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Abstract—A sequential algorithm for the blind separation of a
class of periodic source signals is introduced in this paper. The al-
gorithm is based only on second-order statistical information and
exploits the assumption that the source signals have distinct pe-
riods. Separation is performed by sequentially converging to a so-
lution which in effect diagonalizes the output covariance matrix
constructed at a lag corresponding to the fundamental period of
the source we select, the one with the smallest period. Simulation
results for synthetic signals and real electrocardiogram recordings
show that the proposed algorithm has the ability to restore sta-
tistical independence, and its performance is comparable to that
of the equivariant adaptive source separation (EASI) algorithm, a
benchmark high-order statistics-based sequential algorithm with
similar computational complexity. The proposed algorithm is also
shown to mitigate the limitation that the EASI algorithm can sep-
arate at most one Gaussian distributed source. Furthermore, the
steady-state performance of the proposed algorithm is compared
with that of EASI and the block-based second-order blind identi-
fication (SOBI) method.

Index Terms—Blind source separation, fetal electrocardiogram
extraction, periodic signals, second-order statistics.

I. INTRODUCTION

OVER the past decade blind source separation (BSS) has
received much research attention because of its potential

applicability to a wide range of problems, spanning disciplines
as diverse as communications, geophysical exploration, air-
port surveillance and medical signal processing [1]–[3]. The
problem arises when multidimensional observations, generated
when a set of signals are mixed by passage through an unknown
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medium, must be processed to recover the original sources
without the benefit of any a priori knowledge about the mixing
operation or the sources themselves.

Several approaches have been developed for the solution of
the blind source separation problem, which are generally based
on the second or higher order statistics of the data. Higher order
methods have generally represented the preferred approach to
solving BSS problems, since they require few assumptions aside
from the statistical independence of the sources, thus addressing
the problem in a truly blind context. They are effectively based
on both second- and higher order statistics, typically involving
a two-step procedure in which whitening precedes rotation, and
have resulted in a large number of algorithms (see, for instance,
[4]–[9]). Purely second-order statistics methods, on the other
hand, have the advantage of requiring shorter data records due
to their reduced small sample estimation errors, and do not limit
the number of Gaussian sources that can be separated to one
[32]–[41]. However, they operate in a semiblind setting, since
their derivation usually requires that certain additional assump-
tions are made on the nature of the original signals, such as sta-
tistical nonstationarity of the sources, presence of time corre-
lations in stationary signals, or cyclostationarity; nonetheless,
such information is available in, for example, certain biomed-
ical applications, and should be exploited.

Cyclostationary sources have the useful property of spectral
redundancy, which arises because of correlation being present
between spectral components situated apart from each other,
at a distance related to the cyclic frequency. Thus, addressing
the BSS problem for cyclostationary sources has the advantage
of adding frequency diversity to the spatial diversity already
present due to recording the measurements with an array of sen-
sors [13]–[17]. This type of approach does require, of course,
knowledge of the cyclic frequencies, or their estimation.

Several block-based methods exist that exploit the temporal
correlations of the source signals, and perhaps the best known
is the second-order blind identification (SOBI) algorithm [18].
As is usually the case with batch algorithms, the first stage of
SOBI entails prewhitening the data; this is generally followed
by the joint diagonalization of a set of covariance matrices at dif-
ferent time lags, thus potentially allowing separation of several
Gaussian sources. The computational complexity of this algo-
rithm is substantially greater than sequential algorithms due to
the need for diagonalization of a number of sample covariance
matrices and therefore is not considered further in this work.
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Other algorithms that are essentially based on a similar prin-
ciple can be found in [19] and [20].

In this paper, we introduce a new sequential algorithm for the
blind separation of source signals with distinct periods, based
only on second-order statistical information. This work is mo-
tivated by the observation that the majority of measurements
obtained from many biomedical applications exhibit some de-
gree of periodicity. For instance, the human heart contracts at
regular intervals, thereby sending the blood through the body;
the (normal) electroencephalogram recorded from the scalp is
characterized by rhythmic “background activity,” and many dis-
orders, such as certain types of epilepsy and Creutzfeld–Jakob
disease, are accompanied by patterns that are periodic or almost
periodic.

