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1. Introduction      
 

Blind source separation (BSS) involves recovering unobserved source signals from several 
mixed observations, typically obtained at the output of a set of sensors. Each sensor receives 
a different combination of the source signals. The adjective “blind” emphasizes the fact that: 
first, the source signals are not observed; and next, no information is available about the 
mixture. The assumption is often held physically that the source signals are mutually 
independent. 

Recently, BSS in signal processing has received considerable attention from researchers, 
due to its numerous promising applications in the areas of biomedical signal processing, 
digital communications and speech signal, sonar, image processing, and monitoring 
(Cichocki & Unbehauen, 1996), (Tangdiongga et al, 2001), (Yilmaz & Rickard, 2004), (Herault 
& Juten, 1986). A number of blind separation algorithms have been proposed based on 
different separation models. These algorithms play increasingly important roles in many 
applications. Since the pioneering work of Jutten and Herault (Herault & Juten, 1986), a 
variety of algorithms have been proposed for BSS. In general, the existing algorithms can be 
divided into five major categories: neural network-based algorithms (Cichocki & 
Unbehauen, 1996), (Zhang & Kassam, 2004), density model-based algorithms (Amari et al, 
1997), (Lee et al, 1999a), algebraic algorithms (Belouchrani et al, 1997), (Li & Wang, 2002), 
information-theoretic algorithms (Pajunen, 1998), (Pham & Vrins, 2005) and space-based 
algorithms (Yilmaz & Rickard, 2004), (Lee et al, 1999b). 

A source signal with sparse representation means that at most one value of the signal isn’t 
zero at an instant, making the vector of sensor signals (mixtures) equivalent to some mixing 
vector. Therefore, the sparse-based BSS problem could be solved by searching for mixing 
vectors; moreover, recovering source signals. Like the mixtures with sparse representation, 
each base vectors of the unknown mixing matrix will be displayed on a 2-D plane 
coordinate as a directional line when two sensors are used. The sparse representation is first 
introduced in underdetermined BSS by Lee et al. (Lee et al, 1999b). After its introduction, 
several related methods have been proposed continuously for solving underdetermined BSS 
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cases. Bofill and Zibulevsky proposed a potential function to produce an approximate curve, 
which is able to describe the histogram of mixtures (Bofill & Zibulevsky, 2001). Shi et al. 
proposed the generalized exponential mixture model to approximate the distribution of 
mixtures without any predefined parameters (Shi et al, 2004). Besides, clustering methods 
such as fuzzy clustering, k-means, and other extensions were proposed to search for the 
mixing matrix (Grady & Pearlmutter, 2004), (Liu et al, 2006), (Vaerenbergh & Santamaria, 
2006). These aforementioned algorithms provide good performance in well-conditioned 
mixing matrices which include identifiable mixing vectors. 

Generally speak, the efficiency of signal recovering is dependent upon the precision of 
mixing matrix identification in a BSS problem; however, some practical and difficult 
conditions occur in an outside of the lab environment. First, when source signals are not 
sparse enough, the non-sparseness of the signals has affects the identification with problems 
like noise. Second, distances between mixing vectors are not far enough to distinguish them; 
therefore, two or more vectors would be regarded as one. Here, these two problems are 
termed an ill-conditioned BSS case. So far conventional algorithms produce unsatisfactory 
performance in such a case since many sub-solutions arise from these interferences. In this 
study, these difficult will be aimed by a heuristic method and a well-known statistic model. 

Heuristic learning has been utilized to tackle similar problems encountered in other BSS 
categories. For example, the neural network-based BSS algorithms use the Genetic 
Algorithm (GA) (Yue & Mao, 2002) or Particle Swarm Optimization (PSO) (Song et al, 2007) 
to deal with linear mixing matrix or nonlinear mixing matrix identification; however, space-
based BSS algorithms have never adopted such a heuristic learning process except that is 
published in (Liu et al, 2007).  

