with errors. Each incoming
codeword is acknowledged. The transmitting devieepls track of the codewords that have been
sent by keeping a copy of them in a buffer. Eaatewmrd has a countdown timer. If a codeword
receives a positive acknowledgement, it is remofveth the buffer. If either the countdown
timer runs down or the codeword is negatively agkedged, the transmitting device resends a
copy. Selective-repeat ARQ is more efficient thhe pther two, but it is very complex to
implement. It is expensive on memory as both conioalimg devices have to store a large
number of codewords. The receiving device has doestll the codewords after the codeword
with errors so that it can assemble them in thatrggquence when a copy with no errors is
received. Selective-repeat is used in satelliternamcation where there is a long propagation
delay [50][14][43].

2.4.2 Forward error correction (FEC)

The second method used to control the presencearten a digital communication system is
forward error correction (FEC). Unlike ARQ, FEC raily detects the presence of errors, but

also corrects them. This lowers the number of nstratted erroneous codewords [44]. The
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reduction in the number of retransmitted codewolasers the costs of communication.
Avoiding retransmission of packets has the addetkefiteof saving battery power in mobile
devices. The wireless channel is a very noisy chlaiidhen mobile devices transmit packets, the
antenna uses the battery power. If the antennartids for long periods of time, battery life is
shortened. In some cases it is not feasible t@amemit the packets. In real-time systems like
television broadcast on mobile devices retranswomssiill not be possible [51]. In the wireless
channel error correction also reduces jamming emtiwork as fewer packets are retransmitted.
Using ARQ would result in a large number of retraission as the channel is very noisy. FEC
on the other hand recovers data that is lost duetéoference [52]. In simplex communication
systems, there is no return path for the receidagice to send a NAK if the codeword is

corrupted. ARQ cannot be used in such communicatlystems, hence FEC is used [40].

Prior to the discovery of the field of error cortooding, it was believed that the noise in the
channel prevented error free communication. Clabid@nnon proved that noise in the channel
does not prevent error free communication rathdéimits the rate at which the information is
transmitted. Shannon came up with an equationgbaérned the rate of communication in a

channel. The equation for an AWGN channel is dsvid:

C = Blog, [1+ E”RTJ :
N B

o

(2.14)

E
Where ¢ is the channel capacity in bits per secogdjs the bandwidth,;” is the signal-

to-noise ratio (SNR) of the channel at an instaau Z . is the bit transmission rate. Shannon’s

equation gives a measure of the maximum numberrof &ee bits per second , that can be
transmitted across a channel within a particulardibadth 7, given the signal to noise to ratio
of the channel at that instant. Shannon’s theor&ated that as long ag <(C, error control
codes could be employed to introduce error freastrassion. Though Shannon defined the
theorem, he did not stated how those codes coufdbe [53]. His theorem has been used to

give a measure of channel performance, as it gaivésiit on the capabilities of the channel.

Shannon’s theorem states that in any communicatystem there exists a coding scheme that
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can be used to achieve error free communicatiowiged the codeword (message bits plus
parity bits) is less than the channel capacity .[34&ny coding schemes have been designed

since Shannon published his work.

Figure 2.7 shows the general concept of FEC. Reghirinits known as parity bits are added
to the message. The message with the parity bksosn as a codeword. The parity bits are
used to aid in the correcting of any bits that maeeived in error. The method of adding the
parity bits is known as encoding. The receivingideveceives the codeword and computes the
original information from that codeword. This isdwn as decoding. The receiving device uses
the parity check to detect any errors that miglduodn the transmitted information, and also
correct the errors. If the receiving device doesdstect the errors, or cannot recover the original
information from the codeword, the packet has tadssent. The entire process is defined by a
coding scheme [41]. FEC enables a receiving deigcaecover lost data and or correct errors

that occur during communication without furthereirstction with the sending device.

FEC codes are designed to either correct errorscmver erasures or in some cases do both.
In [55] an error is defined as a corrupted symboam unknown position. If a symbol has been
demodulated to the wrong value, then an error basreed for example a binaflyis received as
0. An erasure is a corrupted symbol in a known pmsitin the case of an erasure, the

demodulator is unable to ascertain wheth@ioaal was sent.

Encoded data
(codeword)

Lost data ( Erasure)
Received vector

Redundancy added ?

Source
Data

Figure 2.7: Forward error correction encoding and decoding adapted from[55][56]
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Code Rate

In general, the higher the number of redundantibiis code, the better the error correcting
capability of that code. Unfortunately there iscampromise with the fact that the redundant bits
add overhead and transmission costs in the fornbasfdwidth and power. It also adds
complexity to the decoding of the codeword. Compyemeans more processing power will be
needed to decode the codeword, and impacts nelyabnehe battery life of the mobile device.
A rate defined as the code rate is used to giveamtifative measure of the redundant bits. The
code rate is defined as the ratio of the numbetadé bitsk , compared to the total number of
codeword bitsn . When encodingk bits are encoded resulting in a codewordhobits. Thus

the code ratéR can be calculated as

(2.15)
A low code rate indicates that the redundancy gh.hThe ideal is keeping the code rate as

close to 1 as possible yet not compromise on ttee eorrecting capability of the code [41]. It is
common practise to use a high error correcting ootle a low code rate when designing a
coding scheme. In very low SNRs, the coding schéanle to correct all the errors. In high
SNRs, the added redundancy impacts negatively®@o\hrall throughput of the communication
system. Variable rate codes are used to keep tbeghput of communication systems as high as
the SNR permits. In low SNR a lot of redundancyadkled to increase the error correcting
capability of the code, then at high SNR, highedecoate codes are used to increase the

transmission efficiency of the communication system

Types of codes

Codes can be divided into two subclasses depemirtge manner in which the information
is encoded. The two subclasses are block codesamnblutional codes. Block coding schemes
divide a bit stream into non-overlapping blocksd @ach block is encoded independently. They
are sometimes referred to as memory-less since samtessive information block is encoded
independently [30]. This research focuses on btmdes. They are presented in greater detail in
Section 2.5.
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Convolutional codes were first presented by P.sEim1955 [57]. Elias was motivated by
optimizing the trade-off of performance versus ctaxipy. His goal was to find a class of codes
for the binary symmetric channel with as much dtmec as possible, while keeping error
correcting capability high [58]. Whereas block cedaeork on discrete codes blocks lofinput
symbols, convolutional codes operate on continugttsams of symbols not partitioned into
discrete message blocks. For this reason, congakiticodes are viewed as stream codes [30].
Convolutional codes have proved to be equal or sores superior to block codes, but they

present a challenge when analysing them [59].

The repetition code is an example of a coding sehéxasume device A wants to transmit a
single bit to device B. The transmitting device @pgs two parity bits to the single bit unlike in
the error detection technique stated earlier.dfdbvice is transmitting a message, a bidany
appends two parity bits so that the resultant caddvis 111 and if 0 is being transmitted the
codeword would b®&00. This repetition code has two valid codewordslufing demodulation,
the vector101 is received, device B detects that there is aor @énrthe codeword. Device B can
correct the received vector by comparing it totthe possible codewords and changing it to the
one that is the closest match, whichlisl in this particular case. Device B then removes the
appended parity bits and concludes that the bit wes 1. This type of decoding is known as
maximum likelihood decoding. If two bits are fligppduring transmission, and device B receives
001, device B will assume the original codeword Wa$, which is not the case. This is known
as a decoding error. This is a result of the faet the number of errors introduced by the

channel is beyond the error correcting capabilitthe code, which is one in this case.

2.5 Linear block codes

Block codes are always represented (as k) codes wherek information symbols are

encoded inton codeword symbols. For binary linear block cod&splocks of information are

encoded to produc€* codewords from a space df' possible vectors. Each block of
information maps uniquely on to a single codew@ddes are desirable if they are linear, as this

reduces encoding complexity.
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Definition 2.1: A binary block codeC of lengthn with 2 codewords is called linear, if and

only if its 2 codewords form &-dimensional subspace of the vector space of alhttuples
over the fieldGF(2) [14].

As a consequence of Definition 2.1, a binary blooHe is linear if and only if the modulo-2

sum of any two codewords results in another code\izf][30].

’ Bit stream to be transmitted ‘

Bit stream is divided into blocks of kbits

No errors or correctable
‘ errors

’ Data | Data
If the errors are detectable
%ﬁ
| but uncorrectable, the

Single block of kbits o
retransmission is used to

get the new codeword
Data

codeword is discarded and

<«—k bits of data—>

FEC encoder appends

FEC decoder corrects
errors and removes parity

parity bits -
I bits
Data | Parity
P 7 bits > Data Parity ‘
Systematic Codeword of 7 bits Received vector
| \ i
Channel
Transmitter Receiver

Figure 2.8: Systematic block code transmission ad#gd from [43]

All (n, k) linear block codes satisfy

v=uG,
(2.16)

where u is the block ofk information symbols,y is the unique codeword of length
information symbols and@ is ak xn matrix called the generator matrix. The generatatrix

has linearly independent rows [14]. If the genaratatrix can be written as

G=[IP],
(2.17)

where |, is a kxk identity matrix andP is a kx(n—k) matrix, the linear block code is
systematic. This is a desirable structure in linelrck codes. In systematic encoding, the
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codeword consists of thie original message symbols afd- k) parity symbols [30][14]. The

systematic codeword is of the form

v=uG=( | P :[q,..., Y, B--, R—k)]'

(2.18)
A very important metric of linear block codes ig tHamming distance.

Definition 2.2: The Hamming distance is the number of positionsvim equal length sequences

at which the corresponding symbols differ [30].

For example, given two binary codeword901101 and1101100, their Hamming distance

is two.

Definition 2.3: The Hamming weight of a codeword is its Hammingtatice from the zero
codeword. In binary codes, the Hamming weight of eadeword is the number of ones in the
word [14].

For example, the binary codewoid01101 has a Hamming weight of 4. The minimum

weight of a code is the Hamming weight of the noozmdeword with the lowest weight.

Definition 2.4: The minimum Hamming distance, .. of a code is the minimum value of the

n

Hamming distances of any two valid codewords.

The error correcting capabilitty of a linear block code is defined as:

t:[dmin_lJ’
2

Is the minimum Hamming distance of the code. Th@mum distance of a linear

(2.19)

whered,

n

code is equal to the minimum weight of its non-2&zotors [60].

A less commonly used measure of the error corrgotimpability of codes is the weight

distribution.
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Definition 2.5: Considering a codé€ with A being the number of codes with a Hamming
weight of i. The set{A ,A,......... A} is the weight distribution ofC [42][61][62]. The

weight distribution can be defined using a weighiraerator polynomial:

A(X)=A+AX+ AR+ ....... + AX
(2.20)

Given a generator matri®, there exists zﬁn - k) X n parity check matrixH . A parity check

matrix is used to decode linear block codes. A wmad v is a valid codeword if and only if

vH" =0.
(2.21)

This property of linear block codes is used to &haad correct the received codewords for
errors. If the received vectat has errors, we write the received codeword asviallo

r'=v+e
(2.22)

wheree is the error vector representing the codeword sys&orrupted during transmission.
The syndromes of I' , is defined as
s=r'H'
(2.23)
If ' is a valid codeword, thers=r'H" =0. The syndrome is equal to an all zero vector, if
the received vector is a valid uncorrupted codewardis corrupted beyond the minimum
Hamming distance such that it is changed into arothlid codeword. If the received codeword

contains detectable errors, thes% O [14].

Note that, ifG is of the form given by (2.17), theid takes the form

H=[P" 1. ].
(2.24)
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2.5.1 Repetition code as an example of a block code

Citing the repetition code presented earlier we giae examples of some of the terms that
describe a block code. The number of informatiomisyis k =1 since the code transmits one
information bit in each codeword. The codeword teng n=3. The Hamming distance

between the codewords 000 and 11Hjs=3 since they differ in all three positions. Because
they are the only valid codewords, the minimum Hangnistance of the code 4, =3. The
repetition code can be described a8,d) code withd, .. = 3. The error correcting capability of

the code is 1 from (2.19The code rateR of the code, from (2.15), is 0.333. The generator

matrix of the code is given by
G=[1 1 1,

and the parity check matrix is

110
H= )
L 0 J
If the received codeword =[1 0 1, the syndrome will be

s=vH' =[1 (.

From the syndrome, the received vector is detemniadave errors. To correct the errors, the
received vector is compared to all the possibl&dvabdewords, in this casell and000. The
correct vector is the valid codeword which is thesest match to the received vector. The vector
101 differs in one place with11, and in two places witf00. Sincel11 is the closest match,

the received vector is corrected by changing ters# bit tol.

2.5.2 Hamming codes

Richard Hamming discovered the first class of Imiglack codes in 1950 while working at
Bell Labs [63]. They were named after him. At tived it was possible to detect errors using

parity checks. Hamming required a technique thatccbe used to enable computers to detect
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and correct their own errors. The computers Hamnaiag working on would stop when they
detected an error. He proposed a more complexrpatteparity checks that could not only
detect the presence of two errors, but could deteritme location of the error if it was a single

error [63]. Hamming codes are defined by the pataraén,k,3). The first Hamming code was

the(7,4,3) Hamming code [58]. In general the parameters fdamming code are,

Codeword length n=2"-1

(2.25)
Number of information bits k=2"-m-1

(2.26)
Number of parity bits n-k=m

(2.27)

where m> 3. The code rate of Hamming codes increases witmemrease inm, but their

error correcting capability remains the same. Adintining codes havd,,, = 3. Therefore they

can only correct a single error. This limits these. They are used in channels that have a low

probability of error. Hamming codes are in a clalssodes known as perfect codes.

If a systematic (7, 4) has generator matrix

100011

01 0001
G=

0O 01 010

0O 00111

the corresponding parity check matrix would be

101110
H=11 010 1

11100

Hamming codes can be decoded using syndrome degodime received codeword is

multiplied with the transpose of the parity chechtnx. If the result is O, then no errors are
present in the codeword, or the errors are undeiktlf the syndrome corresponds to tfle

column of the parity check matrix, th€ bit in the codeword is changed, assuming onlyglsi

error has occurred [64].
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2.5.3 BCH codes

Bose, Chaudhuri, and Hocquenghem (BCH) codesrfal ¢ategory of block codes known as

cyclic codes. BCH and Reed-Solomon (RS) codes laentost commonly used cyclic codes

[30]. An (n, k) linear codeC is called a cyclic code if every cyclic shift ofcadeword inC

results in a valid codeword i@. Binary BCH codes were discover by Hocquengherh9s9.
Then in 1960 they were discovered independentlyBbge and Chaudhuri. They presented a
means of designing codes over GF(2).

RS codes are a non-binary subclass of BCH codesy Were discovered by Reed and
Solomon in 1960 independently. In 1961 Gorensteid Zierler generalized BCH codes to
nonbinary codes proving the relationship betweeidBGdes and Reed-Solomon codes. It was
later realised that RS codes are a subclass of Batlds. The approach used to construct RS

codes was independent of the work done to condB@et codes.

Defining BCH codes
BCH codes are a generalization of Hamming codeBk&kamming codes, they are capable
of correcting multiple errors. They are cyclic cedeonsequently they can be described in terms

of their generator polynomiag(x). The interest of this study is on binary BCH codise

following parameters descrit{@, k,t) binary BCH codes fom> 3 andt <2™*

Codeword length n=2"-1

(2.28)
Parity check bits n-k< mt

(2.29)
Minimum distance d., 22t+1

(2.30)

wheret is the maximum number of correctable errors.

A t error correcting binary BCH code is capable ofrecting t or fewer errors in a
codeword ofn bits. BCH codes are designed from a specification andt. The value ofk is

not known until the generator polynomig(x) is found [62].