Source separation is performed by sequentially converging
to a solution which in effect diagonalizes the output covariance
matrices, at a lag not equal to zero, but corresponding to the
fundamental period of periodicity of the source signal with the
smallest period. Besides the computational simplicity, another
major advantage of this algorithm is that empirical selection
of the lag, or lags, of the covariance matrices to diagonalize is
avoided because it is dictated by the fundamental period of one
of the sources. This implies that a priori knowledge about at
least one source is required. Fortunately, in many applications
such as in biomedical signal processing, this type of informa-
tion is often readily available. Alternatively, when a source is
known to be periodic, the fundamental period can be estimated
using the periodogram of the mixtures, or methods such as the
heart instantaneous frequency (HIF) estimation technique pro-
posed in [21].

Moreover, the algorithm can successfully separate the sources
even when the selected lag does not correspond to the exact
period, as found in simulations (see Section V-E). In addition,
the zero lag output covariance matrix is diagonalized when the
sources are correctly estimated, so that there is also no need to
perform explicit prewhitening. Thus, the decorrelation and ro-
tation operation are in effect carried out concurrently. It is of in-
terest to note that there is no definitive reason why the whitening
and rotation process should be conducted in two steps as sug-
gested in most BSS algorithms. In fact, when additive noise is
present, “hard prewhitening” can be a major disadvantage [30].
However, in practice, the covariance matrix at the desired lag
is not immediately available, but must be estimated, so to avoid
delay and reduce computational complexity the operation is im-
plemented sequentially. In this context, a further issue is ad-
dressed in this paper: if the sample output spatial covariance
matrix at the desired lag is not positive definite, the direction of
descent varies, leading to oscillations in the coefficients of the
estimated separating matrix. In fact, we believe that this issue
has thus far prevented the derivation of a usable sequential coun-
terpart of SOBI. This problem is resolved here by forcing the
adjustment term within the sequential algorithm to be positive
definite at every iteration.

Since the algorithm is sequential, we first examine why
source separation by periodic whitening is possible, while
separation based on the zero lag spatial covariance matrix
(conventional decorrelation) does not separate the sources.
Secondly, it is shown that following convergence, periodic

whitening effectively amounts to the simultaneous diagonal-
ization of all the output autocorrelation matrices evaluated at
integer multiples of the fundamental period. The remainder
of the paper is organized as follows. The problem that we
are addressing is formulated in Section II. The identification
conditions for the periodic signals are discussed in Section III,
which form the theoretical basis of our proposed approach. To
implement the proposed idea, a sequential algorithm, together
with a systematic approach for lag selection, is developed
in Section IV. Then, the performance of our algorithm is
substantially evaluated in Section V, where the results are
compared with that of the benchmark sequential algorithm, i.e.,
equivariant adaptive source separation (EASI), and with the
block-based SOBI algorithm. Finally, Section VI concludes the
paper.

II. PROBLEM FORMULATION

In this paper, it is sought to exploit the temporal periodic
nature of the assumed zero mean source signals ,
in order to recover them from a set of available observations

, generated by the mixing model

(1)

where is a fixed but unknown, full column rank,
mixing matrix, and is the discrete-time index. The separating
system then estimates the original source signals according to

(2)

where represents the recovered sources, and
are the separating matrices. Throughout this

paper, for analytical convenience, real quantities will generally
be assumed; generalization to complex values is, however,
straightforward. We will assume that the number of sources
equals the number of measurements, i.e., , the exactly
determined problem.

Consider the th original source signal, which is temporally
periodic with fundamental period

(3)

where , and denotes the set of integers. We assume
that is obtained by sampling a periodic analogue signal

, with period , where it is assumed that , the
sampling period, and . Thus, we define to
be the fundamental period of , where represents the
floor operator. The error, , will be considered in the
simulations sections. This definition of the fundamental period
will be assumed in the remainder of the paper as will be the
assumption for . Thus, the covariance function of the source
signal at integer lag , defined by

(4)

where denotes statistical expectation, is also periodic with
period . Then, the covariance matrix of the source signals, at
lag , is defined as

(5)
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where represents the transpose operator. At a lag ,
(5) becomes

(6)

