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Abstract

Noninvasive detection of fetal electrocardiogram (FECG) from abdominal ECG record-
ings is highly dependent on typical statistical signal processing techniques such as
independent component analysis (ICA), adaptive noise filtering, and multichannel blind
deconvolution. In contrast to the previous multichannel FECG extraction methods,
several recent schemes for single-channel FECG extraction such as the extended Kalman
filter (EKF), extended Kalman smoother (EKS), template subtraction (TS), and support
vector regression (SVR) for detecting Rwaves on ECG, are evaluated via the quantitative
metrics such as sensitivity (SE), positive predictive value (PPV), F-score, detection error
rate (DER), and range of accuracy. A correlation predictor that combines with multivar-
iable gray model (GM) is also proposed for sequential ECG data compression, which
displays better percent root mean-square difference (PRD) than those of Sabah’s scheme
for fixed and predicted compression ratio (CR). Automatic calculation on fetal heart rate
(FHR) on the reconstructed FECG from mixed signals of abdominal ECG recordings is
also experimented with sample synthetic ECG data. Sample data on FHR and T/QRS for
both physiological case and pathological case are simulated in a 10-min time sequence.

Keywords: noninvasive detection, FECG, FHR, gray prediction, data compression

1. Introduction

Fetal electrocardiogram (FECG) and fetal heart rate (FHR) represent crucial indices for clinical

examination and medical diagnosis during pregnancy [1–7, 9–11, 20, 31–36]. In the past

decades, multiple systems dynamically monitoring FECG [5, 6, 15, 19, 20, 25–27, 29–31, 35]

had been designed for the use of prenatal diagnosis in fetal heart disease, real-time surveillance

during both natural and cesarean delivery, as well as the antenatal and intrapartum assess-

ment. Due to the large amount of FECG data for processing in successive monitoring time,

enormous storage equipment with durable maintenance is necessary in the design of practical

devices [8]: for instance, the double-channel Holter system requires a memory of 82 megabits

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for sampled data storage with the resolution of 11 bits and 360 Hz for sampling rate per

channel every day. Hence, the design of dynamic system urges solutions for better improve-

ments in practical use for noninvasive FECG detection and compression in portable devices

and sensing utilities. A variety of typical FECG extraction techniques [2–5, 9, 14–17, 19, 20,

23–26, 35, 36] had been established for both theoretical study and subsequent practical hard-

ware design [18, 25, 29]. A few classical compression methods [13] introduced for efficient data

restoration include polynomial fitting, predictive coding, and orthogonal transform-domain

compression, where the principle of data compression is to minimize redundancy at compar-

atively low penalty of distortion and losing useful information [8]. The correlative models

exploiting the correlation information between adjacent QRS waves for sequential prediction

suggest an efficient scheme for FECG data compression [8].

The classical schemes for noninvasive FECG extraction over the past 30 years mainly comprise

of adaptive signal processing with noise cancellation, spatial filtering techniques, and singular-

value decomposition (SVD), to name a few [19, 25]; while the major shortcomings of these

schemes were high sensitivity of fetal location and maternal movements, difficulties in

extracting P/Twaves, and incomplete capture of ECG diagrams [19, 35, 36]. In statistical signal

processing, independent component analysis (ICA) [10, 16] aims at computationally separat-

ing a mixed signal (with multivariate components) into non-Gaussian signals, where the

decomposed signals are assumed to be statistically independent within each other. A variety

of methods have been developed for noninvasive FECG extraction since the ICA technique

was applied in this research field such as the fourth-order cumulant-based scheme with

diagonal approximation proposed by Lathauwer et al. [16], the Joint Approximate Diagonali-

zation of Eigen-matrices (JADE) scheme by Zarzoso [34], Hyvarinen’s fast invariant-point

method with the ICA principle [10], and the wavelet transform-based infomax algorithm by

Jafari and Chambers [12]. Theoretical study on noninvasive FECG extraction methods also

employed the ICA-based JADEmethod with high-order blind identification, the joint detection

schemes such as the JADE algorithm with multiple unknown signal extraction, multichannel

blind deconvolution [37], and applying the sparse representation of FECG components

derived from ICA in the compressed domain [21]. While some previous techniques for nonin-

vasive FECG detection had been considerably mature enough, the challenging issues [4, 28]

that have been recognized consist of saving computational cost in abdominal ECG recordings,

performing efficient restoration on ECG data, and realizing the practical design (as oriented for

low cost, low power, and high integration [29]) for portable FECG monitoring systems. As a

result, meeting the balance of recent technical advances with the experimental design on

practical systems for noninvasive FECG data-processing devices becomes a crucial task within

our investigation.

