4,333 research outputs found

    Sequential blind source separation based exclusively on second-order statistics developed for a class of periodic signals

    Get PDF
    A sequential algorithm for the blind separation of a class of periodic source signals is introduced in this paper. The algorithm is based only on second-order statistical information and exploits the assumption that the source signals have distinct periods. Separation is performed by sequentially converging to a solution which in effect diagonalizes the output covariance matrix constructed at a lag corresponding to the fundamental period of the source we select, the one with the smallest period. Simulation results for synthetic signals and real electrocardiogram recordings show that the proposed algorithm has the ability to restore statistical independence, and its performance is comparable to that of the equivariant adaptive source separation (EASI) algorithm, a benchmark high-order statistics-based sequential algorithm with similar computational complexity. The proposed algorithm is also shown to mitigate the limitation that the EASI algorithm can separate at most one Gaussian distributed source. Furthermore, the steady-state performance of the proposed algorithm is compared with that of EASI and the block-based second-order blind identification (SOBI) method

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Non-invasive Detection and Compression of Fetal Electrocardiogram

    Get PDF
    Noninvasive detection of fetal electrocardiogram (FECG) from abdominal ECG recordings is highly dependent on typical statistical signal processing techniques such as independent component analysis (ICA), adaptive noise filtering, and multichannel blind deconvolution. In contrast to the previous multichannel FECG extraction methods, several recent schemes for single‐channel FECG extraction such as the extended Kalman filter (EKF), extended Kalman smoother (EKS), template subtraction (TS), and support vector regression (SVR) for detecting R waves on ECG, are evaluated via the quantitative metrics such as sensitivity (SE), positive predictive value (PPV), F‐score, detection error rate (DER), and range of accuracy. A correlation predictor that combines with multivariable gray model (GM) is also proposed for sequential ECG data compression, which displays better percent root mean-square difference (PRD) than those of Sabah’s scheme for fixed and predicted compression ratio (CR). Automatic calculation on fetal heart rate (FHR) on the reconstructed FECG from mixed signals of abdominal ECG recordings is also experimented with sample synthetic ECG data. Sample data on FHR and T/QRS for both physiological case and pathological case are simulated in a 10-min time sequence

    A novel semi-blind signal extraction approach incorporating parafac for the removal of eye-blink artifact from EEGs

    Get PDF
    In this paper, a novel iterative blind signal extraction (BSE) scheme for the removal of the eye-blink artifact from electroencephalogram (EEC) signals is proposed. In this method, in order to remove the artifact, the signal extraction algorithm is provided with a priori information, i.e., an estimation of the column of the mixing matrix corresponding to the eye- blink source. The a priori knowledge, namely the vector corresponding to the spatial distribution of the eye-blink factor, is identified by using the method of parallel factor analysis (PARAFAC). Hence, we call the BSE approach, semi- blind signal extraction (SBSE). The results demonstrate that the proposed algorithm effectively identifies and removes the eye-blink artifact from raw EEC measurements

    A novel semiblind signal extraction approach for the removal of eye-blink artifact from EEGs

    Get PDF
    A novel blind signal extraction (BSE) scheme for the removal of eye-blink artifact from electroencephalogram (EEG) signals is proposed. In this method, in order to remove the artifact, the source extraction algorithm is provided with an estimation of the column of the mixing matrix corresponding to the point source eye-blink artifact. The eye-blink source is first extracted and then cleaned, artifact-removed EEGs are subsequently reconstructed by a deflation method. The a priori knowledge, namely, the vector, corresponding to the spatial distribution of the eye-blink factor, is identified by fitting a space-time-frequency (STF) model to the EEG measurements using the parallel factor (PARAFAC) analysis method. Hence, we call the BSE approach semiblind signal extraction (SBSE). This approach introduces the possibility of incorporating PARAFAC within the blind source extraction framework for single trial EEG processing applications and the respected formulations. Moreover, aiming at extracting the eyeblink artifact, it exploits the spatial as well as temporal prior information during the extraction procedure. Experiments on synthetic data and real EEG measurements confirm that the proposed algorithm effectively identifies and removes the eye-blink artifact from raw EEG measurements

    A New Approach to Extract Fetal Electrocardiogram Using Affine Combination of Adaptive Filters

    Full text link
    The detection of abnormal fetal heartbeats during pregnancy is important for monitoring the health conditions of the fetus. While adult ECG has made several advances in modern medicine, noninvasive fetal electrocardiography (FECG) remains a great challenge. In this paper, we introduce a new method based on affine combinations of adaptive filters to extract FECG signals. The affine combination of multiple filters is able to precisely fit the reference signal, and thus obtain more accurate FECGs. We proposed a method to combine the Least Mean Square (LMS) and Recursive Least Squares (RLS) filters. Our approach found that the Combined Recursive Least Squares (CRLS) filter achieves the best performance among all proposed combinations. In addition, we found that CRLS is more advantageous in extracting FECG from abdominal electrocardiograms (AECG) with a small signal-to-noise ratio (SNR). Compared with the state-of-the-art MSF-ANC method, CRLS shows improved performance. The sensitivity, accuracy and F1 score are improved by 3.58%, 2.39% and 1.36%, respectively.Comment: 5 pages, 4 figures, 3 table

    Single-trial event-related potential extraction through one-unit ICA-with-reference.

    Get PDF
    Objective: In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach: In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results: Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance: In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application

    Investigation of GPGPU for use in processing of EEG in real-time

    Get PDF
    The purpose of this thesis was to investigate the use of General Purpose computing on Graphics Processing Units (GPGPU) to process electroencephalogram (EEG) signals in real-time. The main body of this work required the implementation of Independent Component Analysis were investigated: FastICA and JADE. Both were implemented three times: first using M-file syntax to serve as a benchmark, next, as native C code to measure performance of the algorithms when running natively on a CPU, and finally, as GPGPU code using the NVIDIA CUDA C language extension. In previous works, Independent Component Analysis represented the largest roadblock to achieving the real-time goal of processing 10 seconds of EEG within a 10 second window. It was found that both FastICA and JADE see speedups, with a maximum measured speedup of approximately 6x for FastICA, and approximately 2.5x for JADE, when operating on the largest datasets. In addition, speedups of between 1x and 2x were seen when working on datasets of the expected size provided by 10 seconds of 32-channel EEG sampled at 500 Hz. However, it was also found that GPGPU solutions are not necessary for real-time performance on a modern desktop computer as the FastICA algorithm is capable of a worst-case performance of between approximately 1 and 2 seconds depending on configuration parameters
    corecore