Assuming that the original sources are mutually statistically un-
correlated, the off-diagonal elements of the matrix in (6) satisfy

(7)

while, in general, the value of the diagonal elements will depend
on the fundamental period of the sources. Hence, by virtue of (4)
and (7), and with the assumption that all the sources are unity
variance, the covariance function of the source becomes

for
otherwise

(8)

As a result, the source covariance matrix at lag takes the form

(9)

where the elements of are defined in (8). The matrix
is the eigenvalue matrix of , such that its diag-

onal entries, , represent the eigenvalues of the
source covariance matrix at . Since the samples of the
covariance function can be both positive and negative,
as well as zero, the eigenvalues of the source covariance matrix
are not guaranteed to ensure that is positive definite.
In Theorem 1, for the sake of simplicity, we assume that the
source signals are sinusoidal waveforms and that , the funda-
mental period of source , is the smallest period, such that

. Then, due to
the periodicity of the covariance function, the above discussion
leads to the following.

Theorem 1: Provided that 1) there exist discrete-time
wide-sense stationary sinusoidal signals, i.e., when

, with and
, and

, where are distinct, and
are statistically independent uniformly dis-

tributed random variables and 2)
, then the eigen-

values of the source covariance matrix are nonzero and
distinct, as follows:

(10)

Proof: Straightforward, by contradiction. If
, for which ,

e.g., when , then from (8), and
hence , in violation of the assumption in Theorem
1; or if , for which

, then in violation of
the assumption in Theorem 1.

It should be noted that the fact that the eigenvalues are distinct
does not imply that source separation will be straightforward.
When the eigenvalues are close in value to each other, this may

undermine the robustness of an algorithm. Theorem 1 will now
be generalized to the case of the class of periodic discrete-time
sources which satisfy Corollary 1.

Corollary 1: The eigenvalues of the source covariance ma-
trix are nonzero and distinct, provided the following:

1) there exist unity variance, discrete-time source signals
with distinct periods;

2) ;
3) .
In the remainder of this paper, we will assume that the eigen-

values of the source covariance matrix at the delay are
distinct and nonzero, and that is the smallest period, such that

. Note that other
nonperiodic discrete-time signals can have the required eigen-
structure in the covariance matrix, but these are not the focus
of this paper. Moreover, this result implies that the resultant al-
gorithm will have applicability beyond the separation of purely
sinusoidal signals which underpins its practical utility, for ex-
ample, in biomedical applications.

III. IDENTIFICATION PRINCIPLE

Conventional decorrelation (or whitening) is typically per-
formed by considering the spatial output covariance matrix
when . In this case, a whitening matrix, , is sought,
such that the output vector is given by

(11)

and after convergence of the sequential algorithm, i.e.,
, its covariance matrix satisfies

(12)

and therefore

(13)

which in terms of is

(14)

Since

(15)

and from (12), we have

(16)

which implies that is an orthogonal (unitary for complex
case) matrix. Effectively, the relations in (12) and (16) indicate
that cannot achieve separation because of the lack of distinct
eigenvalues.

Conversely, when decorrelation is carried out at , an
instantaneous output covariance matrix can be formed from

(17)

where the result in (9) has been used, and . Let
denote the output covariance matrix at convergence of

a sequential algorithm, that is

(18)
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By definition, the whitening operation implies that

(19)

where is a diagonal matrix and, since the system (19) is
in steady-state, , (19) implies that is
an orthogonal (unitary for complex case) matrix which can now
achieve separation provided that its eigenvalues are distinct and
nonzero. Moreover, the columns of are the eigenvectors of

.1 This leads to the following theorem.
Theorem 2: Provided that Corollary 1 holds, the eigenvalues

of are distinct and nonzero.
Proof: Pre- and postmultiplying (19) by and re-

spectively, we have

(20)

where is the diagonal matrix of eigenvalues of
(see Section II). Clearly, from (20), also contains the
eigenvalues of , and therefore, provided that Theorem 1
holds, its diagonal entries are distinct and nonzero.

Next, we show that whitening the output covariance matrix at
a lag , simultaneously whitens all the covariance matrices
at , thus implying that a separating matrix
can be identified, such that the columns of are the
eigenvectors shared by all output covariance matrices, including

because, since the latter converges to the identity matrix,
all invertible matrices will diagonalize it.