A t-error correcting BCH code ov&F(2) of lengthn is designed as follows:
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1. Determinem such that (2.28) is satisfied.
2. Define a primitive elementay , whose primitive polynomial has a degnee

3. Write down a list of2t consecutive powers af

a,a’,a’,....a%

4. Determine the minimal polynomial of each of thessvers. Given an element in the
field GF(p°®), the minimal polynomial ofx is the monic polynomial of smallest degree

which has coefficients iGF( p) and a as a root.

The generator polynomigl X) of the BCH code is the lowest-degree polynomialr d8€&(2)
such that a,a?,a®,....a”are its roots. It is the least common multiple bf tminimal

polynomials of eacte’ term [30].

The value ofk is given by the equation

k=n-deg(g(x))
(2.31)

where the degree of the generator polynomial isv#thee of its greatest exponent.

To design a BCH code of length=15, which can correct 2 errors, we choageasthe
primitive element inGF(2*). We need to find the consecutive minimal polyndsniaf the
elements froma to a*. Here a,a’and a* have the same minimal polynomial
g(xX) =X+ x+1 and that of a’is g(x)= X+ X+ ¥+ x+1. Therefore the generator
polynomial is:

g(xX)=(X+ X+ X+ x+1)( X+ x1)
=X+ X+ X0+ X+l
The value of the greatest exponent is 8, therdfa@alegree of the generator polynomial is 8, and
k is
k=15-deg@ &) 15 &

wheredeg(@ (X)) is the degree of the generator polynongék) .
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For product codes, the component codes have tgdbensatic [1]. The systematic codeword

c(X) is obtained from the coefficients of the polynohmésulting from multiplying the message

polynomial,m(X) by x" ™ and addingrem( %) to the result as follows

c(9=[ren{ 3+ ro x 9],

(2.32)
where

rem( X = mod(Mj .

9(x)

Using (2.32), we can construct tierow of the generator matri6 as follows
[rem(x): n( 3],

where

m(x) = Yndeg@ ()i
i .

For the (15,7) BCH code with the generator polyiarg(x) = ¥ + X + ¥+ ¥ +1, the first

row of the generator matrix is as follows:

m( X)l = ¥n~deg(@ ()¢

= x(15-8)K1

:)(8

and

rem(x) = mod( g(x) (%)
=mod(x® + X" + X+ X'+ ﬁ).

=x"+x°+ x'+1
Therefore the first rows,, of the generator matrix is

G,=[1 000101110000 0]
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and the generator matrix is:

()

1
O O O O Fr Bk
o O r O Fr +» O
Ok OPFrP K OO
P O L B O OO
O Fr P P O PFr PP
P PP OFRP L O
P Pk O OFR L B
R O O O Fr O K
O O O O O O B+
o O O O O +r O
O O O O+ O O
O O O OO O
O O r O O O O
O r OO O O O

The data is encoded using (2.18).

Decoding BCH codes

Any of the decoding algorithms used for cyclic codmn be used for BCH codes. The
structure of BCH codes has made it possible to commewith a very efficient decoding
algorithm. This algorithm involves three steps. the transmitted codeword is
V(X) =+ yx+ yX+--+ y, X', the received vector is(x) =1, +rx +rx*+...+r,_x"" and

the error pattern ig( X) then

rx)=v(x¥+ €3

(2.33)
Like other block codes, the first step is to coneptite syndrome from the received vector

r(x). The syndrome of terror correcting BCH code consists 2if components.

S=[s s .. §]= 0H

(2.34)
whereH the parity check matrix can be written as
1 a o a at  a® - g™t ]
L (@) (@) (@) (¢ (¢ - (o)
Helr (@) (o) () (o) (o) ~ (¢
1 () (a®) (o®) (a®)" (a*) - (o)
) © (2.35)
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The i™ component of the syndrome is given by

§ = r(a")

— i 2i in-1)’
Srtna Ar gt o a

(2.36)
where 1<i< 2. The syndrome components are elements in the $Géieid GF(2").

Dividing r(X) by the minimal polynomialp(X) of a', the remaindeb ( X) is obtained. The

syndrome componer§ can be obtained by evaluatifbg X) with X =a' [14][30][65].

Since a,a’,a3,...,a* are the roots of each code polynom'mﬂai) =0 for 1<i< & . From

(2.20) and (2.21), the relationship between thedsyme and the error pattern fbgi< 2 can

be defined as follows

s =¢ga').
(2.37)

This means that the syndrome depends on the exoborvonly. Suppose the error vector has

errors at locationX , X'z ... X', meaning

e(X)= X+ X+ + W
(2.38)

where0< j, <j,<---<j, <n.From (2.22) and (2.23) we obtain a sekbfequations:

s =(a") +(a’2) +...+(a") ,fori<i< 2,
(2.39)

where o ,a'> ... a" are unknown. The decoding algorithms of BCH coselse these

equations. Oncer" ,a’ ... @’ have been found, the powers §fj,....,j,, give the locations

of the errorsa® ,a': ... a" are known as the error locators. Letting

x =a”* forisqsl|,
we can rewrite (2.39) as

§=2.00) =00 +0) +...+(¥)

(2.40)
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The 2 equations covered in (2.39) are known as the pewer symmetric functions [30].
They are simultaneous equationslin An exhaustive search of the equations would ¢inee
error locations. However this search would be camadmnally taxing [14]. A polynomial known

as the error-location polynomial,

o(x) = 1+ X 1+ X, )+ (1+ X X
=g, tox+0, X+ . taX
(2.41)
is defined. The error location polynomial is unkmovand its coefficients have to be

determined. The process of finding the error lasapolynomial is the most complex part of the
decoding algorithm. The most commonly used algoritfor finding the error location
polynomial for both BCH codes and RS codes is tleeldBamp-Massey algorithm. Another
algorithm used for BCH codes is the Peterson dlyori The roots of the error locator
polynomial are at the reciprocals of the error tmra numbers [30]. After finding the error
locator polynomial the next step of decoding idiing its roots. One approach would be to
examine every element in the finite field to asmerif it is a root. This is known as the Chien
search. If the roots are distinct and all lie ia #ppropriate field, then we use them to determine
the error locations. If they lie outside the fietden the received codeword has errors but they

are beyond the error correcting capability of thdec[66].
Thus the algebraic algorithm for decoding a BCHecodnsists of the following steps:

» calculating the syndrome to ascertain if the codemM®received in error,
* computing the2t components of the syndrome,

» determining the error location polynomial,

» finding the roots of the error location polynomiahd

» calculating the error values.

For a binary BCH code, it is unnecessary to catetlae error values [30]. All the bits that are

in error are flipped using a bitwise XOR.
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2.6 Product codes

2.6.1 Defining product codes

Product codes are serially concatenated codeswvirat first presented by Elias in 1954. The
concept of product codes is a method of combinimg br more short constituent codes to

produce a code with a longer block length with dredlistance properties. Considering two linear

codesC, and C, with parameters(n, k) and (n,,k,) respectively, a linear cod€, with

parametergnn,, kk,) can be formed. The codeword is a rectangular afay, rows andn

columns in which every row and column is a systa@aideword. This two dimensional code is

a product code of the constituent cod&sand C,. Figure 2.9 shows the construction of a two

dimensional product code

Information digits

Check on rows

Check on columns

Check on checks

n;

A

ny

Figure 2.9: Two dimensional product code.

To obtain a product code from the two constituees, the following steps are carried out.

1. The information digits are arranged intd&ax k, array.
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2. The rows are encoded using the cddeto produce an array witk, rows andn

columns.

3. The columns are the encoded using the dogdeThe row parity checks are also coded

resulting in bits that are checks on checks.

The generator matri%, of the product code can be obtained from the geaematricesG;

and G of the constituent codes by taking the Kroneckedpct of the two as shown in the

following equation:

G,=G, UG,
(2.42)

The codewordc is obtained by multiplying the generator matrix tbe code with the

information bits arranged in thig x k, array. The codeword can also be obtained by using the

following equation

c=G, UG,

(2.43)
where the message is the data arranged in thkex k, matrix.

The minimum distancel of a product code is a product of the minimum aisés of the

minC,

constituent codes. It is calculated as follows:

dminCp = dminCl |:dminq ’

(2.44)

where d is the minimum distance of, and d ;. is the minimum distance o€,. The

minC;
product code has a larger minimum distance thanctmestituent codes, but it has a smaller

fractional minimum distance than both constitueatles. Letd, and o be the fractional

minimum distance of the codé€ and C, respectively. Their fractional minimum distances a
defined as:

d.
A T'minC
O, =——*,and

(2.45)
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5 é minC, )
C, nz
(2.46)
The fractional minimum distance of the product cdge is defined as:
a—cp A dmincldminc2
nn
(2.47)
or

O, =00, -

(2.48)

Since bothd, and &, are less than zero, it follows that their proddgt is less than both

[67]. This makes product codes less appealing wdenmpared to the other codes. In coding

emphasis is put on finding codes with a large foaetl minimum distance [58].

It is worth noting that the product code constmttican be iterated to produce multi-
dimensional product codes. This enable codes ofh éager distances to be produced. The
number of dimensions lowers the code rate, at xiperese of better error correcting capability.
Product codes are at times referred to as turbdustacodes, because most decoding algorithms

developed for product codes are iterative [68].

2.6.2 Decoding product codes

Decoding of product codes can be done using batth decision and soft decision decoding.
In a binary code hard decision decoding, the demaboluoutput is quantized in two levels,
denoted as 0 and 1. This results in a hard decisioary sequence vector. The decoder then
processes the hard decision vector. This is refdo@s hard-decision decoding. The metric used

in Hard-decision decoding is the Hamming distarieg.|
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In soft decision decoding, the outputs of the demetdr are un-quantized or quantized in
more than two levels. The demodulator attaches mfidence value to each symbol it
demodulates. This value is passed onto the deamutkris used in error correction. A simple
example would be a situation where a symbol is dkraded as a “0” but the demodulator has
the least confidence in the value. If the decodgects an error in the received vector, the value
with the lowest confidence value is altered fifdtis is known as reliability-based soft decision
decoding [69][70].

Conventional decoding algorithm

A lot of research on product codes has focusednaling efficient decoding algorithms. Since
their introduction by Elias [1], many decoding aitfons have been presented. The first
decoding algorithm (the conventional decoding athor) was presented by Elias in his original
paper. Elias’s decoding algorithm involves a twepsprocess. First the rows are decoded, then
the columns [1]. The rows or columns can be detddfd@nd only if the numbers of errors in the
row or column is within the error correcting capiypiof the constituent code. The error patterns
that are correctable in this algorithm are onesrejhafter correcting rows, there are correctable
patterns in the columns [71]. Iterative decodingised to improve this decoding algorithm. In
iterative decoding, after correcting the errorshiea columns, decoding is done column wise and
row wise again until there are no errors, or aghodd of iterations is reached. Iterative decoding

improves decoding at the expense of decoding delay.

The decoding algorithm proposed by Elias is nobptimum decoding algorithm. A product
code has the error correction capabilidefined by the equation:

t= dmincldmincZ _1.

2
(2.49)

The decoding algorithm proposed by Elias is npabée of decoding some error patterns that
lie within the error correcting capability of thede. Assuming the constituent codes are both
Hamming codes, then the error correcting capabdlftyhe product code is four. Assuming the
errors are arranged in a manner such that thegtdhe corners of a rectangular pattern as shown
in Figure 2.10.
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X X <€— codeword

—— error
Figure 2.10: A permanent error in a two dimensionalproduct code with Hamming code component codes

Though this is within the error correcting capapibf the code, the pattern is not correctable.
This is due to the fact that the number of errarghe rows and columns with errors is beyond
the error correcting capability of the Hamming c¢bt4]. This decoding algorithm, despite being
suboptimal, is effective. Its complexity is appnmetely the sum of the decoding complexities of
the constituent codes.

Viterbi algorithm maximum likelihood decoding

Product codes, like other linear block codes caddmded using maximum likelihood (ML)
decoding. ML decoding lowers the probability of deéing errors. The distance between the
received codeword and every other codeword in dloke space is computed. The codeword with
the smallest distance from the received codewords®imed to be the sent codeword. This
method is very simple, but it is time consumingtishe codewords in the code space have to be
compared. Its simplicity is overshadowed by the lberasome task of comparing with all
codewords. As the length of codewords increasesd#étoding method becomes unattractive.
Product codes are too long for this method of egtrae searching. For example, for a (31, 26)
binary Hamming decoded with the word correlationcateng method, the number of
comparisons that have to be carried ou2i. A compromise has to be made between the
simplicity of the decoding algorithm, and the prbitity of decoding error. A desirable algorithm

is one that uses less memory, requires less congpus easily implemented on equipment and
minimizes the probability of error [3].
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Andrew J. Viterbi introduced a decoding algorithon lecoding convolutional codes in 1967.
The algorithm has since been named after him a¥iteebi algorithm (VA). Viterbi wanted to
prove an asymptotic optimum upper bound on ther gmabability of convolutional codes. The
VA algorithm was later proved to be a ML decodihgpathm by Forney and Omura [72][73]. In
[74], Bahlet al showed that block codes could be represented asingjlis. They proposed a
brute force method for decoding block codes basetth® trellis. In [75], Wolf defined a trellis as
a compact method of cataloguing all the codeworfda lnear block code, with each distinct
path through the trellis corresponding to a codewinrthe codeword space. Wolf showed that
the VA could be used for decoding block codes. @otien was that the VA could only be used

for convolutional codes.

For a parity check matri¥d of a (7,4) Hamming code

1 0 1
H= 1 0 1 |
1 1 0

and codewords
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the corresponding trellis of the code with pathesrapresented in Figure 2.11.
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Figure 2.11: The trellis of four codewords of a (4) Hamming code

The trellis representation of the Hamming codeefemred to as a terminated trellis. The trellis

of an (n,k) block code has a depth. At depthk =0, the trellis contains only one nodg(0),
the all zero state which is@ —K) tuple. For eactk =0,1,...,(h— 1), the collection of nodes at
(k+1) is obtained from the collection on nodes at ddpthLines are drawn from nodes at depth
k to the nodes atk +1). For a binary block code, the nodes at dgtht1) are obtained from

the set of nodes at depkhusing the equation

Sy = & T G hk+1)’
wherec,.,, is the bit at positior(k +1) in the received vector, arty, ,,, is the (k+1) column

of the H matrix. For example, in the Hamming code above ttyo new states & are

0 1 1
0|+1J0|=| 0
0 11] [ 1]

and
0 1] [O]
o|+oioj=|0
0 11] [0
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Any nodes and paths that do not have a path taltieero state at depth are removed.

There is a one-to-one correspondence between thesda the codeword space and the paths

through the trellis. For a binary code, there Zre&codewords, and therefo paths.

The objective of the VA is finding the shortestip#itrough a trellis. It can be broken down
into three steps:

The first step is calculating the branch metrics.

The second step is to recursively compute the ptiosigh the trellis. Decisions are made
from vertex to vertex. If two paths converge at$hene vertex, the path with the lower metric is
kept as the survivor path. The VA finds the shdanpegh through the trellis, therefore, where two
paths converge, the shortest path is kept. Theelopath is disqualified because it will never be
the shortest path. The metric of the path at eexag a summation of the all the metrics leading
to the vertex. This step is known as the add-compatect (ACS) recursion stage of the
algorithm.

For convolutional codes, in the final step, thenostof all the survivor paths that reach the
last vertex are compared. Depending on the mesed uthe path with the lowest metric or the
highest metric will be used. Assuming we are usingetric of distance between the received bit
and the transition bit, we would choose the patth Wie smallest minimum distance at depth
of the trellis. It has the closest correlation he treceived data. It is a unique path that can be
traced back in time, and is the most likely sigoath with the corrected codeword [76]. In block
codes, the only paths that are considered, arpaties which terminate at the all zero state [75].
This is due to the fact that the syndrome of advetideword is at zero state. The path with the

lowest metric is chosen as corrected codeword.