Recently Gaussian mixture model (GMM) has been suggested to learn or model a set has 
multiple mixing data through the maximum-likelihood (ML) estimator or the expectation-
maximization (EM) algorithm. And, the validity has been demonstrated in many research 
fields (Hedelin & Skoglund, 2000), (Todros & Tabrikian, 2007), (Nikseresht & Gelgon, 2008). 
Since there is not only single mixing vector in a BSS problem, GMM with multiple Gaussian 
models should be associated. However, the question then arises about the effect of initial 
parameters and falling into a local optimum from training by ML or EM. At first, the most 
information is unobservable in BSS problem; thus, the hint is too short to give proper initial 
parameters. Second, mixture outliers or ill-conditioned mixing vectors would cause a lot of 
local optimum; therefore, we think that an ability of widely exploring is weighty enough to 
affect the separate performance.  

According to above analyses, this study develops a flexible GMM whose parameters are 
trained by PSO. The fitness function of PSO is designed to evaluate the inverse of sum of 
densities of GMM. When centers of all Gaussian models is close to the directions of all 
mixing vectors, the fitness value would approximate to the low bound. In order to make 
PSO more efficient, the representation of mixtures are modified from 2-D to 1-D; meantime, 

the boundary is normalized into the interval [ ]1,0 . The search range of PSO therefore 

becomes more compact. Further, the particle update function of PSO is improved by using a 
cluster information to replace the global best (Gb). This improvement is according to the 
property of the sparse signal so it is helpful to speed convergence and enhance accuracy. 
The simulations involving well-conditioned mixing vectors, ill-conditioned mixing vectors 
and unknown number of source are designed. In order to present advantages of proposed 

www.intechopen.com



Robust Underdetermined Algorithm Using Heuristic-Based Gaussian Mixture Model for  
Blind Source Separation 

 

135 

algorithm, some existing underdetermined BSS algorithms and GMM-based algorithms will 
be performed in the simulation for performance comparison.  

The remainder of this study is organized as follows: Section II presents the fundamental 
of BSS consisting of mixing model and recovery methods. Section III introduces the 
standard PSO and GMM. Section IV presents details of the proposed algorithm. Section V 
presents several BSS simulations and displays the compared results. The validity of 
appended parameters are analyzed and confirmed in Section VI. Section VII draws a brief 
conclusion for this work. 

 
2. Underdetermined Blind Source Separation 
 

2.1 Mixtures in Sparse Representation 

In a situation where the sparse source signals are unobservable, ( ) ( ) ( )[ ]T
n tstst ,,1 K=s  

which is zero-mean and is mutually (spatially) statistically independent (or as independent 

as possible), where n  denotes the number of sources, [ ]T⋅  denotes the transpose operation 

and t=1, …, N is the instant time of sampling. The term  “Sparse” means that only a small 
number of the si differs significantly from zero. The degree of sparsity is evaluated by the 
probability density function (PDF) as follows: 

 

          ( ) ( ) ( ) ( ) nisfssP iiiiiisaprsei
,,2,1   ,1 K=−+= αδα                               (1) 

 
where iα  is the probability that a source is inactive, ( )⋅δ  denotes Dirac’s delta and ( )

ii sf  is 

the PDF of the ith source when it is active (Luengo et al, 2005). The actual acoustics have a 
higher degree of sparsity in the frequency domain than in the time domain. Consequently, 
this study addresses the source signals that fulfill the requirements of sparse in the 
frequency domain and not in the time domain.  

 The available sensor vector ( ) ( ) ( )[ ]T
m txtxt ,,1 K=x , where m  is the number of sensors, is 

given by 
 

( ) ( )tt Asx =                                                                        (2) 

 
where nm×∈RA  is an unknown mixing matrix and is nonsingular. The definition of an 
underdetermined case is one that satisfies mn ≥ . Because two is the most applicatory 

number of sensors to such a BSS problem, 2=m  is considered in this study. Therefore, eq. 

(2) could be rewritten as  
 

( ) ( )
( ) ( ) ( ) ( )[ ]T

n

n

n
tststs

aaa

aaa

tx

tx
t L

L

L
21

22221

11211

2

1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡
=x                                        (3) 

 
where the components of mixing matrix could be presented as 
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⎥
⎦

⎤
⎢
⎣

⎡
=

n

n

aaa

aaa

22221

11211

K

K
A                                                                   (4) 

 
The feasibility of applying such an algorithm to identify sparse representation is affected by 
the sparsity of source signals and the density of mixing vectors. Then, the assumption that 
the distance between two arbitrary mixing vectors is less than the doubled sum of variances 
of distribution for the corresponding mixtures is held in this study.  