Theorem 3: Diagonalization of effectively amounts
to simultaneously diagonalising the covariance matrix at every
delay .

Its proof is given in the Appendix. This theorem indicates
that there exists a separating matrix such that
diagonalizes all the matrices , provided that
its eigenvalues are distinct. This diagonalization corresponds to
the simultaneous eigenvalue decomposition (EVD) of ,
and it results in the blind separation of periodic sources, which
forms the basis of a sequential algorithm developed in the next
section.

IV. SEPARATION ALGORITHM

A sequential algorithm for the separation of periodic signals
can be derived by minimizing the following information theo-
retic criterion which is an extension of the form found in [25,
cf. pp. 134–136, 255–258] (see also [10])

(21)

where denotes the absolute value, Hermitian transpose,
and complex conjugate. Further justification of this cost
function is given after the derivation of the update (29). Note
that we perform the derivation for the complex case to obtain
the most general form of the algorithm. Differentiation of the

1The matrix R (k; T ) converges to D̂(T ) rather than � (T ) because of
the indeterminacies of scaling and permutation, which are due to the nonunique-
ness of the eigenvectors contained in P .

first term on the right-hand side (RHS) of (21) with respect to
the separating matrix leads to

(22)

The second term on the RHS of the cost function is differentiated
following the approach in [25, cf. 135]

(23)

where it has been assumed that

(24)

In matrix form, (23) becomes

(25)

Employing the natural gradient descent method, the gradient of
(21) is obtained from (22) and (25) as

(26)

(27)

where the assumption (24) has again been used, but for
convenience the approximation in (25) is not explic-
itly shown. In terms of the output covariance matrix

, (27) becomes

(28)

This leads to the following learning rule:

(29)

where is a positive step-size parameter.
The role of in the

right-hand side (RHS) of (21) is to avoid a zero solution
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for and this is clear in (29) by the appearance of
the identity matrix, which ensures that in steady state, i.e.,

, the outputs
, will have unity power. The second term in

the RHS of (21) is present to ensure that at the chosen lag , the
output signals have minimum sum absolute cross correlation
values. Its role is better understood from the update (29), which
demonstrates in steady state the average (Hermitian) output
covariance matrix at lag will be diagonalized.

To analyze the stability, we first show that the cost function
(21) is a nonnegative function. Denote by the entries
of the eigenvalues of , according to
Hadamard’s inequality (see, e.g., [25, cf. p. 255]), we have

(30)

The approximation in the last term of (30) is on the basis of
appropriate choice of . According to the monotonic property
of exponential (logarithmic) functions, it is thereby straightfor-
ward to check the nonnegativity of (21). Since update (29) is
derived by following the natural gradient learning rule (26), its
stability can be readily attained (see, e.g., [25, cf. pp. 168–170]).
To this end, we consider its corresponding continuous system
(denoted by time index ). Denote , the ele-
ments of , we obtain from (26) that

(31)

where zero is obtained if and only if , which
means the solution to is an equilibrium of (21). In other
words, the learning (29) will force the algorithm to converge
to a stationary point. As is convention to sequential algorithms,
since our algorithm has the simple form of a recursive update,
the stationary points will correspond to the points for which
the average adjustment term (of the update equation) goes to
zero. That is, the update (29) ceases if

. Certainly, the algorithm requires an appropri-
ately small adaptation gain to converge to a stationary point
of the cost function. The same analysis is also applicable to the
subsequent modified update (37).

The practical implementation of the algorithm in (29) has a
drawback: it may fail to converge when is not pos-
itive definite, because the nature of the optimization problem
may vary during the adaptive procedure, i.e., switching be-
tween searching for a minimizer or maximizer within parameter
space, causing some of the elements of the estimated separating
matrix to oscillate between positive and negative values. A
solution to this problem is to replace in (29) with

, where (see [25, cf. pp. 321–325] and
[31])

if
otherwise

(32)

Thus, (29) becomes

(33)

Theorem 4: The matrix used in (33) is
guaranteed to be positive definite.