Wolf showed that soft decision ML decoding couldused for any linear block code (product
codes included) using the VA [75]. When comparedthte word correlation ML decoding
algorithm, the VA offers a significant improvemeag some possible codewords are discarded
during the search process. The VA is practicalstoort codes with few vertices, because the
number of vertices determines the decoding comjyl@fithe code. The number of edges in the
trellis is related to the number of vertices, aagheedge is a symbol in the codeword. Long

codes will have a large number of edges, and caresely a large number of vertices [30].

47 |Page



Generalized minimum distance (GMD) decoding
This decoding algorithm was presented by Forney9@5 [77]. This soft decision decoding
algorithm uses the reliability information of theceived symbols to improve the algebraic

decoding of both binary and non-binary codes. Theoding algorithm generates a list of

{d”‘#ﬂJ candidate codewords based on an error-and-eratgebraic decoding method and

then selects the most likely one from the generatetbwords. Assume a binary codeword is
received with erasures and errors. The erasurdigusican be filled with zeros. This can
introduce more errors. The error-and-erasure dagadiethod can correct the combinationseof

errors ande erasures provided that

2e+e<d, -1
(2.50)

The erasure positions are considered the leastblelipositions, and are the most likely

positions to be in error. The decoding is carriatlio 4 steps as follows:
1. Assign a reliability value to each of the symbalghe received vector'.

2. Generate a list otdm"‘TJer sequences by modifying' . If the minimum distance of the

code is even, modifw' by erasing the least reliable symbol, then threeHeast reliable

symbols, incrementing in odd numbers until tdg,, -1 least reliable symbol. If the

minimum distance is odd modify’ by erasing no symbol, then the two least reliabte]

increment in even numbers tdl  —1.

3. Decode the modified codewords using an error-aadege algebraic decoding algorithm to
generate the candidate codewords.
4. Compute the soft decision decoding metric for tl@didate codewords. The candidate

codeword with the best metric is chosen as thedbstsolution.

-+
Generally less tharijd”‘#zJ candidate codewords are generated as some otthersces

may fail at step 3 [14].
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BCJR MAP decoding

The maximum a posteriori (MAP) decoding algorittsrone of the most commonly used soft
decision decoding algorithms. It is also knowrttesBCJR algorithm, named after Bahl, Cock,
Jelenic, and Raviv who proposed it originally in74930][45]. The MAP decoding algorithm
can be applied to any code for which a codingisrethn be drawn [74]. It works by computing
the a posteriori probability of symbols from Mark®ources transmitted through discrete
memoryless channels. The BCJR algorithm is sinhddhe Viterbi algorithm in that respect. The
difference between the two algorithms is that, Witerbi algorithm makes a hard decision at
each edge in the trellis. The BCJR algorithm compudoft outputs in the form of posterior
probabilities for each of the message symbols.cdmtinuous path through the trellis formed by
the Viterbi algorithm produces the maximum likellsbcodeword. This means there is no way to
establish the reliability of the individual symbois the corrected codeword. The BCJR
algorithm produces the most likely sequence of ags®its. The sequence of symbols produced
by the MAP algorithm may be disjointed. The prolitibs of the message bits produced in the

BCJR algorithm are used in some iteratively decqaeduct codes (turbo product codes).

In turbo decoding, the received codeword is MAPodied row wise. The real values obtained
from the row wise decoding are used for the columse decoding. The new results are then
used for the next row wise decoding, and the pcesontinued until the results concur or a
predefined number of iterations is reached. Congpace the Viterbi algorithm, the MAP
algorithm is computationally complex. It is alsons#ive to SNR mismatch and inaccurate
estimation of noise variance. For long block codbs, memory requirements for MAP-based
decoding algorithms become extremely large. Thepdexity for the gain is a hindrance when
using MAP decoding. In order to solve the complepitoblem other MAP decoding algorithms
have been suggested. They include a Log-MAP algoritMAX-Log-MAP algorithm and the
Chase-Pyndiah MAP decoding algorithm.

2.7 Bit flipping decoding

The objective of this research is to study theqremfince of a bit flipping decoding algorithm

to see if it can be used as a low complexity dewpdigorithm for product codes. In this section
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we discuss how a bit flipping decoding algorithmrkeo We base the discussion on the bit
flipping decoding algorithm presented by Gallagar lfow-density parity-check (LDPC) codes.

LDPC codes are codes specified by a parity chedkixmeontaining mainly 0’'s and few 1's.

They are defined a@, j,k) low-density codes, where represents the block length of the low-

density code matrix,represents the number of 1's in each column ohth&ix andk represents
the number 1’s in each row [3].

LDPC codes can be presented using Tanner graphseigraphs are bipartite graphs. This
means, Tanner graphs consist of two sets of nddhesfirst set oh nodes represents théits of
a codeword. These are called bit nodes. The seseinof n — k nodes is a set of the parity bits
of the codeword. These are known as the check nddes graph has edges between the bit
nodes and the check nodes. A bit node has an edlgawheck node if and only if that bit node
is used in the computation of the check node. Gprsgtly a Tanner graph is a graphical

depiction of the parity check matrix of the cod8][3

Given the following parity check matrix for a sysi&tic (7, 4) Hamming code

10
H=|0 1
00

= O O

11
10
01

B R e

The corresponding Tanner graph of the code is pteden Figure 2.12.

Check nodes

Edges \ \ \~ \

Bit nodes
) () ) ) (= (=

Figure 2.12: Tanner graph of a systematic (7, 4) Haming code
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Three parity equations exist for the Hamming codéneéd by theH matrix above. For this

Tanner graph the following set of parity check doumes can be obtained:

p= (G+g+G+G),=0

(2.51)
p, = (%+ C,+ G+ c,)Z:O

(2.52)
P= (G+ G+ G+ G),=0

(2.53)

The parity p, is influenced by the codeword bits, c,, ¢, andc,.

Several decoding algorithms exist for LDPC codds ©ne of most interest in this study is
the bit flipping decoding algorithm proposed by I&gér. The decoding algorithm is applicable
to binary codes. Gallager proposed it be usedarBihary Symmetric Channel at very low rates.
The algorithm’s simplicity is a very attractive faee. The decoder computes all the parity
checks. Any bit that is contained in more than &ndd number of unsatisfied parity check
equations is flipped or the bit involved in the moamber of parity check equations is flipped.
Using the new values of the bits, the parity chesnlesrecomputed and the process repeated until
such a time that the parity checks are all satisfie

Using the Hamming code stated earlier in the sectassuming the transmitted data was
1010, the codeword would be 0011010. Assuming the received vector0ik0010, the parity
check equations would be computed as

p,=(0+0+ 0+ 1) =1
p,=(0+0+ 1+ 0), = 1
p,=(1+0+1+ 0) = C

Assuming a single error has occurred, the nextabbge is finding the bit that affects both

parities p, and p,. From the parity check equations big, and ¢, both influence paritieg,

and p,, but ¢, can be ruled out because it also influenpgesThe solution is to flip the bit, .
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After flipping c,, the parity checks are computed again. This tithpaaities check, meaning

error correction is complete.

2.8 Conclusion

This chapter provides background information oroidmfation Theory. Section 2.2 of the
chapter gives an overview of the digital commundaasystem, showing where error control is
introduced in the system. The chapter presentsemar control techniques that are used in
wireless communication, namely ARQ and FEC, stathgy advantages and disadvantages of

using them in wireless communication.

Section 2.4.2 defines FEC as a means of recovgtgnformation (erasures) and corrupted
information (errors) from redundant information.eTbode rate is defined as a measure of the
redundancy added to the encoded information. FEl@soan be subdivided into two subclasses
block codes and convolutional codes. In this reptwtk codes are used. Block coding schemes
divide the information to be transmitted into noredapping blocks and each block is encoded
separately. Convolutional codes were first preskhieElias in 1955. They use a sliding window
when encoding. This allows the same data to bedstta number of times depending on the

size of the sliding window.

Section 2.5 gives a description of three differblick codes, namely, Repetition codes,
Hamming codes and BCH codes. Repetition codesiamgles form of error correction coding
where the message vector is repeated at leasttthme® Hamming codes were first presented by
Richard Hamming in 1954. They are perfect code$y oapable of correcting a single code.
BCH codes were discovered by Bose, Chaudhuri, aatjttenghem. They fall into a category of
block codes known as cyclic codes. They are thesemaodes for this research because they

offer the flexibility of choosing the error corretg capability of the component codes.

Section 2.6 defines product codes as serially deneted codes. Product codes were first
introduced by Elias in 1954. The section defines thfferent parameters of product codes

including the minimum distance, code rate and thetional minimum distance. Product codes
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have a larger minimum distance than their constitwedes, but they have a lower fractional

minimum distance.

Section 2.6.2 gives a description of the differdetoding algorithms that are used for product
codes. The decoding algorithms used for block cadesbe used to decode product codes. Most
of the decoding algorithms used for product codesoerage decoding the rows then the

columns iteratively as Elias had first suggested.

Section 2.7 presents the bit flipping decoding atgm first presented by Gallager for LDPC
codes. The section includes an example on howlgfoeithm can be used to decode a Hamming
code. The simplicity of the algorithm makes it dtragtive decoding algorithm for product

codes.

Chapter 3 presents a review of the literature suofethe study. When Elias [1] presented
product codes, he used the codes that had beeoveisd at the time, Hamming and Golay
codes . He stated that product codes could bermatdrom any systematic codes. Chapter 3
presents literature on cyclic product codes andlsiparity check product codes. The chapter
also presents literature on derivatives of prodcades, like array codes, augmented product
codes and turbo product codes. It also preseptstitre on the decoding algorithms for product

codes.
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Chapter 3 - Literature Survey

3.1 Introduction

This chapter presents a review of the literaturethe study. The literature traces the
development of product codes from the time theyeviest proposed by P. Elias in 1954, to the
single parity check product codes introduced bytddatlt is worth noting that the encoding
process of product codes has not varied much frahwhich was proposed by Elias. Most of
the research on these codes has been focused dingfibetter ways of decoding them. The
survey also presents literature on the decodingrisiigns that have been used in decoding
product codes. We also consider bit flipping, ahodtthat was presented by Gallagher as a hard
decision decoding algorithm for LDPC codes. Thisthmd may also be used in decoding

product codes, and a variation of the algorithmsied in this study.

3.2 Development of product codes

Generally it has been shown that the decoding ocexitgl of a block code is directly
dependent on its error correcting capability. Tddoa powerful block code, one has to use long

block codes. It should be clarified that the terawprful in this context refers to a code with
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high error correcting capability. Generally incriegsthe block length of a code, increases its
decoding complexity [30]. One of the objectivedafvard error correction is to build powerful
codes yet keep the decoding complexity low. Eliagppsed the use of iterated codes as a means
of creating powerful codes while keeping the desgdiomplexity low. These codes are defined
as product codes [1]. Elias proposed using simpties, like the ones that had been discovered
by Hamming and Golay, to build the product coddghdugh Elias used Hamming codes when
he presented product codes, his paper shows that cddes can also be used. He stipulated that
the codes be of the check-digit, or systematic,tgpethat the check digits could be computed
from the preceding information digits and appendatb the message. Elias also stated that it

was not necessary to use the same type of cogeimddmension of the product code.

The procedure to create a product code is to aerahg data to be transmitted into a
multidimensional array, then encode the data il emension, encoding the parity bits as well.
This creates a systematic code with some bits beegks on checks [1][78]. Initially, as stated,
Elias presented product codes using Hamming andyGmides. Later works show that product
codes could be extended to other linear block coaledong as they were systematic [79][80].
This led to the development of cyclic product coded single parity check product codes which

are discussed in Sections 3.3 and 3.4.

In 1966 Forney introduced concatenated codes. Hieedieconcatenation as a method of
building longer, powerful codes from short code8][%Algebraic coding focused on building
codes with large minimum distances as a means @kasing error correcting capability.
Concatenated codes were based on the conceptdigbroodes that had been introduced earlier
by Elias [77]. A concatenated code consists of limear codes. The outer code is a non-binary
code like a Reed Solomon code over a finite figR{2%). The inner code is typically a binary
code. When encoding, the outer code is used Tifst. bits are arranged inkorows ofk; bits.
Thek; bits are encoded into RS codewords over the firetd. The resultank tuples of binary
bits are encoded using the binary inner code. Rtododes are sometimes defined as serially
concatenated codes [29][81]. Some decoding algostbhsed for decoding concatenated codes

are used for decoding product codes [29].

Another spin-off of product codes is a group of edchamed array codes [1][82][83]. Array

codes work on the premise of product codes, of lsmmpmponent codes with low complexity
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decoding methods. Array codes, like product codesa constructed using component codes. A
single parity check product code is also known esnaand-column (RAC) array code [82][84].

The RAC consists of a rectangular array of infororabits with row and column parity checks.

%

ny %

A

k

Single bit parity
checks on rows

k Information bits o

n

Single bit parity checks on columns Check on checks

Figure 3.1: Single parity check product code or ronand-column (RAC) array code, adapted from{82]

Unlike product codes, array codes can be non-sygieni\rray codes were first presented by
Elias in 1954 [1][85]. They are most often binargdes. Array codes are also defined as
structured LDPC codes [86].

After Elias introduced product codes in [1], a ddtresearch was carried out on them. It was
noted that, for a given error correcting capabilibe number of parity check symbols required
by a product code is relatively higher than thadthier linear block codes. This is a disadvantage
when using product codes in practical data comnatioic systems [87]. Augmented product
(AP) codes are used to ensure high code rates wbilaffecting the minimum distance of the
code or reducing it marginally [88][89]. A codewaslaugmented by increasing the number of
information symbols while keeping the length of toeleword constant. The resultant code has a

higher code rate, but it might have a lower minimdistance [45]. Augmented product codes
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were first presented by Goldberg in [90]. Goldbaugmented an extended Hamming code with

a single parity check code to result in a prododecshown in Figure 3.2.

Extended Hamming code checks on
rows

Information bits

Single-parity-check code checks on columns

Figure 3.2: An augmented product cod¢90]

Turbo codes were first presented for convoluticmles. They are sometimes referred to as
parallel concatenated codes. Until the introductériurbo codes, the decoding complexity of
codes was hindering the development of codes thalidcprovide performances close to the
Shannon limit [91]. Turbo codes can be distinguisfrem other codes by the fact that they use
an iterative decoding algorithm [30]. A product ead only a turbo product code if an iterative

decoding algorithm is used to decode it.

The first turbo product code was presented by Laztgd. [81], in 1993 . A filtered signal is
fed to the decoders, and the decoders interpresitgmal amplitude to a soft decision. Tae
priori probabilities of the input symbols are used, and a soft outpsed on the reliability of the
decision is calculated. The result is iterated leetwthe two decoders until a reliable codeword is
obtained. Lodgest al. [81] presented a decoding algorithm for produatlesothat could be
generalized for multi-dimensional product codeshkeir paper the algorithm is used to decode a
two dimensional code. A one dimensional maximunostgrior (MAP) filter is used to obtain a
refined set of probabilities row-wise. The new @bitities are then further refined by doing a
column-wise decoding. The process is iterated uinél probabilities have converged, meaning

they are consistent, or the predefined maximum raurabiterations is reached [81][30].
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3.3 Cyclic product codes

Cyclic product codes were introduced by Burton ®eddon in 1965 [92][93]. Having noted
the ease of implementing cyclic codes, they worked new sub-class of cyclic codes, namely,
cyclic product codes. Cyclic code implementationthez have good burst error correcting
capability but poor random error correcting capaed or good random error correcting
capability but poor burst error correcting capapilThe Fire codes have good random error
correcting capability but poor burst error corregti capability. The Bose-Chaudhuri-
Hocquenghem (BCH) codes [92] on the other hand lgaesl burst error correcting capability
but poor random error correcting capability. Burtamd Weldon proposed the use of cyclic
product codes as a means to address this problayciic codes. Cyclic product codes could
provide a compromise between random and burst-eowecting codes, thereby providing error
correction for channels in which both occur like gswitched telephone network. The sub-codes
of product codes did not necessarily have to beséime code. Cyclic product codes also impart
an algebraic structure to a subclass of cyclic soBerton also proposed cyclic product codes to

construct codes that are powerful but with reldyivew decoding complexity [94].