The process of BSS can be divided into two steps: the first is the unknown mixing matrix 
identification which will be discussed in Section IV. The second is source signals recovery 
by the estimation of mixing matrix, described in the next subsection. 

 
2.2 Source Signal Recovery 

According to the estimated mixing matrix, sparse source signals can be recovered by 
maximizing the posterior distribution that is formed as (Shi et al, 2004) 

 

( ) ( ) ( )( )∏
=

=
N

t

ttPP
1

,, AxsAxs                                                    (5) 

 
According to eq. (2) and Bayes’ rule, the log-likelihood can be obtained by taking the 
logarithm of eq. (2):  
 

( ) ( ) ( )( ) ( ) ( )( ){ ( )( ){ }} β++−Σ−−=∑
=

− tPttttL
N

t

T
sAsxAsxs log5.0

1

1                         (6) 

 
where 1−Σ  indicates the noise covariance matrix and β  is a constant irrelevant to s(t), and 

( )T⋅  denotes the transpose operation. In order to maximize eq. (6), the gradient of eq. (6) is 

derived with respect to s(t) as 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }tptttL t

T

t sAsxAs
ss

log1 ∇+−Σ=∇ −                                 (7) 

 
Therefore, the original signals can be recovered gradually by the following iteration: 
 

( ) ( ) ( ) ( )( )tLtt j

t

jj 11 −− ∇+= sss
s

η                                                  (8) 

 
where the superscript of S indicates the iteration index. 

 
3. Introduced Techniques 
 

3.1 Gaussian Mixture Model 

A Gaussian mixture PDF for d-dimensional random vectors X  is a weighted sum of 
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densities 
 

( ) ( )∑
=

=
M

i

ii i
ff

1

θρ θ XΘX
XΘX                                                        (9) 

 
where iρ  are the component weights, M  is the number of class and the component 

densities are Gaussian 
 

( ) ( )
( )

( ) ( )ii
T

i

iii
eff

i

diii

μμ

μθ π
μθ

−−− −

==
XΣX

ΣXX Σ
ΣXX

1

2

1

212,

2

1
,                          (10) 

 
with mean vectors iμ  and covariance matrices iΣ . The weights are constrained by 0>iρ  

and 1
1

=∑ =

M

i i
ρ . The parameters of the Gaussian mixture density is represented by the set 

 

{ }MMM ΣΣΘ ,,,,,,,, 111 KKK μμρρ=                                            (11) 

 
Generally, the expectation-maximization (EM) algorithm is a widely used procedure for 

maximum-likelihood (ML) estimation. It is an iterative algorithm where in each iteration 

over the same database a monotonic increase in the log-likelihood, ( )ΘL , is guaranteed, i.e., 
( )( ) ( )( )kk LL ΘΘ ≥+1 , where ( )kΘ  is the value of the parameter set Θ  at iteration k  (Hedelin & 

Skoglund, 2000), (Nikseresht & Gelgon, 2008). A poor initialization of set Θ would have 

great effect upon final performance; however, some elements are hard to give suitable initial 
values by experience of user. Consequently, this paper replaces the iterative method by PSO 
to obtain a more precise solution.  

 
3.2 Heuristic Learning 

The PSO is a population based optimization technique proposed by (Eberhart & Kennedy, 
1995). The population is referred to as a swarm. The particles move and fast converge to local 
and/or global optimal position(s) over a small number of generations. 

A swarm in PSO consists of a number of particles. Each particle represents a potential 

solution to the optimization task. All of the particles iteratively explore potential solutions 

through evolution. Each particle moves to a new position according to the new velocity 

which includes its previous velocity, and the directional vectors according to its own past 

best solution and global best solution. The best solution is then kept; each particle 

accelerates in the directions of not only the local best solution but also the global best 

position. If a particle discovers a new solution better than the global best solution, other 

particles will move closer to it in order to explore the region with more depth (Gudise & 

Venayagamoorthy, 2003).  