We leave the proof to the Appendix. It should be noted more-
over that the matrix is Hermitian, which
implies that it does not offer enough degrees of freedom for
source separation. On the other hand, the matrix

(34)

may not be Hermitian when the elements of have
different signs, because it involves the multiplication of both

and by , so that a sufficient
number of degrees of freedom can be preserved for the solution
of the BSS problem.

For the practical implementation of (33), the matrix
is replaced by its instantaneous estimate, given

by

(35)

where takes the form of (2) and
. Likewise, is given by

if
otherwise

(36)

Therefore, (33) becomes

(37)

And provided the dynamic behavior of is such that
generally retains a nonsymmetric but positive defi-

nite form during adaptation, the stationary point of (37), i.e.,
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, leads to a sep-
arating solution as shall be shown by simulation.

The constraints being imposed on the magnitude of the recov-
ered signals in (37) are typically useful in resolving the scaling
ambiguity associated with BSS,2 and while they lead to good
performance when the sources have fixed magnitudes, they re-
sult in numerical instability of the algorithm when the amplitude
of the sources varies rapidly, as is often the case with applica-
tions such as biomedical measurements or audio signals, where
periods of large and small magnitude alternate (see [25, cf. pp.
321–325] and [31]). In such cases, numerical instability can be
quite serious, and results in failure of the algorithm. Following
the approach in [26], this drawback can be resolved by replacing
(37) with the learning rule

(38)

where is selected according to (39), shown at the bottom
of the page, so that its role is to eliminate the diagonal elements
within the brackets of the RHS term of (38).

An important point to note is that the algorithms proposed
here have the ability to separate source signals for any arbitrary
value of the lag . Thus, although the methods have been de-
rived for the case of temporally periodic sources, provided that
the source covariance function is nonzero ( , hence
avoiding zero eigenvalues), and that the sources have different
spectral characteristics (resulting in distinct eigenvalues), the as-
sumption that the lag equals the fundamental period of period-
icity can be relaxed.

V. SIMULATION RESULTS

Computer simulations were carried out to illustrate the perfor-
mance of the proposed method, which was compared to that of
the EASI algorithm as a benchmark higher order statistics-based
sequential algorithm, given by [8]

(40)

where is a positive step-size parameter, and is an odd
nonlinear function of the output . Note that, we typically
use for sub-Gaussians, for super-Gaus-
sians. In our experiments, we address all sub-Gaussian signals

2The ambiguity of scaling is only partly resolved when the normalization con-
dition is imposed on the independent components, since this does not eliminate
the sign ambiguity, implying that it is still possible to multiply a source by -1
without altering the mixing model.

Fig. 1. Original source signals (s (k) and s (k)) and mixed signals (x (k)
and x (k)).

except in the ECG simulations. The EASI algorithm explicitly
exploits the second- and higher order statistics of the source
signals, since the first two terms within the brackets on the RHS
of (40) effectively perform prewhitening on the output signals,
while the others measure the degree of independence between
them.

A. Restoration of Independence

Fig. 1 shows the original sources, and the mixtures obtained
with a randomly generated stationary mixing matrix. The
sources were a sign, and an amplitude-modulated signal, given
by

where , and
. Note here, is the sampling period, and

are normalized frequencies.
Separation was performed with (37), when

where is the upper sideband of source
, and with the EASI algorithm (40), when . In

addition, the mixtures were decorrelated. In Fig. 2, the decorre-
lated mixtures are denoted by and , while
and represent the signals recovered with the EASI algo-
rithm, and and are the outputs of the algorithm
(37). The results illustrate that, as expected, zero lag decorrela-
tion alone does not separate the sources, whereas the proposed
method recovers the original components, and preserves wave-
form similarity in a similar fashion as the EASI algorithm.

if

otherwise
(39)
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Fig. 2. Decorrelated mixtures (y (k) and y (k)), and signals recovered with
the EASI algorithm (y (k) and y (k)), and with the algorithm (37) (y (k)
and y (k)).

Fig. 3. Scatter plots of the source signals (upper plot), the mixtures (lower left
plot), and the mixtures following decorrelation (lower right plot).