Given two cyclic code€; andC,, their product is a two dimensional cddevhose rows and
columns are codewords @ andC,. This is how Elias defined product codes. The coment
codesC; andC; in C maybe cyclic, but it does not necessarily folldwattC will be cyclic as
well [95]. Cyclic product codes were first definbg Burton and Weldon, and they proved that
under certain conditions a two dimensional prodiarde whose sub-codes were cyclic codes,
could also be a cyclic code [92]. The first of the conditions is that the lengths of the sub-
codes has to be relatively prime. This was furgireved by Tang and Chien in [22]. The second
condition is that the mapping between locationthetwo dimensional arrays and the terms in
the polynomial representation of the cyclic cods tmfollow a defined function. In the cyclic
product codes proposed by Burton and Weldon, tlie danot arranged into a matrix before
encoding as Elias had proposed. The data is coaled,then a mapping function used to
determine the order of sending the data in theicgdde. In [93], it was shown that there exists
more than one mapping that would result in a cygtieduct code. Though the cyclic product

codes defined by Burton and Weldon are differerdtincture from those defined by Elias, they
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have the same advantage. They are formulated wioger component codes hence their

decoding complexity may be considerably simplentbades of the same length [94].

In their paper [22] in 1966, Tang and Chien recpgdithe need to have variable code rates in
cyclic product codes. Messages in communicatiotesys vary in importance, so there was a
need to add more redundancy to the important onédess in the ones that were deemed less
important. The channel is ever-changing hence meseases when the SNR is high, less
redundancy is required. To cater for this Tang &fden realized the need to address two
problems, the first of which was selecting the sotteat offer variable redundancy. The second,
though not addressed in their paper, was determigifificient methods to inform the receiver of
the change in the code [22]. The objective of thedy was selecting efficient, variable
redundancy simple codes using cyclic product coBagon and Weldon had shown in [92] that
the generator polynomial of a two dimensional ey@roduct code is obtained by finding the
tensor product of the generator polynomials oftth® component codes. To vary the redundancy
of the product code, Tang and Chien changed thergtr polynomials of the component codes.

Tang and Chien proposed a two dimensional prodaai¢ evith two sub codes obtained from the

generator polynomialsy,(x) and g,(x). The high redundancy code is generated with the

generator polynomialg(x) = g (X Og( 3. The low redundancy code is generated with the
polynomial g, ( X).

In 1967, Abramson showed a method for constructipgic product codes by interlacing
cyclic codes. The data is arranged into an arnagy, encoded row-wise, then encoded column-
wise as Elias had done. Abramson showed that theltaet code would have a Hamming
distance that would be the product of the Hammistadces in each dimension [2]. In his paper
Abramson showed that the decoding algorithm prapdseElias for decoding product codes,
where the decoding is done row-wise then columrewlises not decode all error patterns with
errors within the error correcting capability ofetltode [2]. This can be illustrated using a
Hamming code. The minimum distance of a Hammingecisd3. A two dimensional product
code using Hamming codes as subcodes has a minaiisiemce of 9. In principle the code
should be able to decode up to 4 errors from (21f%e received codeword has two errors in

two rows and the errors are also in two columnaltieg in an error pattern shown by the Figure
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2.1, the method proposed by Elias will not cortéetse errors even though it is within the error
correcting capability of the code. The Hamming code only correct a single error per row or

column.

Abramson defined this as @ermanent error pattern. The decoding strategy proposed by
Elias does not take advantage of the interlacired ushen constructing the code. Abramson
proposed using a cascade decoder. In the convahtiethod of constructing product codes, the
data received from the communication channel ighi@ form of strings of digits in one
dimension. Before the codeword can be decodedadtth be mapped into the original multi-
dimensional array. The original method for mappiing digits is to map the rows sequentially.
Abramson proposed constructing the product codeirtgriacing the column and row
codewords. Then the output of the communicationneBbh would be fed directly into an
interlaced decoder for the sub codes. The cascadecoders will then result in decoding first
each column then each row. Cascade decoding dfferadvantage of distributing any burst
errors over successive rows or column codes. Temding method takes advantage of the
structure of product codes, thereby improving th@recorrecting capability of the code. It
allows the decoding of permanent error patterns fRfther literature on decoding of product

codes is covered in Section 3.5.

3.4 Single Parity Check Product Codes

A single parity check (SPC) code has a single cloegik appended at the end of the block. In
binary codes, this digit is a modulo 2 summatioralbthe information digits. These are simple
codes that have a minimum distance of two. Theyectorrect any errors, rather they can
detect the presence of one error. Bahl and Chieadaced SPC product codes in 1971. They
used SPC codes as constituent sub-codes for gydduct codes. The focus of their study was
on single and multiple burst error correcting caltgds of cyclic codes [96]. The idea of using
SPC codes in product codes was also looked int®Réy and Reddy [79]. Rao and Reddy
presented a code that had the highest code rateanébdeword length of 48 and a minimum
distance of 8. They accomplished this by combirand6,11,4) extended Hamming code with a
(3, 2, 2) SPC code to produce a (48, 22, 8) augedeptoduct code. The motivation of their
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work was finding high rate codes with a high erpoarrecting capability using augmented
product codes [89]. Their work inspired other reskars to look into improving the fractional

minimum distances of product codes [87].

The desire to create long codes with a low decodorgplexity led Battail [97] to investigate
the use of the SPC codes as constituent produasciod 1989. Battail used Elias’s iterated
approach to combine SPC codes to create singley méweck product codes [97]. To decode the
product code, Battail used successive soft-outdlags. The performance of the code was good
for the minimum distance of the code. The minimustathce of a SPC code is two, and a two
dimensional product code would have a minimum distaof four. Battail concluded that the
minimum distance is not a sufficient criterion te bsed for judging the performance of long
binary codes, rather to look at the distance distiron. He proposed that long codes with a
distance distribution close to random codes wouwddfgpm well despite the low minimum
distance. Battail did not formally prove that therated product of SPC codes asymptotically

approaches the average distance distribution aforarcoding [97].

In [97], Carieet al studied further what Battail had done years earlinitially Battail
proposed using different length SPC codes, buteGarial used SPC codes of equal length.
When decoding the SPC product codes, Battail pexpogcoding the shortest dimensions first
using weighted-output decoding. The decoded codéwwovides both the decisions and
reliability estimates for decoding the next longedeword. This is done until all the codewords
had been decoded. The decoding is not iteratedgtholihe reason for decoding the shorter
codewords first is because shorter codewords asedesceptible to noise. They will have fewer
errors than longer codewords. Decoding the shaddewords makes it possible to decode the

longer codewords [97].

The decoding algorithm proposed by Battail workspgimduct codes whose sub-codes are not
equal in length. In [97], Cariet al. proposed a new decoding algorithm to cater foglsi parity
check product codes whose were of equal length.aldgmithm is based on weighted threshold
decoding. The decoding algorithm uses an iteratulication decoding algorithm. This
improved the results of the coding scheme to tloddained by Battail. Replication decoding is
an iterative symbol-by-symbol MAP decoding alganmithlt is used for redundantly encoded

messages. The decoding algorithm is optimal whiesyaibols are taken into account [98].
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The general structure of SPC product codes remdimedsame until a new structure was
proposed by Xu and Takawira in 2004 [37]. In thenamtional SPC product code, a single
parity bit is appended at the end of each row aidnen. The resultant codeword has an even
number of ones in every row and column (i.e. moduladdition is zero). The conventional
structure of a SPC product code is shown in Figlife To decode the codeword, iterative
decoding is used. In [99], Kousa investigated tres@e decoding capability of SPC product
codes. To decode erasures, row-wise and columnitessive decoding is used. Using parity
checking allows for recovery of data from singlaseres. If more than one bit is erased in the
row or column, the row or column is skipped. Deoagyis performed in many iterations until all

the erasures have been recovered or the erasteenpddes not permit further decoding [99].

In [37], it was noted that the decoding method pemal by Kousa could not recover errors in
a sub-pattern such that every occupied row andyexazupied column in that sub-pattern has at
least two erasures. The sub-pattern is shown iar€ig.3(b). This pattern had been identified as

a permanent error by Abramson in [2].

Information bits —— >

A

__— Checkbits

(a) Sent data (b) Received data

Figure 3.3: An example of a permanent errof37]

In [37], it was noted that the error pattern cooédrecoverable if more parity check equations
were used and the parity equations covered anlyeobits in the error pattern. Xu and Takawira
were concerned that increasing the number of pahiggk equations would impact negatively on
the code rate of the product code. SPC were degelbpcause conventional product codes have
a low code rate compared to linear codes of theesamor correcting capability [100]. To ensure

the code rate of the system remained the same @mentional SPC code, more than
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information bits could be used to obtain each pdit. From the message passing algorithm, it
is preferable to have a parity bit with a low degrealculated from few parity bits. In [37], the
parity check bit for the product code is generabgdusing every two rows and every two
columns ofn information bits. The structure of the code isvghan Figure 3.4.

Information
bits N

.
.
.

Parity
bits

Figure 3.4: SPC-Product code proposed by Xu and Talwira [37]

The SPC product code proposed by Xu and Takawiraooly be two dimensional [37].

3.5 Decoding product codes

Decoding is the most complex part of the FEC syst€he decoder in the FEC system
attempts to determine the location of the erroocenfithe discrepancies between the received
vector and the recalculated parity bits [40]. Moisthe decoding algorithms used for block codes
can be used for product codes. This is becausaigr@ddes can be decoded by decoding their
component codes row-wise and column-wise. Few degodlgorithms look at decoding the
entire codeword as a whole , due to the fact ttetpding the constituent codes first ensures the
decoding complexity of the system is kept low, Wwhiwzas the objective of Elias presenting
product codes [1]. This section provides a liter@atsurvey on the decoding algorithms used for
product codes.

The first decoding algorithm for product codeshis algorithm that was proposed by Elias in
[1]. The component codes used to encode the rods@nmns are used to decode the row and
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column codewords as long as the errors are withan drror correcting capability of the
component codes. This decoding algorithm has besmdd effective by [14], but it is not
optimal. The received vector is decodable if anly drthe error pattern obtained after decoding
the rows is within the error correcting capabilifythe column component codes. Breaking the
decoding into row-wise and column-wise decodingcpsses makes decoding manageable for
large blocks of code [77]. Studies, for instanckd@d [37], have shown that this method of
decoding does not always correct errors within éher correcting capability of the code for
certain error patterns. One such pattern is the@eent error pattern illustrated by Figure 3.3. A
lot of research has been carried out on findingiefit decoding algorithms of product codes.

Some of the algorithms are adapted from algorithroposed for other codes.

3.5.1 Majority-logic decoding

Majority-logic (MLG) decoding is also known as tBh®ld decoding [101]. The first majority
logic decoding algorithm was presented by Reedotv] for Reed-Muller codes. The simplest
of these decoding algorithms is the one used imgpkcation code [102]. In MLG decoding the
multiple estimates of a bit value are obtained, taeddecoded value is the value which occurs in
the majority of estimates. MLG decoding is an atixee decoding algorithm for cyclic codes
because of its simplicity to implement. It becamerenattractive as more cyclic codes were
discovered [103]. MLG has been mainly used in pobdeodes that have cyclic codes as

component codes.

One of the first implementations of MLG decoding froduct codes was by Bahl and Chien
in 1969 [104]. Bahl and Chien were investigating thultiple burst error correcting capabilities
of cyclic product codes. Their cyclic product cadebased on SPC codes of relatively prime
block lengths. The properties of cyclic product e®thad been presented by Burton and Weldon
in [92], and Calabi and Haefeli in [105]. Bahl a@tdien proved that multi-dimensional cyclic
product codes can be decoded using MLG decodind1®], Gore used extended Reed-
Solomon codes as the constituent codes of the praduale. The resultant product code was an
extended generalized Reed-Muller code which was MieGodable [106]. Lin and Weldon in
[94], generalized that the product of two MLG deaolé cyclic codes is also MLG decodable,
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provided that one of the component codes is onedgeodable. In [94], BCH codes were used
as the component codes. Lin and Weldon also prapaselgorithm for deriving the majority-
logic parity checks of the product code. In [1aRg MLG decoding algorithm proposed in [94]
was improved. The improvement consisted of usiregpghrity checks of the column code and
incorporating them in the other checks for the padccode. The decoding algorithm was still
restricted to product codes that consisted of dfilgs decodable component codes. Reddy [108]
proposed an algorithm that decodes product codeg) MLG decoding if only one of the
component codes is MLG decodable. Reddy preseh&decoding algorithm to improve on the
decoding algorithm proposed by Elias. Reddy adapterl decoding algorithm from one

proposed for some convolutional codes in [109].

3.5.2 Maximum Likelihood Decoding

A true maximum likelihood (ML) decoder works by oelating the received vector sequence
to all the possible codewords, and choosing thewodd where the correlation discrepancy is
lowest. The computation is done iteratively, thgrabhieving an exhaustive search of the code
space. For large codes, this can be computationgkysive as the received vector has to be
compared to all the possible codewords [110]. Mcading can be achieved by finding the
shortest path through a code trellis. The Viterdgioathm provides an efficient solution for
finding the most likely path through a trellis [11The algorithm was proposed in 1967 by
Andrew J. Viterbi as a decoding algorithm for coltional codes [72].

In [75], Wolf showed that the Viterbi algorithm céwe used for decoding ar()n, k) linear

block code overGF(g) with a trellis with no more thamg™™® states. Wolf showed that a
(nn,, kk,) product code requireg“™ ) states. By symmetry, the algorithm requiggs™

states. Wolf stated that if one of the codes wasvarate code and the other a high-rate code, the
number of states required improves on the decoclmgplexity of the code when compared to
algorithms that requirg“* states [75]. Wolf's paper also shows that for Idnack codes, the

number of states required is large thereby makiagiecoding complexity too high.
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Trellis decoding for product codes was proposedldygeet al in [81]. Lodge noted that the
symbol-by-symbol MAP algorithm could be used by awgle that could be represented by a
trellis of finite duration. Decoding trellises etad for convolutional codes as well as for linear
block codes [75]. Lodget al note that creating a single trellis for Akdimensional code
requires excessive computation, rather it woulthdsiger to use separable digital filters, thereby a
trellis for each row or column. One dimensional MARers are used sequentially in each
dimension of the product code. Considering a twuedisional product code, one dimensional
MAP filtering is done across the rows, giving a setrefined probabilities taking into account
only the horizontal structure of the code [81]. Tinebabilities are further refined by performing
a one dimensional filtering along the columns. Tikia single filtering cycle. This process can
be iterated, thereby improving performance. A MARf computes tha posterioriprobabilities
of the coded bits whereas a MAP decoder computea gosterioriprobabilities of the decoded
bits.

3.5.3 Generalized Minimum Distance decoding

Generalized Minimum Distance (GMD) decoding wastfpresented by Forney in [77] and
[112]. The GMD decoder makes use of the fact tinaer@sure-and-error decoder is capable of
correcting twice as many erasures as errors. gozitim works by deliberately erasing the least
reliable symbols then correcting them using an weeand-error decoder [61]. A number of
candidate codewords are obtained. The candidaenads are checked to see if they are within
the minimum distance of the received word accordioga generalized minimum distance

criterion. The one that lies within the criterianthe unique required codeword [112].