Let sz denotes the swarm size. In general, there are three attributes, the particles’ current 

position pi, current velocity vi , and local best position Pbi, for particles in the search space to 

present their features. Each particle in the swarm is iteratively updated according to the 
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aforementioned attributes. Assuming that the fitness function ( )⋅f  is to be minimized, the 

new velocity of every particle is updated as 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]gpgGbgrgpgPbgrgvgv ijjijijijij −⋅+−⋅+=+ 22111 αα                    (12) 

 
where Pbij denotes the local best position of the ith particle and Gbj(g) denotes the global best 

position at the gth generation. For all the index of dimension, kj ,,2,1 K= , ijv
 
is the velocity 

of the jth dimension of the ith particle, 1α  and 2α  denote the acceleration coefficients, r1 and r2 

are elements from two uniform random sequences in the range (0, 1), g is the number of 

generations and has to be bounded in [Vmin,Vmax]. The new position of a particle is 

calculated as follows: 

 

( ) ( ) ( )11 ++=+ gvgpgp iii                  
               (13) 

 
The local best position of each particle is updated by 
 

     ( ) ( ) ( )( ) ( )( )
( )⎩

⎨
⎧

+
>+

=+
otherwise,1

1 if,
1

gp

gPbfgpfgPb
gPb

i

iii

i

                         (14) 

 
And the global best position Gb found from all particles during the previous three steps is 
defined as 
 

( ) ( )( ){ }szigPbfgGb i
i

b
≤≤+=+ 1,1min arg1

P
                  (15) 

 
Since Kennedy and Eberhart (Eberhart & Kennedy, 1995) introduced PSO in 1995, many 

researchers have worked on improving its performance in various ways. One of the variants 

called the standard PSO (Lin &. Feng, 2007), introduced by Shi and Eberhart (Shi & Eberhart, 

1998), incorporates a parameter called inertia weight of velocity 0α  into the original PSO. 

The new velocity update algorithm is shown as follows: 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]gpgGbrgpgPbrgvgv ijjijijijij −⋅+−⋅+⋅=+ 221101 ααα                        (16) 

 
This plays the role of balancing the global search and local search. It can be a positive 
constant or even a positive linear or nonlinear function of time. This value is typically setup 
to vary linearly from 1 to near 0 during the course of a training run. Note that this is 
reminiscent of the temperature adjustment schedule found in Simulated Annealing 
algorithms. The inertia weight is also similar to the momentum term in a gradient descent 
neural network training algorithm. 
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Although there are numerous variants for PSO, these methods spend too much time 
finishing fitness evaluations, and will present similar results in the early parts of 
convergence.  To reach requirements of on-line separation, only a limited amount of 
computational time is available to produce a reasonable solution. These limitations will 
require an efficient and simple method.  Hence, the variant of PSO with inertia weight is 
chosen (Shi & Eberhart, 1998). 

 
4. Identify Mixing Vector by PSO-based GMM 
 

4.1 PSO-based GMM 

Suppose that only two sensors are available (i.e. 2=m ) here, and then received mixtures 

are represented as ( ) ( )[ ]Ttxtx 21 , , Nt ,,2,1 K= ,. Section II mentions that source signals are 

sparse and the mixtures center around the mixing vectors on the 21 xx −  coordinate plane. 

Thus, unobservable mixing vectors could emerge from these clusters of mixtures. Because n  

source signals will form n  clusters of mixtures (mixing vectors), GMM with n  densities is 

capable of expressing the distribution of mixtures. Further, the position of mixing vectors 
can be obtained from the centers of Gaussian model.  

In order to find out the optimal parameters of GMM, the particles of PSO are regarded as 

a parameter set of GMM, [ ]
np μμμ ,,, 21 L= . Because the estimate of each mixing vector 

should have equal importance in BSS case, the complexity of PSO could be reduced by 

omitting the estimate of weights, iρ . And, since covariance can be evaluated from classed 

mixtures, the estimate of covariance matrices iC  also could be omitted.  

About the search space of PSO, there are several disadvantages when each element of 
particles is encoded into 2-D vector representation. First, there is no exact boundary for 
searching. Second, different elements would be mapped to the same solution. For instance 

[ ]55 10 ,102×=μ  is equivalent to [ ]5.0 ,1=μ . It would cause that particles explore in an 

infinite range; moreover, many equivalent solutions would pin down to each other. In order 
to enhance efficiency of optimization, the 2-D vector representation is replaced by 1-D angle 

representation; further, the angles are normalized in the interval from -1 to 1, i.e. [ ]np 1,1−∈ . 