The upper plot in Fig. 3 depicts the support of the joint proba-
bility density function (pdf) of the source signals, while the sup-
port of the joint pdfs of the mixtures and the decorrelated mix-
tures are shown, respectively, in the lower left and lower right
plots. The shape of the joint distribution of the source signals
clearly indicates that they are statistically independent, since the
knowledge of the value of one does not convey any information
about the value of the other. The signals generated by the mixing
procedure, and , are no longer independent, and the joint
pdf now has the form of a parallelogram; also, the lower-right
plot shows that following zero lag decorrelation the signals are
still dependent. The performance of the periodic BSS algorithm

Fig. 4. Performance indexes obtained with the algorithm (37) and with
the EASI algorithm (40) (uppermost plot), and scatter plots of the output
signals. The middle plots show the scatter plots of the sources separated with
the proposed periodic BSS algorithm (right) and with EASI (left) for all the
samples, while the lowermost plots represent the scatter plots of the sources
recovered with the two algorithms for samples 500 to 5000. Note that only a
single trial is conducted in this simulation.

(37) and EASI (40) was compared in terms of the performance
index (PI), defined as [27]

(41)

where , and is the number of source
signals. Generally, a low PI indicates better performance. The
performance indexes for the two methods are compared in the
upper plot of Fig. 4, which illustrates that the proposed algo-
rithm is capable of separating the source signals, with a per-
formance comparable to the behavior of EASI. The middle and
lower plots in Fig. 4 show the support of the joint probability
density function of the output signals. The middle plots repre-
sent the support of the joint pdf of the sources separated with the
proposed periodic BSS algorithm (right) and with EASI (left)
for all the samples, while the lowermost plots illustrate the sup-
port of the joint pdf of the outputs for . The
results show that, unlike conventional pre-whitening, the peri-
odic decorrelation algorithm proposed here has the necessary
degrees of freedom to allow it to rotate the joint pdf of the re-
covered sources, as well as decorrelate the signals, leading to
the restoration of statistical independence.

B. Several Gaussian Sources

In this section we consider the performance of the proposed
algorithm when more than one source is Gaussian, and com-
pare its behavior to that of the EASI algorithm. Three Gaussian
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Fig. 5. Five original source signals: three Gaussian and two sub-Gaussian.

Fig. 6. Output signals obtained with the EASI algorithm (40) when the original
sources are as shown in Fig. 5.

sources with zero mean and unit variance, and two sub-Gaussian
signals (Fig. 5), given by

where , and ,
were mixed by a randomly generated mixing matrix, and
separation was performed with the periodic BSS algorithm (37)
with , and EASI with .
It was observed that, as expected, the EASI algorithm could
not recover the original sources due to the presence of several
Gaussian components (Fig. 6), and in particular it was found to
fail when the step-size parameter was increased. Conversely,
the proposed algorithm extracted the two periodic sources, as
shown in Fig. 7.

C. Monte Carlo Simulation and Real Signals

The two sources in Fig. 1 and a signal uniformly distributed
in were mixed by a 3 3 mixing matrix, and zero-mean
white Gaussian noise was added such that the signal-to-noise

Fig. 7. Signals recovered with the periodic BSS algorithm (37) when the
original sources are as shown in Fig. 5.

Fig. 8. Performance index obtained with the proposed periodic BSS algorithm
and EASI, averaged over 100 independent trials. The average PIs over the last
3000 samples are 5:6� 10 and 3:9� 10 for the periodic BSS and EASI
algorithms respectively.

TABLE I
FINAL SEPARATION PERFORMANCE OF THE PROPOSED ALGORITHM AS

COMPARED WITH EASI AND SOBI ALGORITHMS

ratio was 5 dB. Fig. 8 illustrates the performance index resulting
when separation was performed with the proposed periodic BSS
algorithm (37), and the EASI algorithm (40), averaged over 100
independent trials. It shows that the behavior of the proposed
method is similar to that of EASI, both during and following
initial convergence.

To compare the final separation performance, we conducted
two groups of tests. In the first test, the two sources in Fig. 1 were
mixed together using a randomly selected 2 2 mixing matrix.
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Fig. 9. Eight-channel cutaneous potential recording from a pregnant woman.
The signals denoted x (t)–x (t) were recorded from the abdominal area, while
the lowermost recordings x (t)–x (t) were obtained from the thoracic area.