In 1972, Chase proposed three soft decision degaalgorithms that are also based on the
GMD algorithm. They are referred to as the Chaséhhse-2 and Chase-3 decoding algorithms.
[14][113]. The algorithms Chase presented are basethe GMD proposed by Forney. Chase
showed that they could be applied to all block sodd 3]. Chase stated that the objective of
binary decoding is finding the codeword that dsfen the least number of places from the
received sequence. The binary decoder will finchimwe codeword if the proposed codeword

differs from the received sequence by a numbertefviathin the error correcting capability of
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the code. The first step of Chase’s algorithmoisiétermine the positions of the least reliable
bits of the received sequence using the channekunement information. Each bit in the
received sequence has a corresponding confidenice wa the reliability of that bit. The

algorithms differ in the number of least reliabléstselected. In the Chase-1 algorithdy, -1

bits are selected, in the Chaset%J bits are selected. In the Chase-3 algorit 2in+1J
candidate codewords are generated [30].

The Chase-2 algorithm has the best performanckeothiree. Error patterns are defined with

all the possible errors confined to tbﬁ?J least reliable bits of the received vector. A nfiedi

vector of the received vector is formed by completagon of the received vector for each error
pattern. The modified vector is then corrected gisin error-correction-only algebraic decoder to
produce a candidate codeword. A soft decision dagodhetric is then computed for the
generated candidate codewords. The codeword wehb#st metric is selected as the final
candidate codeword [14],[29],[113].

In 1994, Pyndiahet al. presented an improvement of the Chase algorithmdézoding
product codes [29][114]. They noted that large pdwecodes like product codes cannot be
decoded using one step as it would be computatjoi@ensive. It is easier to decode large
product codes by decoding their component codes. firhe authors proposed a decoding
algorithm for product codes that was based on Chakeroding algorithm. On receiving the
vector sequence, the decoder performs soft decgmoding of the rows. The soft decision
decoding is performed using Chase’s decoding dlgariUnlike the Chase algorithm that yields
binary values, the Pyndiah algorithm yields a safput. The soft output is then subtracted from
the soft input to yield extrinsic information. Adtar of the extrinsic information is added to the
original information, and this is used as soft infar the decoding of the columns. This process
is iterated [29][114].
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3.5.4 The Bit flipping decoding algorithm

In 1962, when Gallager presented LDPC codes, bsepted two decoding algorithms for
them. The first decoding algorithm was a hard decislecoding algorithm. It could only be
applied to a binary symmetric channel at rated&ow capacity [3]. In this decoding scheme,
the decoder computes all the parity checks. It tteanges or flips the digit that is contained in
more than a fixed number of unsatisfied parity &eguations. The process of computing the
parity checks and flipping digits is done iteralyventil all the parity checks are satisfied.
Researchers agree this bit flipping (BF) decodiggrithm presented by Gallager is simple, but
performs poorly when compared to the Belief propiagaalgorithm. The BF algorithm, though,
offers a better trade-off between error performamocenplexity and decoding speed or latency
[115].

Most research on the BF algorithm has been on imipgahe performance of the algorithm to
make it competitive to the belief propagation aiton. In 2001, the weighted BF decoding
algorithm was presented as a means of improvingen®rmance of the BF algorithm by Ket
al. [116]. Reliability information is added to thecetved vector sequence. An error pattern
vector is then created based on a weighted cheokaduthe code bit. The least reliable bit is
flipped. The least reliable bit is the bit with dast weighted checksum. The weighted BF
algorithm is a soft decision decoding algorithm@L1The complexity of the weighted BF is
greater than that of the original BF algorithm praed by Gallager, but so is its performance.
Further research on the BF decoding algorithm hatdgd other BF algorithms like the
bootstrap weighted BF algorithm and the modifiedgiveed BF algorithm [31][117]. To further
improve the performance of BF algorithms the paraNeighted BF (PWBF) algorithm was
proposed in [36]. The earlier BF algorithms flippealy one bit at a time. The PWBF flips a
number of bits at the same time to enable fastevergence.

3.6 Conclusion

Section 3.2 covers the development of product colies section presents codes that are spin-
offs from product codes like array codes, and ctamaed codes. The SPC product code is

sometimes referred to as an array code. Block mtochdes are sometimes defined as serially
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concatenated codes. The section also presentsnafion on how product code augmentation is
been used to improve the code rate of product cdttesluct codes have been shunned because

of their low fractional minimum distance.

Sections 3.3 and 3.4 present cyclic product coaeks SPC product codes. Cyclic product
codes were first investigated by Burton and Weldoegause they could offer a compromise
between random error correction and burst errarection. Burton and Weldon did not use the
method proposed by Elias to encode the data by dmanging it into a matrix. They used
mapping functions to order the transmission of da&. Battail combined the simplest codes,
single parity check codes, to present SPC proche¢sx He showed that the weight distribution
of the codes was a better measure of the erroecorg capability of the codes rather than the

minimum distance. Battail's SPC product codes hadadded benefit of high code rates.

Section 3.5 presents the different decoding allgarst that can be used for product codes. The
decoding algorithms used for block codes can bel dge decoding product codes, because
decoding of product codes is usually carried outdbgoding of the component codes. Many
researchers have proved that the decoding algontoposed by Elias can fail to decode an
error pattern known as a permanent error. Variegsarchers have proposed different ways for
solving the problem. Takawira and Xu proposed chanthe structure of the SPC product code

to solve the permanent error.

Section 3.5.4 of the chapter presents the developofethe bit flipping decoding algorithm
first presented by Gallager for LDPC codes. Theowtigm has been used mainly for LDPC
codes, because of the manner in which they aretatad. A single bit affects more than one
parity check. This enables the determination oflihén error by using the parity checks that
fail. The algorithm is simple to implement. Littlesearch has been done on using bit flipping for
product codes other than single parity check prodades. It is used in LDPC codes because it

offers a good compromise between decoding complexit performance.

Chapter 4 presents the new decoding algorithm rfodyct codes. The algorithm is based on
finding the Candidate Error Matrix, a matrix th&ow/s the bits that are probably in error and
flipping the bits in the shadow area. The objectivehe algorithm is to converge the shadow

area. Two types of error patterns were identifidebmthe algorithm was developed, namely the
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simple error pattern and the complex error patt€he simple error pattern is identified by that,
when flipping all the bits in the shadow area, gheadow area becomes smaller. The complex
error pattern is identified by that, when flippialj the bits in the shadow area, the shadow area
remains the same. Chapter 4 explains how the tvay patterns are flipped in order to correct

the errors in a binary product code.
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Chapter 4 — Methodology

4.1 Introduction

This chapter presents the methodology used to carryhe research. The chapter presents a
novel bit flipping decoding algorithm for binary quuct codes. The bit flipping decoding
algorithm was first presented by Gallager for LDB@les. This research is based on binary
product codes, hence in this chapter the produgeseeferred to, are two dimensional binary
product codes unless otherwise stated. Every kit imoduct code affects the same number of
parity checks as the dimensions of the product .cdtie proposed decoding algorithm takes

advantage of this to correct errors using a sirafgerithm.

4.2 Proposed decoding algorithm

Generally, the decoding complexity of block codeseases with their increase in length. Let
r represent the received vector corresponding taddewordc. Due to noise in the channel,
may not be identical te, instead, the received vector is most likely toelg@al toc plus an

error pattern or error vect@= (g, §, §,-, £,) caused by the channel noise
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r=c+e
(4.2
wheree =1 if #G and g =0 if , =G [41][118]. The objective of decoding is two-fold.

The first objective is to determine if the errottpen e is the zero vector. This is known as error
detection. The second objective is to find the npwebable error pattere so that the original
transmitted codeword can be recovered. This is kna® error correction. Error correction is
more complex than error detection [61]. Variou®edecoding algorithms have been proposed.
An objective of developing decoding algorithms asrecting all the errors that will occur during
communication while keeping the decoding complekity.

4.2.1 Finding the Candidate Error Matrix

Decoding of block codes can be done using theypahieck matrix. Generally this type of
decoding consists of two stages. The first stagelah whether the received vector sequence
corresponds to a valid codeword. This stage isadlgtan error detection stage. Error detection
involves deciding whether all the parity checks saisfied in the received sequence. For block
codes, error detection can be done using syndrdmeekmg using (2.23). The result is the
syndrome, of the received vector sequence. Thersyme is equal to zero if the received
sequence is a valid codeword, but not equal to dite received sequence has errors. This
stage is likely to be the easier of the two stagecoding [41].

The second stage in decoding is in determiningotdsition and the magnitude of the errors in
the received sequence. This stage is generallynibre complex of the two stages. Finding a
simple algorithm to carry out the second stagedtauprove the decoding complexity of block
codes. In this project we present a simple decodilygprithm that is based on syndrome
checking to declare erasures in product codes . pimduct code the information is arranged into
an array and the rows and columns are encodedagelyaiThe resultant codeword is actually a
collection of codewords. Each row or column is desgord. By using syndrome checking on the

rows and columns, erasures can be declared irrticleigt code.

Assume a(n,n,, k k,) product code, we can define the following terms:
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Definition 4.1: Row Parity Check VectoX of dimensionn, x1

X—[x X ]T wherex = 0.if 5 =0
T X | Tt s #1

(4.2)
and Sis the syndrome of the received row
Definition 4.2: Column Parity Check Vector of dimensionlxn
0,if s =0
Y=|Y,Y-n Y, |, Wwherey =< 7 "
] = 13S
(4.3)

and s is the syndrome of the received coluimn

From the Row Parity Check Vector and the Columnt&heck Vector, the Candidate Error

Matrix can be obtained.

Definition 4.3: The Candidate Error Matri¥ is a matrix that shows the possible locations of

the errors in the received vector sequence.

The Candidate Error Matris of dimensionsn, x n, is defined as

M =XxY.
(4.4)
_m(1,1) Muz)  Mhugy - My, )_
Moy Moz Moz 0 My,
M= Mgy Mgz Mag 0 Mg,
Moy Mz Mus 0 Mo
_|1,if ¢, ;,is possibly in erro
wherem; ;, = . . ,
! 0,if ¢, ;,is notin error
(4.5)
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The M matrix is obtained by deploying syndrome checkamgthe rows and columns. Some
ambiguity exists irM. In some cases more than one error pattern cesldtrin the same parity

checks failing, resulting in the same Candidat®Bxtatrix M.
Supposing the received sequence is as shown imeHgl

C1 (%)

r

r

Figure 4.1: Erasure declaration using syndrome chéing

The syndromes fail for rows, r, and also for columns, and c, . The values ofX andY

are as follows

X =[0,0,.. x. =1,0,Q,. x, = 1,0,0, ,Cand
Y=[00,.y,=100, y,= 10,0, |

For example, if the component codes are (7, 4) Hagnreodes, and assumingis the third

row andF; is the fifth row, then

X=[0 01010 0

and if G is the third column andg, is the fifth column, then
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Y=[0 010100

thus, yielding

<

I
O O O O o o o
O O O O O o o
O O O FLr OO
O O O O O O O
O O, O kL OO
o O O O O O O

The ones inM correspond to the positions of the possible errdle Candidate Error
Matrix does not show the exact positions of thersirrather it shows the possible locations of

the errors. In Figure 4.1, the syndromes fail faws, r, andr, and for columns;, and c, . This
indicates that for the set of indicgg;,c,), (r,,C,), (,.C,), (,C,} two or more errors are present.

For the following error combinations, the same tyathecks will fail, (yielding the samé/

matrix):

- for two diagonal error combinations, i(g,c,) and(r,,c,) or (r,,c,) and(r,c,),
» any of the four combinations of three errors, and

» when all four positions are in error.

The last of these cases was defined as a permanmentby Abramson in [2]. He proposed
using cascade decoding of product codes to solvepdomanent errors. Xu and Takawira

proposed a new type of single parity check prodode to solve permanent errors in [37].

4.2.2 Error patterns

Having identified the possible positions of theoest a new decoding algorithm for correcting
the errors is proposed. The positions which ar@exted to be erroneous are from henceforth
referred to as the shadow area.
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Definition 4.4: The shadow area is the area indicated in the Catedirror MatrixM by ones.

For example in Figure 4.1 the shadow area is the faossible positions with errors

(r,c.), (r.c,), (r,,c,) and(r,,c,) shown in Figure 4.2

C1 (%]

r 0 0 1 0 1 0 0 Possible error positions
- shadow area

r200101/0/0

Figure 4.2: Candidate Error Matrix showing shadow aea

The objective of the decoding algorithm is to daseethe number or errors by flipping the
bits in the shadow area iteratively until the shvadarea is zero. The flipping of the bits is
dependent on the error pattern. Two types of gratterns exist. Before presenting our decoding
algorithm it is necessary to explain these errttepas

Definition 4.5: Simple error pattern, an error pattern in whicteraftipping all the bits in the
shadow area, the new shadow area is smaller. Feidfitst type of error pattern that was
identified when developing the decoding algoritHfor example in the case of the Candidate

Error Matrix from Figure 4.1, this would be theusitions where

» there are three errors in any combination, and

» all four positions have errors.

Assuming we have three errors in our received vestquence and they are distributed in the

manner shown in Figure 4.3a.
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/ Errors

Flip all the bits in the
shadow area

\ 4

Correct bit but in
shadow area

/

Correct bit flipped _—1
resulting in an error

a. Initial positions of errors b. New error positions after bit
before bit flipping flipping

Figure 4.3: A simple error pattern

From syndrome checking we note that for two rowd &avo columns the parity checks fail.
This means we have a minimum of two errors or aimam of four errors as stated in Section
4.2.1. All the bits in the shadow area are declaedrasures and flipped. The resultant sequence
has created a new error as shown by Figure 4.3thdsicorrected the initial three errors. The
new pattern is simpler than the initial one, ashaee only one row and one column with failed
parity checks. Simple patterns are patterns tlsaiitren a simpler or smaller pattern after flipping
all the bits. Another simple pattern is illustratedFigure 4.4. After flipping all the bits in the
shadow area, all the errors in the received seguieace been corrected. All the row and column

parity checks pass, and the new sequence hasars err

Flip all the bits in
the shadow area

>

Figure 4.4: A simple error pattern
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Definition 4.6: Complex error pattern, a pattern where flipping ltits in the shadow area results
in a new shadow area which is equal in size tootinginal one. In the case of the Candidate
Error Matrix from Figure 4.1, this would be in sations where the errors are diagonally across

each other. This type of error pattern is illusgtdain Figure 4.5.

/ Errors
0 X< < X 0
Flip all the bits in
the shadow area
X 0 0 X
~_ >
\ Correct bits, but in
shadow area

Figure 4.5: A complex error pattern

Flipping all the bits in the shadow area does matease the shadow area in both cases, as the
cases are a mirror image of each other. The comgiex pattern requires a different way of

selecting which bits to flip.

To solve the complex error pattern, a combinatiba aumber of rows or columns that have
been determined to have errors, is flipped. A v&mewn as the bit flipping complexity is used
to keep track of the number of rows or columns ddlipped. The bit flipping complexity is
incremented from one row or column at a time, tm@bination of at most half the total number

of rows or columns with errors

Considering the complex error pattern in Figure @ben the bit flipping complexity is 1, the
first row is flipped. The result is a simpler patteovering a smaller shadow area as shown in

Figure4.s.
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Flip bits in 1* row with
errors only

A 4

Initial position of errors before flipping After flipping the first row with errors, the
size of the shadow area has decreased

Figure 4.6: Combination flipping for a complex erra pattern

4.2.3 Bit flipping algorithm

The objective of the algorithm is to decrease thedsw area until no errors can be detected.
At that point, the assumption is, all the erroraulddhave been corrected and the final vector will

be identical to the initial codeword that was sé&ngure 4.7, gives an overview of the proposed

F T
No shadow area? Corrected
codeword

bit flipping decoding algorithm.

A 4

Received Flip all bits in shadow
sequence area

New
sequence

Shadow area smaller?

Increment
complexity by 1

complexity < %
the number of rows or column
with errors?