In this chapter, we present a general study on several categories of algorithms in the field of

noninvasive FECG detection, and carry out a performance analysis via several metrics on the

state-of-the-art schemes for extracting FECG using sample databases [2, 19, 21]. We proposed a

unified approach for the dynamic system design on FECG detection, with a block diagram on

noninvasive ECG extraction by collaborating data-processing techniques on weak signal detection
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and parameter estimation [8]. Utilizing the correlations between adjacent QRS waves of mixed

FECG and maternal ECG (MECG), we derived an improved scheme for ECG compression by

predicting minimum mean-square error (MMSE), performing integer wavelet transform, quanti-

zation, run-length coding, and arithmetic coding for better realization of FECG data compres-

sion [8]. Considerably high compression ratio (CR) with feasible lower distortion in contrast to

Sabah’s scheme is achieved in condition of preserving the most useful message in the compressed

FECG data sequence. Simulations rely on the GM(1, 1) model for gray prediction on CR and

percent root mean-square difference (PRD) [8]. We also use the sample synthetic ECG data to

fulfill the task of automatic estimation on fetal heart rate (FHR) from the reconstructed FECG.

2. Methodology

The waveform of ECG as depicted in Figure 1 comprises P, T waves, and the central QRS

interval in a regular period of time [8, 24]. Since continuous ECG monitoring explicitly indi-

cates the exposure of regular heart rate, heartbeat rate with amplitude and duration, prior

information on the symptoms of potential heart disease is the most important data reference

on medical diagnosis. FECG represents weak signals containing a few strong interferences

such as MECG with baseline wander, power line interference and additive noise, while the

Figure 1. A diagram on the waveform of ECG in a normal period.
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noninvasive techniques aim to eliminate these strong disturbances by directly or indirectly

measuring FECG via a few properly located electrodes on the maternal abdomen during

pregnancy.

Previous schemes such as fetal scalp electrode monitoring, belong to the category of invasive

FECG detection (by either scalp electrode or vaginal ultrasound). However, the invasive

schemes have obvious shortcomings such as causing pains and injury to the maternal body,

and inducing potential risks on uterus infection to the developing fetus. The fetal ECG detec-

tion schemes discussed in this chapter belong to noninvasive techniques, indicating no damage

or penetration through maternal or fetal skins.

In general cases on noninvasive detection, the mixed ECG was acquired by multiple electrodes

in different locations from both thoracic and abdominal regions on a pregnant woman. For

instance, the common diagnostic tool for noninvasive ECG recordings usually adopts 8-lead or

12-lead electrode placement (with symmetric electrodes) [2, 20, 41], which had been derived via

clinical validation in a couple of periods. The FECG components in multi-lead abdominal

recordings are mutually dependent with each other on the fetal position and the electrical

conduction toward the maternal abdominal skin. Due to the variations of each component,

calculating linear combinations of multichannel outputs generally enhance the signal-to-noise

ratio (SNR) of FECG [20]. Meanwhile, since the main electrical axis of the fetal heart position is a

priori uncertain, in order to increase the possibilities that the calculated nonphysiological leads

contain significant FECG components, it is often chosen to compute a set of four linear combi-

nations for equal weights, that is, the position angles correspond with 0�, 45�, 90�, and 135� for

the 8-lead placement [2, 20]. Similarly, a 12-lead ECG placement (12 leads calculated using 10

electrodes, in which 6 chest electrodes provide information on the heart’s horizontal plane and 4

limb electrodes on the heart’s vertical plane) illustrates a more cohesive diagram on the accurate

electrical activity of the heart by recording information through 12 different perspectives, where

the instruction with specific details on the 12-lead placement guide was illustrated in Ref. [41].