In the second test, besides these two sources, we chose another
source signal as used in Fig. 8, and generated the mixtures using
a 3 3 mixing matrix. The proposed algorithm, the EASI and
SOBI algorithm were then applied respectively to separate the
mixtures. Note that, the step size in both the proposed algorithm
and EASI is set to 0.002 in both tests. Each test was conducted
three times for the separation of different mixtures generated by
three different mixing matrices. Table I shows the final separa-
tion performance measured by the average of the performance
indexes of all independent tests. It is clearly seen that the sep-
aration performance of the proposed periodic BSS algorithm is
comparable to that of the EASI algorithm, which would break
down with multiple Gaussian distributed sources. The final sep-
aration performance of SOBI is, of course, more accurate due to
its block-based nature. However, this is in contrast to its com-
putational complexity and latency due to the need to acquire a
block of data.

The proposed algorithm is next used to address the fetal
electrocardiogram (FECG) extraction problem. Fig. 9 shows
the eight-channel cutaneous potential recording of a pregnant
woman, obtained when eight electrodes are placed at different
positions on the body of an expectant mother. The electrocar-
diogram measurements were recorded over 5 s, and sampled at
500 Hz3 and represent mixtures of FECG and maternal electro-
cardiogram (MECG) contributions, as well as noise. The fetal
heartbeat component, noise and respiratory motion artefacts
are noticeable in the abdominal recordings, denoted in Fig. 9 as

– , whereas FECG contributions are not visible in the
thoracic measurements, which are dominated by the maternal
heartbeat because of the distance between the foetus and the
chest leads.

In order to apply BSS methods to FECG extraction, it has
been shown in [28], [29] that the separation of MECG and

3Contributed to ICA Central http://www.tsi.enst.fr/icacentral/base_single.
html by L. De Lathauwer, K. U. Leuven, Belgium.

Fig. 10. Signals recovered with the algorithm (38), showing fetal components
(y (t) and y (t)), maternal ECG components (y (t); y (t), and y (t)),
extracted respiratory motion (y (t)) and noise sources (y (t) and y (t)).

FECG components can be formulated as a BSS problem. The
algorithm (38) was used to perform source separation, since
the amplitude of the ECG measurements clearly varies rapidly,
with periods of large and small magnitude alternating. Fig. 10
shows that the proposed algorithm extracts two fetal ( and

) and three maternal ECG components ( , and
), as well as extracting respiratory motion and

other noise sources ( and ).

D. Computational Load

One of the advantages of our proposed algorithm, as is con-
vention for sequential algorithms, lies in its computational sim-
plicity. To give a fair evaluation of the computational load of the
proposed algorithm, we quantify its required operations (multi-
plications and additions), which are compared with those of the
EASI and SOBI algorithms. It is worth noting that, due to the
different strategies being taken for sequential algorithms (e.g.,
the proposed periodic BSS or EASI) and block algorithms (e.g.,
SOBI), it would be meaningful to compare the required (at least
approximate) computations for approaching a similar separation
quality (quantified by PI in this study), rather than to compare
the required computations for each iteration in sequential al-
gorithms with those in the whole block algorithms. Since the
achievable final PI’s are different for these approaches, as ver-
ified in Section V-C, it would be more appropriate to compare
the required computations for achieving the stable separation by
sequential algorithms, i.e., after their convergence, with those of
the block algorithms. In Table II, both the general formulation
of the required operations (denoted by the parameters given in
previous sections) and also an example corresponding to Table I,
are shown, where is the number of time lags in the SOBI al-
gorithm, and is the length of the whole data sample, is
the number of the required data samples for the sequential al-
gorithms to converge. Note that, in both test 1 and 2, takes
approximately 1300, . The “ ” in Table II de-
notes the least operations required for SOBI. From Table II, it
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE PROPOSED ALGORITHM AS COMPARED WITH EASI AND SOBI ALGORITHMS

Fig. 11. Behavior of the proposed algorithm as a function of the error in the
selection of the lag � . The plots show the mean and standard deviation of the
PI value achieved at convergence, denoted as PI , over 100 independent trials.
The upper plot shows the results obtained when an error varying between 0% to
10%, in steps of 0.25%, is present, while the lower plot illustrates performance
when the error varies between 0% to 1%, in steps of 0.05%.

is observed that even when we count all the required iterations,
the periodic BSS is still less complex than the SOBI algorithm,
and computationally comparable to the EASI algorithm.