Flip rows/columns

Decoding
failure

Figure 4.7: Overview of bit flipping decoding algoithm
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The syndromes of the rows and columns are cheakedrhpute the Candidate Error matrix
and obtain the shadow area. All the bits coveredhbyCandidate Error matrix in the received
vector sequence are flipped using a bitwise XOR function as folow

r=M Qdr
(4.6)

where I' is the new sequence ad is the Candidate Error Matrix for the sequeniceA
new Candidate Error Matrit' is computed from the new sequenceMf is identical toM it
implies that the error pattern ihis a complex error pattern. IM' is not equal toM it implies
the error pattern i is a simple error pattern. If flipping the bitsshdecreased the shadow area,
then the operation is repeated with and M' used as input for (4.6). This process is repeated

every timeM is not equal tdVI' after flipping the bits.

After flipping the bits, if M' is identical to M, we compare the number of rows to the
number of columns that have errors. If the numlbeows with errors is less than the number of
columns, we flip the bits covered by the shadovaabg flipping a single row at a time. On the
other hand, if the number of rows with errors isrenthan the number of columns, we flip a
single column at a time. Every time we flip a rowoolumn we compardM' to M to see if
they are identical. If they are, we flip the nesivr If they are not, it means the shadow area has
decreased, and we start the process afresh byntljpgil the bits in the shadow area. If after
flipping all the rows and the shadow area has matrehsed, we flip the columns one by one
checking the shadow area after flipping each colufntne shadow area has remained the same
after flipping the column we flip the next. If tishadow area decreases after flipping a column,

we start the process from the beginning by flippatighe bits in the new shadow area.

If after flipping one row or column at a time arigetshadow area has not decreased, we flip a
combination of rows or columns. Initially we flip @mbination of two rows or columns and
increase the number of rows or columns in the coatlwn while the combination of rows or
columns is less than or equal to half the total lIneinof rows or half the total number of columns
with errors. After trying all the combinations athee vector still has a shadow area, it means the
decoding algorithm has failed to correct the err@ther means are then used to recover the

codeword, like those in Section 2.4.1.
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The algorithm can be summarized by the pseudo icoéligorithm 4.1

Algorithm 4.1: Iterative decoding of binary product codes usiridligiping

Input: received sequendae,
Initialization: find M from the received vector sequence
While we have a shadow area, and all combinatians hot been tried
Flip bits covered byM to get a new vector,
r'=M™ QOr
Find new Candidate Error Matrik!' based o'
If M' is not identical toM then
Save the new vector to be the received vector,
r=r
Save the new Candidate Error Matrix to be
M=M
Else the error pattern is complex
Flip combinations or rows or columns (see Aldorit4.2)
End if
End while

End simple flipping

The flipping of combinations of rows or columnscsvered by the pseudo code in Algorithm
4.2. The algorithm for flipping row or column comahtions is the same. Even though the pseudo
code is written for the rows, the same applies whpping the columns.

Algorithm 4.2: Combination flipping of rows or columns

Input: current received vector and current Candidate Error Matriv
Initialization: C =0, initialize the complexity by setting it to zefbhe complexity is used to
keep track of the number of rows or columns belipgpéd in combination flipping.
Find R, a vector that stores the indexes of the rows aiitbrs.

While the new shadow area is identical to the curshadow area,MI'==M ), andC

< half the number of rows with errors
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Increment the complexity by on€,=C +1

Find the possible combinatiorfg of the rows with errors based éhand R

of:

Use the next combination anil to create a Flip Matrix,F, to be used for
flipping the combination of rows or columns
Flip the bits usingF ,

rr=Fr0Or
Find new Candidate Error MatrikI' based on’
End while
If M"# M then

Save the new vector to be the received vector,
r=r
Save the new Candidate Error Matrix to be
M=M
Else the error pattern cannot be corrected
Set flag to show all possible combination have hieied but the received vector
still has errors
End if
End complex flipping

4.3 Numerical stepwise example of bit flipping algoritim

Assume an all zero codeword with (15,7,2) BCH congmt codes is sent, and the error

sequences showing the grid of the errors is as follows:

N =
O O r o
R P O P
O O O K
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where the positions marked by 1s are the erronsd&monstration purposes we track changes
in the positions of the errors ia. It must be noted that, in reality the actual poss of the
errors in the received sequence are unknown. Tétestiep of the algorithm is finding the current
Candidate Error MatriXM of the current received vectayl is found using (4.4). Assuming the
rest of the received vector has no errors besliesies ine, from (4.5), the Row Check Vector

will be

x=[1 117,
and the Column Check Vector will be
y=[111 1,

and the Candidate Error Matrix will be

M = X [Y
M1
1
_1m1111.
1
111 1
1111
1111
1111

Flipping all the bits usingVl yields a new error sequence

1100
., /0011
e'= )
0101
01 01
with a new Candidate Error Matrix
1111
1111
M' =
1111
1111
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BecauseM' is identical toM , the flip is discarded and the original error sate is used for
the next step. The algorithm proceeds by flippirgpabination of rows or a combination of the
columns. A value to keep track of the number oluguois or rows being flipped known as the
complexity is set to 1. We then create the Flip iMatF , based on the complexity, and the
indices of the rows with errors. The Flip Matrixsisll based on (4.4), but we chanieor Y to
reflect the rows or columns we are flipping.

Assuming the complexity is 2 and we are flipping tinst 2 rows, then

X=[t 10 4.
Note thatY remains the same, since we are only flipping baseda combination of the rows,

therefore

o O - -
o O - -
o O - -
o O -k -

In our case, the complexity is 1, therefore,

X, =[1 0 0 d",and

o O O B+
o O O B+
o O O B+
o O O B

The new error sequence is obtained by flippinggisi

FOe
11
11
10
10

el

1
 —k O O
o O O o

Two new errors have been introduced by the flipping the last column no longer has errors.
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A
N
o o o

10
The new error sequence is saved for the next sailjpping. The process restarts by setting
M=M
e=¢'
All the bits are flipped using/l as follows

e=M0Oe

I
o oo o £
R P O O
o o PR P
©O o o o

The new error vector has no errors in the firsticol, and the shadow area is reduced to

<

1
O 0o o o
Y
N N
O 0o o o

therefore, M =M' and e=e'. Again all the bits are flipped usinyyl . After flipping,
M' =M, so the flip is discarded and flipping using conations of the rows or columns is used.
Since the number of columns with errors is lessntiiae number of rows with errors,
combination flipping is done using a combinatiortted columns with errors. The complexity is

set to 1 and a single column is used, resultirtherfollowing Flip Matrix,

.n
]

O O O O

A

O O O O

O O o o

The flipping is done as follows
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I
o o oo 1
oo Rr L o

o O - =
o O O O

The corresponding Candidate Error Matrix for the/meror sequence is,

=

1
o O O O
o O~ BB
o O -
o O O O

Since M #M', so M =M' and e=e€'. Due to the fact that the shadow area has become
smaller, the algorithm flips all the bits in theaglow area using/ resulting in

e'=MQO

I

o oo o <
© o oo 4
O o o o
O o o o

The decoding is complete when there is no shadaa&,a is all-zero, or combination
flipping does not yield a new error vector withifietent shadow area. While running testing the
algorithm in simulations, it was discovered thaw#s possible to have no shadow area, but still
have errors in the corrected vector. This was @dfias the Hidden error pattern, and is discussed
in Section 5.2.3. In such a case, the conventiatggrithm is used to correct the errors in the
rows with errors until a shadow area is obtainkdntthe bit flipping algorithm is used to correct
the rest of the errors.

4.4 Analysis of bit flipping decoding algorithm

The major reason for proposing the developmenhefit flipping algorithm is the simplicity
of the bit flipping algorithm presented by Gallager LDPC codes. Hard decision decoding
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algorithms are simple, fast and easy to implemertardware. Of the hard decision decoding
algorithms, bit flipping has been touted as oné¢hef simplest to implement on hardware. The
turbo decoding algorithms for product codes, thodghty approach the Shannon limit, are
complex and computationally intensive to implemefhe development of our decoding

algorithm means we use the advantages of bit figppd decode product codes by using a low

complexity decoding algorithm.

For a two dimensional product code, the bit fligpialgorithm makes use of the row and
column parities to correct errors. The conventiaedoding algorithm makes use of one parity
at a time, either the row parity when decodingrthes or the column parity when decoding the
columns. Sometimes the conventional algorithm ohicees new errors in the columns when
decoding the rows. The bit flipping algorithm ore tother hand ensures that if new errors are
introduced, they are only introduced in columnsows that already have errors. This is done by
ensuring the shadow area never becomes bigger fijppimg. Only bits in columns and rows

with errors are changed.

The bit flipping algorithm and the conventionag@lithm both use syndrome checking. They
have to first determine whether a row or column bka®rs. The difference in complexity
between the two algorithms is down to their differes in the methods they use for error
correction. The conventional algorithm uses the@eesve base codes to correct the rows then
the columns. For a BCH code, this is the combinechpiexity of the Berlekamp-Massey
algorithm and the Chien search. The bit flippingoaithm uses the less complex method of
bitwise XOR. The simplicity of bit flipping is wetlocumented. The algorithm has been used for
decoding LDPC codes, and is attractive as it offamseffective compromise between error
correcting capability and decoding complexity. View in Chapter 6 that the complexity of the
bit flipping decoding algorithm is comparable tcetbhonventional decoding algorithm at the
higher SNRs.

Turbo decoding also uses the multi-dimensional tieariof product codes to achieve
performance close to the Shannon limit. The methsds a soft-in soft-out approach. The
decoding of the rows results in reliability valueghe row information symbols, which are taken
into consideration when decoding the columns. Thexgss is iterated with the values from

decoding the columns taken into consideration wietoding the rows, until the values of the
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rows and columns concur [119]. Soft decision dewgdienerally outperforms hard decision
decoding, in some cases having a gain of up to @8 hard decision decoding. The major
disadvantage of soft decision decoding is the cerifyl as soft decision decoding algorithms
are generally more complex than hard decision degoadlgorithms. Likewise turbo decoding
may offer better performance over our bit flippidgcoding algorithm, but it is more complex
than the conventional decoding algorithm, and floeeeexpected to be more complex than our

algorithm.

4.5 Conclusion

Section 4.2 presents a new bit flipping decodirgpadhm. The algorithm can be used for
error correction of binary systematic product codésvorks with the premise of finding a
shadow area. This is done by using syndrome chgakithe rows and columns in the received
vector. In most decoding algorithms the procesdatécting errors presents less of a challenge,
when compared to the process of finding the passtiof the errors, and correcting them. The
decoding algorithm uses the simplicity of syndrodegection to find the likely positions of the
errors by mapping out a shadow area. Using itexdbiv flipping, for different types of error

patterns, the errors in the received vector areected.

Section 4.3 gives a numerical stepwise exampléefhit flipping algorithm. The example
clarifies the workings of the algorithm by showihgw the bits are flipped in a vector received
with errors. It shows that in some instances tigerghm introduces new errors, but the shadow
area never increases in size. This is an advawfatpes algorithm because it leaves room for the
development of an ARQ technique that could have t¢m rows or columns that have errors
resent instead of the entire codeword, therebyngamn bandwidth and power. The conventional

decoding algorithm at times increases the numbeswe$ and columns with errors.

Chapter 5 presents the results from simulationstounompare the developed bit flipping
algorithm, and the conventional decoding algorittirat was presented by Elias for product
codes. Coding systems can be compared using tlo& bloor rate (BLER) or word error rate
(WER), symbol error rate (SER) and the bit erraie rté@BER). In Chapter 5 the decoding
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algorithms are compared in terms of the WER and BERormance. A comparison of the

decoding complexities of the algorithms is done.
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Chapter 5 - Results and Analysis

5.1 Introduction

This chapter presents the results that were olgtathging the study. The results were
obtained from simulations carried out on Matlab

5.2 Error Patterns

The error pattern of the received sequence graéafliyences the decoding complexity. The
error patterns were classified into four groupsoading to the distribution of errors in the Error
Matrix, namely

* Simple error pattern
» Complex error pattern
* Hidden error pattern

* Un-decodable error pattern

L All results in Chapter 0 are based on the (15@HBode, unless otherwise stated. The Berlekamséias
decoding algorithm was used as the conventionaldieg algorithm.
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5.2.1 Simple error pattern

In this error pattern, the number of errors in onenore rows and or columns is equal to the
width or the height of the Candidate Error Mattixe shadow area. It should be noted that the
width of the Candidate Error Matrix is the numbércolumns denoted as having errors by the
Column Parity Check Vector, and the height is tbeber of rows denoted as having errors by

the Row Parity Check Vector.

In a simple error pattern, if all the bits in thar@idate Error Matrix are flipped using bitwise

XOR, the size of the shadow area will decrease.

After sending an all zero codeword, if the receiseduencer has errors (denoted by 1s)

distributed as follows

000000
000000
010010

r=/0 10 000 0,
000000
000000

000000

this is a simple error pattern. The width of thaddw area is 2, and the height of the shadow

area is 2. Row has 2 errors and column 2 alsoiaegitrors.

After flipping a simple error pattern, the resuttarror pattern could be either a complex error
pattern or another simple error pattern. The singster patterns and complex error patterns
occur anytime during the course of decoding usimgldit flipping algorithm irrespective of the

SNR. They are dependent on the distribution oktiners.

5.2.2 Complex error pattern

In a complex error pattern, the size of the shadosa will remain the same after a bitwise
XOR of all the bits in the Candidate Error Matrsxdone. The number of errors in all rows and

columns is less than the height or the width ofatea under shadow.
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To decrease the size of the shadow area, a biX@de of a combination of one or more rows
or columns has to be done. If it is a combinatibrowavs, it has to be such that there exist one or
more columns with errors only in the selected rawaws. If it is a combination of columns,
there has to be one or more rows where there esesenly in the selected column or columns.
It should be noted that as bit flipping is dones Buccessive error pattern could be either be
complex or simple. Assuming an all zero codeword want, and the 1s depict errors, the

following sequenceepicts a complex error pattern;

00000O
000000
010110

v=[0 0 1 0 10
010100
001010

000000

Flipping all the bits in the shadow area will résnl a sequence with the same size shadow
area. Flipping a combination of rows or columnsngsihe stated criteria has to be used to
decrease the shadow area. For example combinatioow/s 3, 4, and 6 or of 3 and 5 or of 4 and
6 could be used to decrease the shadow area. otindination of rows 3 and 5 is taken into
account, the combination works because they arerherows with errors in columns 2 and 4.
The combination of rows 3 and 6 does not work bgeathe only column with errors they have
in common has an error in row 4. The rest of tlelumns do not have errors in common.

Flipping a combination of rows decreases the nurnbeolumns with errors and vice versa.

5.2.3 Hidden error pattern

The hidden error pattern is a result of the shomiogs of syndrome checking. If the number
of errors in a row or column is equal to or morarntithe minimum distance of the component
code, this can result in the received row or columagtor becoming a different but valid

codeword. The Candidate Error Matrix is a resulthef multiplication

M= XxY
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where M is the Candidate Error MatrixX is a transpose of the Row Parity Check Matrix
and Y is the Column Parity Check Matrix. Assuming theldgn error pattern is a row, the
Column Parity Check Matrix will have ones for thellonns with errors, but the Row Parity
Check Matrix will be all zero. The resultant Caratel Error Matrix will be all zero, giving the

impression there are no errors in the receivedovect

Hidden errors are prevalent at low SNRs. A prodtmiie with (15,7,2) BCH codes as

component codes was used to illustrate the Hiddem pattern. The minimum distance of each
of the component codes was 5. After sending arzeald codeword, the first six rows of the

received sequence were:

[0 0 0 0O O OOOD 0 1 0 00
0o 0 1.0 0 061 0n 1 0 O O0O
/11 0 1 10 0 O O 1 1 10 O 1
r_0 0 1.0 0 0 00 DD 0 0 0 o0
1 0 0 0 0 0 0 0O M@ 0 O O O ¢
0 1 o1 0 0 1 1 ®w O O 1 11

where the 1s depict errors. The corresponding miwbe Candidate Error Matrix illustrate

the Hidden error pattern,

- 11 1 1n 1 1 1 11]
0O 0 0O ®m 0 0O 0 0O

1 1 11

N e =
N =
Y e =
L =
e = = S S o S =

=

()

()

(Y

()

[

()

[

(Y

=

1 1 11

Despite the fact that there are errors in row tWweéhe received vector, the Candidate Error
Matrix does not have errors in row two. This isdese row two of the received vector has errors
such that the row becomes another valid codewoiddéfh errors can be detected by the
presence of errors in rows but none in the coluanresrors in the columns but none in the rows.