The mixtures are therefore rewrote as 
 

 ( ) ( ) ( )( ) [ ]1 ,1ˆ   where, 
arctan2

ˆ 21 −∈∀= x
txtx

tx
π

                         (17) 

 
t=1,2,...,N; then, the search space of PSO become compact. 

 
4.2 Improved PSO 

Some potential improvements can be made to the exploration of PSO. In Fig. 1, which 
presents the distribution of mixtures, it could be seen that the two directions formed by the 

gathering mixtures imply two real mixing vectors. According to PSO’s evolution, Gb  

would slowly approach these directions. In Fig. 1, the solid lines placed far from these 

directions indicate the Gb  in the initial generation. The mixtures are further divided into 
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two clusters according to their distances to Gb ; and then, cluster centers denoted by the 

dotted lines in Fig. 1 could be calculated. The result should reveal that the dotted lines are 
closer to the real mixing vectors than the solid lines. 

Since mixtures gather toward the mixing vectors, cluster centers are more likely to 

produce a better solution than Gb . Moreover, it not only substantially improves Gb  

during initial generations, but also fine tunes Gb  during final generations. Consequently, 

cluster information is the more preferable guide for particles compared to Gb . The factor 

Gb  is replaced with cluster centers bvC  in eq.(12), which could be rewritten as: 

   

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]gpgcr

gpgPbrgvgv

ijj

ijijijij

−⋅+

−⋅+⋅=+

22

110

                        

1

α

αα
                                        (18) 

 
where { }

bvj kjc C∈= ,,2,1 K  is a set of cluster centers according to Gb , and each component 

is evaluated by: 
 

∑

∑

=

=

×
=

j

j

cn

i

i

cn

i

ii

j

x

c

1

2

1

2 ˆ

ξ

ξ
                                                                (19) 

 
where ( ) ( )txtxt

2

2

2

1 +=ξ , j  denotes the index of the cluster, jcn  denotes the number of 

mixtures which belongs to the jth estimated vector, and i is the index of mixtures. Since the 

involved signals are sparse, iξ  could be regarded as a weight to the angle of the ith mixture. 

In other words, mixtures with a larger ξ  have a greater effect upon the cluster center that it 

belongs to, whereas others are noisy or even voiceless. 
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Fig. 1. The cluster vectors (dotted line) are derived from vectors of current Gb (solid line). 
The two directions constructed by gathered mixtures indicate the real mixing vectors. 
4.3 Objective Function 

As for the fitness function of the PSO, the property of sparse mixture distribution is 
introduced into our design. Since mixtures respectively gather toward mixing vectors and 
the vector length of mixtures is in respect to the energy of the signal, the fitness function is 
defined as 

 

( )
1

1

ˆ
ˆ

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

M

i

i
i

ffit μ
μ
X

X
                                                             (20) 

 
where the differential angle between the ith mixture vector and the nearest estimated vector 
is calculated by: 
 

{ }njNixx jii ,,2,1 and ,,2,1,ˆ minˆ KK ==−=Δ μ                                     (21) 

 
Consequently, a small fitness value implies a more accurate estimate to mixing vectors. 

 
4.4 Disturbance 

Additionally, in order to prevent the search from falling into a local optimum, a 
disturbance operation is added to PSO. Every current particle is allotted a random value 
between 0 and 1. A particle will carry out the disturbance sequence if its random value is 

less than a disturbance rate dP . A disturbance particle is produced by:  

 

[ ]nrdisp μεμμμ ,,,,, 21 KL +=                                                   (22) 

 
where rμ  is a randomly selected dimension of the particle, and ε  is a tiny disturbance 

factor. PSO begins with more uniformly scattered particles during initial generations, but 
incorporates more gathered particles during final generations, in the distribution of particles. 

Therefore, the value of dP  should be dependent upon the current evolutionary state of PSO. 

A floating dP  was decided to serve this purpose, its change is in respect to linear monotonic 

increase: 
 

( )
G

gP
gP D

d

×
=                                                                   (23) 

 
where DP  is the maximal dP  choosing from interval [ ]1 ,0 , g  is the current generation of 

PSO, and G  is the maximal generation for evolution of PSO. 