E. Robustness to Lag Selection

In this section we investigate the behavior of the proposed al-
gorithm when the selected lag does not correspond to the exact
fundamental period of one of the source signals. For the re-
sults presented here, two sinusoidal sources and
were mixed by a real-time invariant mixing matrix, and zero
mean white Gaussian noise was added such that the signal to
noise ratio was 20 dB. The period of source was fixed
at samples, while the period of the first source was
varied such that samples, where repre-
sents the error in the selection of the lag , which was fixed at

100 samples. Fig. 11 shows the average PI value, over 100
independent trials, and its standard deviation, achieved during
separation, following convergence of the algorithm, denoted as

. The upper plot illustrates the behavior of the proposed al-
gorithm for samples, corresponding
to an error in the lag selection (error in the delay) varying be-
tween 0% and 10%, in steps of 0.25%. It shows that, in spite of

the increasing error, following convergence, the performance of
the algorithm is fairly stable, leading to a PI value of approxi-
mately , which increases to when the error
is roughly above 8%, and a standard deviation of approximately

, increasing to for samples. The
lower plot shows the results obtained for an error varying be-
tween 0% and 1%, in steps of 0.05%. The low PI values and
small fluctuations obtained following convergence in the simu-
lations described, indicate that the algorithm is robust to errors
in the selection of the lag. Since only a 10% error in either di-
rection has been considered, an error tolerance of 10% has been
demonstrated.

VI. CONCLUSION

In this paper a novel sequential algorithm for the blind sepa-
ration of a class of periodic source signals is introduced, which
exploits the temporal periodic nature of the source signals, and
thus performs separation based only on second-order statistics.
This algorithm is based on the use of the minimum period of the
observed sources as a systematic method for lag selection when
sequential blind source separation is performed based only
on second-order statistics. Computer simulations have shown
that periodic decorrelation allows the recovery of the original
sources, and restoration of statistical independence. Moreover,
Monte Carlo simulations have shown that the behavior of the
proposed algorithm is comparable to that of EASI, during and
following initial convergence. A normalized version of our
proposed algorithm could easily be developed.

When several Gaussian source signals were present, it
was found that the proposed algorithm extracted the periodic
sources, while the EASI algorithm could not recover the
original signals. The fetal ECG extraction problem was also
addressed using the proposed method, which was found to
separate the fetal and maternal ECG components, as well as
extracting respiratory motion and other noise sources. Finally, it
was shown that the algorithm is robust to errors in the selection
of the lag. In particular, an error tolerance of approximately
10% was demonstrated. Furthermore, the proposed algorithm,
in steady state, is shown to have similar separation performance
to the EASI algorithm.

APPENDIX

A. Proof of Theorem 3

The proof follows from the fact that if two matrices and
can be diagonalized, then they share the same eigenvector
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matrix if and only if [24]. Let and
diagonalize and respectively, for any integer
. Then

(42)

(43)

Multiplying the two correlation matrices, we have

(44)

(45)

Both and are diagonal; therefore we have
. Hence, and

share the same eigenvector matrix

(46)

Thus, consider the product of all output autocorrelation matrices
, and the set of matrices that diagonalize

, such that in general

(47)

Since each autocorrelation matrix is diagonalized, the product
of all matrices commutes. Expanding (47), gives

From (42) and (43), we have

Hence, diagonalizing simultaneously diagonalizes the
output covariance matrix at every delay .

B. Proof of Theorem 4

This can be shown by writing the output covariance matrix
following convergence, in terms of

where . Since is
the eigenvalue matrix of , multiplication by
does not change its shape, but it simply changes the sign of
the eigenvalues when they are negative. Hence, the eigenvalues
of are the diagonal entries of , and are
given by

(48)

where and are, respectively, the diagonal elements
of and . Thus, from (32), (48) becomes

(49)

which is always positive and real valued. It is straightfor-
ward that, during transient response, multiplication by the
matrix ensures that the diagonal elements of

are always positive.
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