If the errors are in the rows, the conventionaloditng algorithm is used to decode row-wise in

93|Page



the rows with errors until a non-zero CandidateoEMatrix is obtained. If the errors are visible
column-wise then the conventional decoding is dmiemn-wise.

Hidden errors also occur after decoding using thdipping algorithm. After sending an all
zero codeword for a product code witi, 4,3) BCH constituent codes, the received sequence

with errorsr was:

1 0 0 1 0 O
0O 0 0 0 0 O
0O 0 0 0 0 O
r={0 0 0 O 1 0 |,
O 01 0 0 O
0O 0 00 O O ¢
0 0 0 0 0 0 |
and the corrected vector was
1 0 1 1 0 0 |
0O 0 0 0 0 O
0O 0 0 0 0 O
r=fl0 0 0 0 0 O
0O 0 0 0 0 O
0O 00 O O 0 [
0 0 0 0 O 0 |

X' andY', the Row Parity Check and Column Parity Checkarsctor the corrected vector
were:

0 ]t
0 ]¢

0
0

X' does not show any errors in the corrected sequvitereasY' shows that three columns
have errors. The Candidate Error Matrix for the@cted sequence was:
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1
O O O O o o o
O O O O O O o
O O O o o
o O O o o
o O O O o
O O O o o

5.2.4 Un-decodable error pattern

The un-decodable error pattern is prevalent at3NRs. This error pattern occurs when the
height and or the width of the shadow area is latfgen the minimum distance of the component

codes. Flipping all the bits covered by the Cangidaror Matrix may result in hidden errors.

To avoid hidden errors, we decrease the size ofstiaslow area to an area such that the
number of the rows and the columns with errorsegs Ithan the minimum distances of their
respective constituent codes before using thdipfihg algorithm. Two methods can be used to
decrease the size of the shadow area. The firdtadetses the conventional decoding algorithm
to decrease the number of rows and columns witbrerif the number of rows with errors is
greater than the minimum distance of the componedg, but the number of columns is less,
then the conventional decoding algorithm is usedettode the rows otherwise it is used decode
the columns. If both the number of rows and columitk errors are greater than the minimum
distances of the respective component codes, ctiomeh decoding is done row-wise then
column-wise. This is done iteratively until the roens of both are less than the minimum
distance or one of them is. If only one of thertegs than the minimum distance, then only row-

wise or column-wise decoding is done dependindherone that is less, as stated.

The second method flips a maximumtobits in the rows or columns with errors to deceeas
the size of the shadow area. This method is l&stylto decrease the number of rows with or
columns with errors more-so at low SNRs where thelver of bits with errors may be more
than the error correcting capability of the compudremdes. The method may also require a large
number of flips to correct the errors in a row oluenn. It has the advantage of being less likely

to increase the number of errors in the receivetiove

95|Page



To decrease the number of rows or columns withremee used the first method of using the
conventional decoding algorithm to decrease thebmunor rows or columns with errors. We
noted that at very low SNRs, while using the comemal decoding algorithm to decrease the
number of rows with errors, errors could be introetliin the columns. For example, an all zero
codeword was sent through the channel at SNR oB.1Tdhe first six rows of the received

sequence were as follows:

0 01 00 1 1 0 @ 1 1 0 00
0O 1 1 1 0 1 0 0O D 0O 0 O 01
/01 1. 0 00 0 1 1 0 O 11 O ¢
"“lo 1. 011110 ® 1 0 0 oo
0O 0 00OOO O O @o 0 0 0 [
0 0 1 0 1 1 0 0 ® 0 0 0 10

After using the conventional decoding algorithndexrease the number of rows with errors,

new errors were introduced in the columns. The eewrs are:

0 1 11 @ 1 1 0 00
0 1 0o 0 » 0 0 O 01
00 0 0 1 O O 11 1
1 1 1 a 1 0 0 oo
0 0 O @ 0 0 0 O

1 11 0 0 0 01 0 10

0
0

O O O O o o
P OoOr r R O
P OO R P P
O O 0o o pr o

The conventional decoding algorithm uses the BartgikMassey algorithm. If the number of
errors in the row or column is beyond the error@cing capability of the code, it is likely to
introduce more errors. This is prevalent and exgkcit low SNR. The method is further
complicated when we decrease the number of coluvithserrors after decreasing the rows. The
columns introduce errors in rows. Though the metladd at very low SNR, it works when the
total number of errors in the received sequenasitisin the error correcting capability of the

product code.
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5.3 Performance of coded communication systems

The performance of a coded communication systembeameasured by its probability of
decoding error, called the error probability, amsl ¢oding gain over an un-coded system
transmitting information at the same rate [14]. fEhare three types of error probability,
probability of word (or block) error, probabilityf gymbol error and probability of bit error. The
probability of word error is the probability thatdecoded word or block at the decoder is in
error. This is known as the block error rate (BLER)word error rate (WER). The BLER is not
dependent on the number of symbols or bits in efiloe symbol error rate (SER) is defined as
the ratio of erroneously decoded information syraliobnstellation points) to the total number
of transmitted symbols. The bit error rate (BERjhis probability that a decoded information bit

at the output of the decoder is in error. BER esrtitio of error-bits received to the total bitatse

The SER depends on the modulation scheme being fasettansmission. For a BPSK
modulated signal, the BER and the SER are equalusecthere is a single bit per symbol. In
QPSK, each symbol has two bits. The performana®déd systems can be studied through the
analysis of their BLER, SER and BER.

5.3.1 Performance comparison of Hamming product codes

The performance of a one coded communication systenbe measured by its probability of
decoding error, called the error probability, amsl ¢oding gain over another coded system
transmitting information at the same rate. In ase; since the same encoding method is used, it

means the difference in the two systems is dowhedlifferences in their decoding algorithms.
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BER Comparison of Bit Flipping Decoding and Convention Product Code Decoding
T T T
—+—  Bit flipping Decoding

—*%——  Convectional Decoding H
———— Theoretical Upper Bound of 7,4 Code |4

BER

-5
-6
I SRS T N S T \

-7
10

SNR (dB)

Figure 5.1 shows a comparison of the bit flipping decodingoathm and the conventional
decoding algorithm. The component code used was 4)(Hamming code. At 1.9 dB, the bit
flip decoding algorithm has the same BER as theeotional decoding algorithm. After 1.9 dB,

the bit flipping decoding algorithm outperform thenventional algorithm at same SNRs. At a

BER of 10™, the bit flipping decoding algorithm has a 0.4 dBin over the conventional
decoding algorithm. The bit flipping decoding algfom exhibits a steeper gradient curve

showing a better BER for a smaller increase inaigtrength.

98|Page



BER Comparison of Bit Flipping Decoding and Convention Product Code Decoding

T 3 T
—+—  Bit flipping Decoding
—*%——  Convectional Decoding H
——+—— Theoretical Upper Bound of 7,4 Code |

BER

-5
-6
I SRS T N S T \

SNR (dB)

Figure 5.1: BER comparison of bit flipping and conentional decoding algorithms - (7, 4) Hamming

constituent code

Previous studies have shown that the conventioeebding algorithm fails to decode some

error patterns within the error correcting cap&pilbf the code [37]. The results from the

performance comparison of the conventional decodilgprithm and bit flipping decoding

algorithm were not as expected. The expected sesuéire that the bit flipping decoding

algorithm would always outperform the conventiodatoding algorithm. The BER curves give

the impression that in low SNR channel conditioti&s conventional decoding algorithm

outperforms the bit flipping decoding algorithm.tBalgorithms perform better than the upper

bound of the constituent code.
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Simulations were run to compare the WER of theflipping and conventional decoding
algorithm. From Figure 5.2, it can be noted thatltft flipping decoding algorithm corrects more

codewords than the conventional decoding as exgecte

The bit flipping decoding algorithm being an itévat decoding algorithm, as expected out
performs the conventional decoding algorithm, whocity decodes using a single cycle of row

decoding followed by column decoding.

The reason the conventional decoding algorithm exfdpms the bit flipping decoding
algorithm at lower SNRs when considering the BER because of the very nature of the
algorithm. The algorithm relies on syndrome detectif the bit flipping introduces a number of
errors greater than the minimum distance, thisresalt in a decoding failure for the row or
column. At low SNR, this occurrence is prevalentlas bit flipping algorithm introduces more
errors by flipping entire rows or columns. The dist data tends to have more errors in the bit

flipping decoding algorithm than in the conventibdacoding algorithm.

WER comparison of Bit Flipping and Conventional decoding algorithms

0
10 F T T T T =
Fosieniill] : . e CONVENtiONAl
F —_4,.\\; : ——+—- bit flipping
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Figure 5.2: WER comparison of bit flipping and conentional decoding algorithms — (7, 4) Hamming

constituent code (AWGN channel)
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This is illustrated by Figure 5.3. To plot the cesvin Figure 5.3, the total number of errors in
each of the decoded blocks was counted. A compan§the block with the greater number of
errors was done. Figure 5.3 shows the number adstigach of the decoding algorithms has a
larger number of errors after decoding per bloakdach SNR. At low SNRs, the bit flipping
decoding algorithm has a greater total number ofckd that have more errors than the
conventional decoding algorithm. This number actedor the poor performance in terms of the
BER of the bit flipping decoding algorithm when goaned to the conventional decoding
algorithm at low SNR.

4 Comparison of bit flipping vs conventional decoding

- Conventional decoding
———- Bit flipping decoding

Number of codewords with more errors

o i i T S i i i i 1
4 S 6 7 8 9 10
SNR (dB)

Figure 5.3: Comparison of total number of errors pe codeword — (7, 4) Hamming constituent code (AWGN

channel)

5.3.2 Performance comparison of BCH product codes

Hamming codes are perfect codes. They all havensammam distance of three. For any two
dimensional product code with Hamming codes astmstituent codes, the minimum distance
will be nine. This is in spite of the block lengBICH codes offer the flexibility of being able to
change the error correcting capability of the paidiode. The component codes can be chosen
with their error correcting capability in mind. Aomparison of the performance of the

conventional decoding algorithm and the bit flipgpohecoding algorithm was done.
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0 Comparison of Bit Flipping Decoding Algorithm and Elias's Decoding Algorithm
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Figure 5.4 : BER comparison of bit flipping and cowentional decoding algorithm - (15, 7) BCH constitant
code (AWGN channel)

Figure 5.4 shows the BER curves for the conventidaeoding algorithm and the bit flipping
decoding algorithm for a two dimensional productdeownith a (15, 7, 2) BCH code as the

component code.

The results of the BER comparison of the two cadesconsistent with those of the Hamming
product code. The conventional decoding algoritlutperforms the bit flipping algorithm at low
SNRs. At about 3.2 dB, the bit flipping algorithniags to outperform the conventional
algorithm. This is a little later than in the Hanmgiproduct code.
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WER Comparison of Bit Flipping and
Conventional

WER

5|
10
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Figure 5.5: WER comparison of bit flipping and conentional decoding algorithm - (15, 7) BCH constituet

code

The results of the WER comparison are also comgistéh those of the Hamming product

code. The small difference in WER between the tWgorghms at low SNR accounts for the

later change in performance in the BER curves.18t® WER, the bit flipping decoding
algorithm has a gain of 0.75dB.

5.4 Impact of SNR on shadow area

The size of the shadow area has an impact on the &fEve. At low SNRs, the shadow area

covers more than the error correcting capabilitthefcode.
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Plot of Shadow area vs SNR
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Figure 5.6: Plot of shadow area vs SNR - (15,7) BCtbnstituent code (AWGN Channel)

In Figure 5.6, at 0.5 dB, the shadow area is 218 Bihe error correcting capability of the
code is 12. This impacts on the BER curve of tridecas shown in Figure 5.7. At low SNR, the
BER is at its highest.

Shadow area vs BER
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Figure 5.7: Plot of BER vs shadow area — (15, 7) BCconstituent code (AWGN channel)
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As the shadow area decreases, the BER decreasaseeaxplly. When the shadow area is less
than 50, there are no errors in the decoded sequé&hcs is consistent with the results that can

be inferred from Figure 5.4 and Figure 5.6.

5.5 Rayleigh fading channel results

Fading is a multiplicative change in the amplitudehe signal. In wireless communication,
unlike wired communication, the signal is subjeciultiple reflections. The reflectors and the
transmitter may also be moving with respect to eattter. In wireless communication, in the
urban environment, a signal may reflect off of dunfys and cars before reaching the intended
recipient. The received signal becomes a superposif the reflected signals. The signals travel
different distances to get to the receiver, indreathe likelihood of them arriving at the receiver
out of phase with each other. If the signals ateobphase, they will add destructively, and thus

fading occurs [30].

Different fading channel models have been propdeedtudying wireless communication.
The Rayleigh fading channel model is used for satid) multipath propagation of the signal.
This makes it suitable for studying the behavioticading systems in mobile environments
where there are many obstacles that reflect theabgent from the base station to the cell phone.
The channel model can also be used when studyigly thequency ionospheric radio wave
propagation where refractions occur at many painitisin the ionosphere. It can also be used for
studying tropospheric radio wave propagation. Tadgtthe behaviour of the bit flipping
decoding algorithm in wireless communication, wessh the Rayleigh fading channel as it is
used to model a wide range of wireless telecomnatioics systems. For this study we chose a
flat fading Rayleigh channel, modelled as a sintgfefilter with a Rayleigh fading response with
zero mean and unit variance, and where the noiseilooted by AWGN is Gaussian distributed

with zero mean and unit variance.

Figure 5.8 shows a performance comparison betweebit flipping decoding algorithm and

the conventional decoding algorithm in a Rayleiatlimg channel.
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BER comparison of Bit Flipping and Conventional decoding algorithms
in Rayleigh Fading Channel
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Figure 5.8: BER comparison of bit flipping decodingalgorithm and conventional decoding algorithm in
Rayleigh fading channel —Method Two

The BER curve in Figure 5.8 was obtained usingsthgle bit flipping method to cater for the
Un-decodable error pattern and the Hidden erraepatTo compare the method of using the
conventional decoding algorithm to decrease the sizhe shadow area and the second method
of flipping bits, simulations using the method @fing the conventional algorithm were run. The
results of the simulations are portrayed in

Figures.9. Using the conventional decoding algorithm to @the size of the shadow area
improves the BER of the bit flipping decoding aligom. This is evident from comparing Figure
5.8 and

Figures.9. The (15,7) BCH code for the code using the cotieeal decoding has a gain of

over 4 dB at the BER df0™ over the single bit flipping method.
The results from

Figures.9, differ from the results of the other simulatiofie bit flipping decoding algorithm
outperforms the conventional decoding algorithnthatlow SNRs. This is because the method

incorporates the conventional decoding algorithnijctv improves the performance of the
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algorithm at the lower SNRs. To reduce the sizéhefshadow area, the conventional decoding
was used iteratively. Iterative decoding of prodoaties has a better decoding gain than the
conventional method used by Elias [76]. The restltdecoding algorithm has better
performance than using single bit flipping to reeltite shadow area. The conventional decoding
has been proven to be a sub-optimal decoding #hgori A simulation was run to compare the
WER of the two algorithms. The WER simulation shawat bit flipping decoding algorithm
outperforms the conventional decoding algorithnmfrbdB. Between -1 and 1dB, both decoding
algorithms fail to correct all the errors in aletreceived vectors.