 
4.5 Algorithm Procedure 
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The procedure which uses the proposed GMM-PSO to deal with the underdetermined 
BSS problem is explained in Fig. 2, and the detail is described as following steps: 

Step 1. Two mixtures mixed by eq. (3) is received. 

Step 2. The both mixtures are transformed into frequency domain. 

Step 3. (Start PSO) The initial particles are randomly produced from interval [ ]1 ,0 . 

Step 4. Fitness values are calculated by eq. (20) for each particle. 

Step 5. Pb and Gb are updated by eq. (14) and eq. (15) respectively. 

Step 6. The cluster centers Cbv are calculated by eq. (19) according the Gb; and then, 
replaces Gb. 

Step 7. New particles are produced according to eq. (18). 

Step 8. Disturbance is carried out according a rate referred from eq. (23). 

Step 9. If terminational condition is reached, i.e. Gg = , then procedure goes to next step 

(End PSO); otherwise, it goes back to the Step 4.  

Step 10. According to the final Gb to restructure mixing matrix; and then, recover signals 
are evaluated by eq. (8). 

Further, there are several sub-steps in the Step 4 explaining how to evaluate fitness values: 

Sub-step 1. Particle are inputted one by one. 

Sub-step 2. The mixtures are classified into n  classes by eq. (21) according to a particle. 

Sub-step 3. The fitness value is calculated by eq. (20). 

Sub-step 4. The fitness values of all particles are outputted. 

 

 
Fig. 2. The flowchart of the proposed algorithm 

 
5. Simulations and Results 
 

5.1 Description and Parameters Setting 
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Three other underdetermined algorithms with state of the art are tested in the following 
simulations to compare with the proposed algorithm. Here, the first one is named PF 
proposed in (Bofill & Zibulevsky, 2001), the second one is named GE proposed in (Shi et al, 
2004), and the last one is our previous work which named FC proposed in (Liu et al, 2006). 

In order to confirm validation and robustness of these algorithms, four sparse signals 
recorded from real sounds are taken for the source signals whose waveforms are shown in 
Fig. 3 and Fig. 4. In the first BSS case, the first three source signals are mixed by a well-
conditioned mixing matrix as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

7071.00.8944-0.9285

7071.00.44720.3714
wellA

                                            

(24) 

 
It involves distinguishable mixing vectors whose normal angles are 

[ ]5000.0 ,2952.0 ,2422.0~ −wellμ  respectively. The distribution of mixtures is plotted in Fig. 5. In 

the second BSS case, the four source signals are mixed by an ill-conditioned mixing matrix 
as 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
9285.07926.07071.07071.0

3714.06097.07071.07071.0
illA

                                   

(25) 

 
It involves undistinguishable mixing vectors whose normal angles are 

[ ]2422.0 ,4175.0 ,5000.0- ,5000.0~ =illμ  respectively since the first vector and the third vector 

are quite close. The distribution of mixtures is plotted in Fig. 6. 
The parameters of compared algorithms are referenced from the original setting of their 

articles. For example, the grid scale is given 720 and λ  is entered as 55 in PF. The improved 

PSO, through the experience of numerous previous experiments, are given the suitable 

parameters, 20=sz , 5.0=DP , 12.00 =α , 3.01 =α  and 4.02 =α . For generation number, 

100=G  is given in first case and 200=G  is given in second case. For all algorithms, the 

every simulation will be tested by 30 independent runs. And, the performance is evaluated 
by mean square error (MSE) as 

 

( )∑
=

−=
n

i

ii
n

MSE
1

2~1 μμ                                                        (26) 

 
where iμ

~  denotes the ith real mixing vector, and iμ  denotes the ith estimation. In final, the 

average of MSE by 30 independent runs will be presented. An estimated set of mixing vector 
having a small MSE implies a excellent source separation. 

 

www.intechopen.com



Frontiers in Robotics, Automation and Control 

 

144 

 
Fig. 3. The waveforms of source signals represented in time domain. 

 

 
Fig. 4. The waveforms of source signals represented in frequency domain. 
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Fig. 5. The distribution of mixtures produced by well-conditioned mixing matrix. 