Figure 2(a) and (b) illustrate the typical 8-lead electrode placement [2, 20] for noninvasive FECG

detection and 12-lead electrode replacement [41] for ECG monitoring, respectively.

Among the representative FECG extraction schemes as mentioned above, while blind source

separation (BSS) through ICA [16] was previously regarded as having achieved considerably

satisfactory results, the demands for multiple signal inputs (typically 8 channels), in addition

to the pre-assumption of linearity between MECG and maternal component in the abdominal

ECG recordings and monitoring, were put forward as setbacks toward real-time needs in

practical implementations [19]. While simulations on the actual relationship between MECG

and maternal component in the abdominal ECG were recorded as single-channel inputs, a few

other nonlinear schemes proposed recently can be enumerated as given below: the Bayesian

filtering framework using the modified dynamic models via several model-based filters such

as the extended Kalman filter (EKF), extended Kalman smoother (EKS), unscented Kalman

filter (UKF), and wavelet denoising for synthetic ECG data [22, 26]; the ANFIS system [4], in

contrast to normalized least mean squares and polynomial networks, for the identification and

extraction of FECG from the aligned MECG; the cascaded framework of EKF (for MECG

estimation) with ANFIS (for FECG extraction) on both synthetic and actual ECG data in
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contrast to single EKF, EKS [3], template adaptation (TA) [2], nonparametric detection scheme,

and modified template subtraction on sequential data processing [19]; the singular spectrum

analysis-based fetal heart signal extraction [9], the fetal heartbeat detection algorithm by the

integration of Hilbert transform and nonlinear state-space projections [36], and by supporting

vector regression [35]; and a few other clinically adopted noninvasive FECG detection methods

from multilead abdominal ECG recordings, see Refs. [4, 5, 15, 17, 20, 33], and the references

therein.

For nonstationary signals such as ECG, classical evaluation criteria such as the MMSE princi-

ple and predictive coding may generate considerably large prediction errors especially when

the amplitude of signal depicts quick fluctuation [8]. Consider two adjacent QRS waveforms

with strong relativity in successive phases, let x(n) and y(n) be the input and output of ECG

signals, respectively; we observe a sequential data of p points of the former QRS waveform in

order to predict the present waveform at the minor cost of generating prediction errors. The

predictor output is expressed as [8]:

yðnÞ ¼
Xp

i¼1

αixðn� i� TÞ (1)

where αi denotes the coefficients of system cascades which can be obtained by Yule-Walker

equations and T stands for the average time period between the intervals of R waves.

The prediction error ε(n) can be calculated via [8]

εðnÞ ¼ xðnÞ � yðnÞ ¼ xðnÞ �
Xp

i¼1

αixðn� i� TÞ (2)

where a set of consecutive p points represents the orders of correlation predictor.

Figure 2. The illustrations of electrodes on: (a) configuration of 8-lead placement for fetal ECG detection; (b) configura-

tion of 12-lead placement for ECG monitoring: the 6 chest electrodes V1–V6 show the locations on precordial placements,

the 4 limb electrodes show the locations on extremity placements (RA–right arm, LA–left arm, RL–right leg, LL–left leg).
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Since the prediction is processed between two adjacent QRS waveforms, let us denote such

kind of prediction as the twin-R correlative prediction [8]. In mean-square scales, we express

the energy Ep of prediction errors as [8]

Ep ¼ E½ε2ðnÞ� ¼ E xðnÞ �
X

p

i¼1

αixðn� i� TÞ

" #2
8

<

:

9

=

;

¼ E x2ðnÞ � 2
X

p

i¼1

αixðnÞxðn� i� TÞ þ
X

p

i¼1

αi

X

p

j¼1

αjxðn� i� TÞxðn� j� TÞ

8

<

:

9

=

;

¼ Rð0Þ � 2
X

p

i¼1

αiRðiþ TÞ þ
X

p

i¼1

αi

X

p

j¼1

αjRðj� iÞ

(3)

The correlation coefficients of input ECG waves can be calculated via [8]

RðmÞ ¼
1

N

X

N�1

n¼1

xðnÞxðn�mÞ (4)