BER performance comparison of bit flipping decoding algorithm for Product Codes , BCH Code and
conventional decoding algorithm for product codes in flat fading Rayleigh channel
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Figure 5.9: BER comparison of bit flipping decodingalgorithm and conventional decoding algorithm in

Rayleigh fading channel — Method One
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WER comparison of conventional and bit flipping decoding algorithms in
Rayleigh fading channel
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Figure 5.10: WER comparison of bit flipping and cowentional decoding algorithm - (15, 7) BCH

constituent code in Rayleigh Fading channel — MetltbOne

5.6 Varying the code rate

Using a single code rate for a communication chamith varying channel conditions,
compromises on the payload of the communicatiotesysTo ensure a high throughput, digital
communication systems use varying code rates. @sdts in Figure 5.11 show the BER curves
of different code rate two dimensional product dsing the bit flipping decoding algorithm in
an AWGN channel. The longer codes tend to outperftre shorter codes at higher SNRs as

expected.

108 |Page



Comparison of same error correcting capability cconstituent codes
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5.7 Decoding complexity

5.7.1 Complexity of conventional algorithm

The generator polynomials of BCH codes have asraotonsecutive powers of an element
of order n. They are attractive codes because they can hgneesto a desired error correcting
capability, and efficient decoding algorithms exf@ttheir decoding. The decoding procedure for

BCH codes consist of four steps.

The first step is the evaluation of the receivedtmes syndrome. Ifr(x) is the received
vector, and a',i =1,2,..,2, are the roots of the generator polynomial, ttensyndromes are
given by (2.46). The syndromes can be calculatedivigg r(x) by the minimal polynomials of

the roots and then evaluating the remainder polyalsnat the roots. The complexity of the step

is
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~2t(n-1).
(5.1)

The second step of decoding a BCH code is detemgitiie Error-locator polynomial. This
step is the most complex step in the decoding oHB&des. Two popular methods for
computing the error-locator polynomial are the Bkeamp-Massey algorithm and the Euclidean
algorithm [120]. The Berlekamp-Massey algorithm basplexity

C, =4t* + 2te- € +10t+ ¢,
(5.2)
where the number of errore<t, the error correcting capability of the code [12The
Euclidean algorithm is less efficient than the Beamp-Massey algorithm. It has a complexity

given by the following equation

C, :8te—£ e +£3 €.
2 2
(5.3)

Once the error-locator polynomial is known, thedistep in the algorithm is determining its
roots. This is done using the Chien search. Thepbtaxity of the Chien search is

C,=en-1,
(5.4)
wherel<i<n anda' is root, andi is the index of the least root [120]. The Chieagedure
searches, in the order”,a™™,..., hence its complexity is determined by the roothwthe
smallest index [120]. The error positions are theerses of the roots of the error-locator

polynomial.

The fourth step is calculating the magnitude of ¢neor. For Binary BCH codes, the error
magnitude is always one. Flipping the bits in ercorrects the errors. For non-binary BCH
codes, the error magnitudes have to be determimdey’s algorithm can be used to determine
the error values [121]. In this study we do not mge-binary BCH codes, hence we will not look
into the complexity of Forney’s algorithm.

The complexity of decoding the product code ushgdonventional algorithm is:
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T(n)=o(rf)

5.7.2 Complexity of bit flipping algorithm

The decoding complexity of the bit flipping algdwt is dependent on two operations. The
first is the complexity of computing the syndronasall the rows and columns. The second is
the complexity of the actual bit flipping.

On receiving a codeword sequence, the syndroméeabws and columns are computed. To
ensure a lower computational complexity, the syma® of the rows and columns are stored in
two lookup tables, one for the rows and the otlar the columns. Each lookup table is

structured as follows

L=[s s § .. &
where S is the syndrome of row or colunin For example, if an all zero codeword was sent,

and the received sequence was:

0O 0 1 0 O O
0O 0 0 0 0 O
O 0 0 0 0 O
r={0 0 0 0O O 1 |,
O 0 0 0 0 O
0O 0 00 O 1 ¢
0 0 0 0 1 1
with the parity check matrix of the constituent esds
1 1 1 0 1 O
H=0 1 1 1 0 1 |,
1 1 0 1 0 O

then the row lookup table, would be
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1 0 0 0 0 O
L={1 0 0 1 0 1 |,
0O 0 0 0 O
and that of the column lookup table would be
O 0 1 0 0 O
L=(0 0 0 0 O O |,
0O 0 1 0 1 O

where each column in the lookup table is the symérof the corresponding row or column of

the received sequence. From syndrome decodinggiitathe i™ bit in a row changes the
syndrome of the row in the manner

Sew=(h+9), ,

(5.5)
where S, is the new syndrome of the row, is thei" column ofH and S is the current
syndrome of the row. Instead of recalculating tiledsomes of the rows and columns using
(2.23), the syndromes of the rows and columns iichvthe flipped bits lie are updated in the

respective lookup tables using (5.5). For exantpesyndrome of the™row is

s =[114.
If the 2 bit in the row is flipped, the new syndrome of tbe would be
1] [1 o[
S=||1|+|1|| =| 0] .
0 1 1

2
Addition is computationally less complex than reo#ting the syndrome using
multiplication. This lowers the complexity of thet Hlipping decoding algorithm, as the
syndrome has to be calculated once for each rovcalodnn.

The complexity of the bit flipping decoding algtint ¢, can be defined as the complexity of

finding the initial syndromes of the rows and cohsplus the complexity of correcting errors
using the bit flipping. This can be summarized gy following equation
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C

s = G +2G,

(5.6)

where c, is the complexity of finding the syndrome armg is the complexity of error

correction. For a product code has a complexity

T(n)=0O(r?).

The complexity of error correctiorg,, is the total number of bits that have to be #iggo
correct the received sequence. Every bit flippea nsodulo 2 addition, and for every bit flipped,
the lookup table has to be updated using a modwddtion. Not thatc, is dependent on the
total number of errors, and also the distributibthe errors. The distribution of the errors plays

a vital role in the number of flipping operatiomst will be carried out. For example, if we send

an all zero codeword, and the received sequenctbasrrors distributed in the manner,

O r L O
P L O
o o o

0 0

then in this case flipping all the bits would reguone operation, and only four additions are

required. If the errors are distributed in the mann

0 010
0100
e= .
0010
0100

the number of bits that need to be flipped in orttercorrect the errors are sixteen. The
complexity of correcting errors is also dependanti@ SNR of the channel. At low SNRs, more
errors are introduced in the received sequencesftire, the bit flipping algorithm may prove to
be more complex than the conventional decodingrighgn as more bits need to be flipped.
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Figure 5.12: Complexity of bit flipping at each SNR(Rayleigh fading channel)

In Figure 5.12, the average number of bits flippexs computed for each SNR. At lower
SNRs, a larger number of bits were flipped. Thotlglh complexity of decoding using the bit
flipping algorithm is lower than that of using teenventional algorithm, because of the large
number of bits that are flipped at the low SNRdesfs than 10 dB, the bit flipping decoding
algorithm maybe more complex. At higher SNRs, uglsasf 10 dB, the bit flipping algorithm
because of the lower complexity order could be éessplex than the conventional algorithm.

5.8 Conclusion

This chapter presents the results of simulatiomserhout. The first section of the chapter
presents the error patterns that we came acrogsgdiine development of the algorithm. Four
classes of error patterns were identified in theettgpment of the decoding algorithm namely,
the hidden error pattern, the simple error patteomplex error pattern and the un-decodable
error pattern. Two methods were proposed for sgitime hidden error pattern and the un-
decodable error pattern. Single bit flipping or tdo&ventional decoding algorithm could be used
to solve both problems. Results from simulatiosisg both showed that using the conventional
decoding method to decrease the shadow area ietthahcould be managed by the bit flipping

algorithm yielded a better BER performance.
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The BER performance results showed that the coioraitdecoding algorithm outperformed
the bit flipping algorithm at low SNRs, and the Hitpping algorithm outperformed the
conventional algorithm at higher SNRs. This was exqtected. A WER comparison was done,
and it showed that the bit flipping algorithm catexl more block errors than the conventional.
The reason for the conventional algorithm outpenfag the bit flipping at low SNRs can be
attributed to the fact that the bit flipping chasgmore bits when decoding. When there is a
decoding failure, more errors are introduced bylhdlipping algorithm. This was proved in
Figure 5.3, where a comparison of the frequencgamh algorithm having more erroneous bits
after decoding. At lower SNRs, the bit flipping dding algorithm was more likely to have more
errors after decoding than the conventional.

Section 5.7 discusses the decoding complexitiegeofwo algorithms. The Section presents a
breakdown of the decoding complexity of the conierell decoding algorithm according to the
major steps carried out in decoding a BCH code. Jéution then presents the complexity of
decoding using the bit flipping decoding algoritram the summation of the complexity of
finding the row and column syndromes and the corifyleof correcting the errors. The
complexity of finding the syndromes is the same fioe bit flipping algorithm and the
conventional decoding algorithm. The differencecamplexity lies in correcting errors. The
complexity of the bit flipping algorithm is depemdeon the number of errors and the error
pattern, thereby the SNR. At low SNRs, the numbkereguired flips could increase the
complexity of the algorithm such that it is morergex than the conventional algorithm. At
high SNRs, the number of required flips is so lawtsthat the bit flipping algorithm would be

lower in complexity when compared to the converdlaigorithm.
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Chapter 6 — Conclusion

6.1 Introduction

Most product code decoding algorithms decode thes rimitially then use the information
obtained from decoding the rows when decoding tilanens. This method was presented by
Elias [1] when he first presented product codes fitethod presented by Elias does not take
advantage of the fact that each bit in a binarypeb affects the same number of parity checks
as the dimensions of the code. A new decoding dihgoris presented in this study which takes
advantage of the multidimensional nature of prodoctes. Using the fact that a single bit in a
product code affects more than one parity a newridlgn based on the simple bit flipping
algorithm presented by Gallager for LDPC codes3ini§ developed. This chapter presents the

concluding remarks on the novel algorithm.

6.2 Concluding Remarks

FEC has been identified as a means to improvediability of the wireless communication
channel, by correcting errors that may occur. Taetdrs that influence the development of a
FEC system include [53]:
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» the error correcting capability of the decodingoaiihm,
» the delay introduced by the decoding algorithm,

» and the complexity of the decoding of the algorithm

In this study we present a novel decoding algorifiomproduct codes, that addresses the
complexity of the decoding algorithm by using the fbpping algorithm commonly used for
LDPC codes and the error correcting capability hgueing the decoding algorithm addresses the
permanent error pattern identified by Abramson 2h [The bit flipping algorithm has been

shown to be a simple algorithm.

The error patterns that were introduced when inédiom was transmitted through an AWGN
channel were studied. Four types of error patterar® identified namely, simple error patterns,
complex error patterns, un-decodable error pattanaishidden error patterns. Grouping the error
patterns was done by identifying a shadow areaden showing the possible error positions),
and checking whether the shadow area became sraétherflipping all the bits in the shadow
area. Simple error patterns resulted in a smatka,aomplex error patterns resulted in the same
shadow area, and hidden error patterns did nad eshadow area despite the presence of errors.
From the error patterns a decoding algorithm wasldped. The aim of the algorithm is to
reduce the shadow area until syndrome checkingeofaws and columns would result in all the

syndromes checking.

The un-decodable error pattern has a shadow aaédsttvider and higher than the minimum
distance of the component codes. Two methods aoped to reduce the width and height of
the shadow area for un-decodable error patterrisreoéhe actual bit flipping algorithm can be
used. The first method, which yields better BERfqrenance results, uses the conventional
decoding algorithm to decode the rows and/or cokimith errors until the height and the width
of the shadow area are less than the minimum distanf the component codes. The second
method uses flipping of a combination of bits ie thws or columns with errors. This method is

more complex, and BER performance results showedttis outperformed by the first.

The algorithm was compared to the conventional diecpalgorithm proposed by Elias. BER
comparisons show that in the Rayleigh fading chisnaed AWGN channels, the conventional

decoding algorithm outperforms the bit flipping @lighm at low SNRs. These results are not as
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expected, as the bit flipping decoding algorithnm @rrect error patterns the conventional
decoding algorithm cannot. The results from a WHERgarison show that the bit flipping
decoding algorithm outperforms the conventionalodérg algorithm. WER results are a better
measure of the performance of a communication sybecause they show the performance of a
network in terms of the number of successfully diecbcodewords. The reason the conventional
decoding algorithm is outperforming the bit flipgiralgorithm in terms of the BER can be
attributed to the fact that when the bit flippinigaithm fails, it introduces more errors to the
received sequence than the conventional algoritbes.d

At high SNRs, the bit flipping algorithm outperfosnthe conventional decoding algorithm.
The BER comparison carried out in the Rayleigh rigdchannel, show that the bit flipping
algorithm has a 4 dB gain over the conventionalodiaw algorithm at a BER of0™ when
using the conventional algorithm to reduce the sizéhe shadow area when un-decodable error
patterns occur.

Simulation results show that the complexity of ghgorithm is high at low SNRs. At a SNR
of 10 dB, the complexity of the algorithm improvesnsiderably. The results show that the
complexity of the algorithm could be better thans of the conventional decoding algorithm
which uses the computational intensive Berlekamggds algorithm to find the error locator

polynomial for the row and column codewords in aBbde.

6.3 Further work

Parts of the study can be improved or extendetlerfuture. In this section we present some

possible ways the study can be further improvedupo

6.3.1 The Rician Channel

Two mathematical models are used when simulatirgl@ss communication, the Rayleigh
fading channel and the Rician fading channel. Thglé&tgh fading channel is used to simulate
wireless channels where there is no direct lineigiit between the transmitter and the receiver.

For this study only the Rayleigh fading channel wasd. The study can be further enhanced by
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carrying out simulations on the Rician channel. Rieian channel is used for simulations of
wireless channels where there is direct line ofitsiietween the communicating devices. Direct
line of sight wireless communication is used in sdmckhaul access technologies like Wi-Max.
The performance of the decoding algorithm in lihgight communication can be ascertained by

studying its performance using the Rician channel.

6.3.2 Soft decision decoding

The complexity of the algorithm could be greatlypnoved if the reliability of the bits in the
shadow area could be used when deciding which tbitflip. This could also reduce the
occurrences of decoding errors. The current degodigorithm relies on reducing the shadow
area into an area that has a number of rows witireewhich is less than the minimum distance
and a number of columns with errors which is léss1tthe minimum distance, before using the
bit flipping algorithm. This is done to ensure thié flipping algorithm does not have decoding
failures and introduce hidden errors. Soft decisdetoding can be used to improve the
complexity of this process. The least reliable bagl be flipped first. Using reliability
information, enhances the algorithm and movesaseal to finding an algorithm that decodes
product codes without using iterative decodinghef tows then the columns, and still offer good

performance in the wireless environment.

6.3.3 Implementation on a communication channel

This study has been carried out using Matlab basedlations. Simulating on software offers
the advantage of being able to manage the attshaftthe communication channel and testing
the performance of the algorithm for given conditicof the channel. The simulation software
also gives tractable conditions for developing akgorithm. Live networks have ever changing
conditions. It would be ideal for the algorithmlte tested on a live network. This will give a
clear indication of the performance of the decodatgprithm in a live setup. Testing on a live
wireless network could be done to also validateréiselts obtained from simulations.
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6.3.4 Generalization of the algorithm

Chapter 3 of the thesis shows that product codes haen developed into other codes like
augmented codes and concatenated codes. The lahgaréin prove to be beneficial if it can be
generalized and applied to other codes that hateuature similar to that of product codes, like

generalized concatenated codes.
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