 

 
Fig. 6. The distribution of mixtures produced by ill-conditioned mixing matrix. 
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5.2 Results 

After two simulations are implemented by the involved algorithms, the compared data 
about estimating accuracy are presented in Table 1 and Table 2. The both tables describe the 
real mixing vectors, the average of estimated mixing vectors and the MSE of the four 
algorithms for well-conditioned case and ill-conditioned case. From these tables, it could be 
observed that GE algorithm’s performance is always unacceptable in all cases. PF algorithm 
just work acceptably in well-conditioned case, but it fail in ill-conditioned case. FC 
algorithm is valid in all cases, but its MSE is not better than that of proposed PSO-GMM 
algorithm. 

In order to compare the improved PSO and standard PSO, their average fitness curves are 
shown in Fig. 7 (well-conditioned case) and Fig. 8 (ill-conditioned case). Form both figures, 
it could be observed that improved version has better convergent ability on speed and depth; 
particularly, that in Fig. 8. 

 

Compared algorithms PF GE FC PSO-GMM 

2422.0~
1 =μ  1μ  0.2497 0.2292 0.2498 0.2421 

2952.0~
2 −=μ  2μ  -0.2190 -0.1958 -0.2903 -0.2896 

5000.0~
3 =μ  3μ  0.1627 0.1402 0.5134 0.4995 

MSE 0.0399 0.0465 8.7110e-05 1.0540e-05 

Table 1. Comparison of results between the four algorithms in well-conditioned BSS case. 

 
Compared 
algorithms 

PF GE FC PSO-GMM 

5000.0~
1 =μ  1μ  0.5520 0.6856 0.5000 0.4998 

5000.0~
2 −=μ  2μ  -0.4895 -0.6469 -0.4982 -0.4929 

4175.0~
3 =μ  3μ  0.5639 0.5687 0.3996 0.4176 

2422.0~
4 =μ  4μ  0.7494 -0.0817 0.2426 0.2426 

MSE 0.0704 0.0460 8.0060e-05 1.2662e-05 

Table 2. Comparison of results between the four algorithms in ill-conditioned BSS case. 

www.intechopen.com



Robust Underdetermined Algorithm Using Heuristic-Based Gaussian Mixture Model for  
Blind Source Separation 

 

147 

6. Discussion 
 

In comparing the proposed PSO-GMM with related BSS algorithms, the performance of 
GE algorithm is sensitive to predefined parameters. Tt exhibited a large value in MSE 
because of the lack of perfect initiations. Unfortunately, there is no rule or criterion that can 
be referred to for choosing suitable initiations. The PF algorithm is available in well-
conditional case, and it does not involves any random initiation. However, the PF algorithm 
is not robust enough to deal with a complex problem because its settings of parameters is 
not for general-purpose; moreover, there are no instructions to guide a user on how to 
adjust them to suit other specific cases. The FC algorithm and PSO-GMM algorithm are 
efficient and robust enough to handle whether a general toy BSS case or an advanced BSS 
case. For further comparison between the both algorithms, it can be discovered that PSO 
method explores variant potential solutions; therefore, its accuracy is more excellent than FC 
algorithm. For the different PSO versions, the improved PSO exhibits a better convergent 
curve because it have the additional mechanism which enhances and replaces the globel 
best solution to rapidly drag particles toward a solution with an exact direction and distance 
during whole generations. 

 

 
Fig. 7. Fitness convergence comparison between improved PSO and standard PSO for well-
conditioned BSS case. 
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Fig. 8. Fitness convergence comparison between improved PSO and standard PSO for ill-
conditioned BSS case., 

 
7. Conclusion 
 

This study addresses on the BSS problem which involves sparse source signals, 
underdetermined linear mixing model. Some related algorithms have been proposed, but 
are only tested on toy cases. For robustness, GMM is introduced to learn the distribution of 
mixtures and find out the unknown mixing vectors; meantime, PSO is used to tune the 
parameters of GMM for expanding search range and avoiding local solutions as much as 
possible. Besides, a mechanism is proposed to enhance the evolution of PSO. For 
simulations, a simple toy case which includes distinguishable mixing matrix and a difficult 
case which includes close mixing vectors are designed and tested on several state of the art 
algorithms. Simulation results demonstrate that the proposed PSO-GMM algorithm has the 
best accuracy and robustness than others. Additionally, the comparison between standard 
PSO and improved PSO shows that improved PSO is more efficient than standard PSO. 
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