Simplifying Eq. (4) by taking
∂Ep

∂αi
¼ 0 to obtain a minimum for Ep (m ¼ 0, 1,…, p �1) yields [8]

X

p�1

i¼1

αiRðm� iÞ ¼ Rðmþ TÞ, i ¼ 0, 1,…, p–1 (5)

Constructing the matrix of correlation coefficients by combining Eqs. (3)–(5) yields the linear

algebraic equations as follows [8]

Rð0Þ Rð1Þ ⋯ Rðp� 1Þ

Rð1Þ Rð0Þ ⋯ Rðp� 2Þ

⋮ ⋮ ⋱ ⋮

Rðp� 1Þ Rðp� 2Þ ⋯ Rð0Þ

2

6

6

4

3

7

7

5

α0

α1

⋮

αp�1

2

6

6

4

3

7

7

5

¼

RðTÞ

RðT þ 1Þ

⋮

RðT þ p� 1Þ

2

6

6

4

3

7

7

5

(6)

Solving the equation group in Eq. (6) as above yields the numerical coefficients of each αi.

The lifting wavelet transform (LWT) has been recognized as a strong implementation when

combined with a few algorithms such as integer square zero-tree wavelet coding [8]. Splitting,

predicting, and updating symbols, are three steps in the lifting scheme of a typical LWT. The

proposed scheme is presented as follows: the first step is to split the ECG data sequence {ej}

into two sequences {oj-1} and {ej-1} that stands for odd and even numerals via [8]

split ðejÞ ¼ ðej�1, oj�1Þ (7)

Second, with respect to the predictor filter group P and the earlier even sequence {ej-1}, the odd

sequence {oj-1} is predicted by exploiting correlativity information such as [8]
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oj�1 :¼ oj�1 � Pðej�1Þ (8)

The last step of updating claims that some integral characteristics as those of integrity for the

original {ej} need to be preserved for constructing a better subset {ej-1}. As a result, we adopt an

updating filter U that exploits the discrepancy between a specific parameter (i.e., mean, vari-

ance, or wavelet vanishing moments) and {ej}, where this step is proceeded by [8]

ej�1 :¼ ej�1 þUðoj�1Þ (9)

The inverse transform of LWT for signal reconstruction can be similarly expressed via [8]

ej�1 :¼ ej�1 �Uðoj�1Þ
oj�1 :¼ oj�1 þ Pðej�1Þ
ej ¼ Merge ðej�1, oj�1Þ

8

<

:

(10)

The iteration procedures as performed in Ref. [8], applied a (4, 2) LWT for the decomposition

and reconstruction of ECG signals, which can be proceeded by [8]

oj½n� :¼ ej�1½n� þ
1

16
ðej�1½nþ 2�Þ � 9ðej�1½nþ 2�Þ þ ej�1½n� 1�Þ þ ej�1½n� 1�

� �

þ
1

2

� �

ej½n� :¼ ej�1½n� þ
1

4
ðoj½n� þ oj½n� 1�Þ þ

1

2

� �

8

>

>

>

<

>

>

>

:

(11)

where ⌊:⌋ denotes the execution of the round-off operation.

The advantages of LWT compared to other wavelet transform methods are displayed in the

following scenarios [8]: (i) less dependence for the down-sampling of low pass and high pass

signal components and easier realization on the inverse operation of LWT; (ii) reduced execu-

tion times by avoiding calculating floating points coming from the integer coefficients; (iii) the

implementation of hardware circuits is also much easier; and (iv) guaranteed quality for signal

recovery free of boundary continuation in any type.

The procedure of our proposed twin-R correlation predictor for improving sequential ECG

compression is presented as below [8]: let us denote the implement D as the first-order time

delay and Pi as the location of the ith R-wave;Aj ¼ {αj,0, αj,1,…, αj,p-1} stands for the aggregated

coefficients for the twin-R interval of the jth ECG sequence. We take the following steps to

perform this task:

Step 1. For the original ECG signal with length N, initially perform the first-order prediction to

reduce the DC components of the signals; let z(n) be the redundancy within smooth district of

the ECG samples calling for elimination, the residual term z(n) is now expressed as

zðnÞ ¼ xðnÞ � xðn� 1Þ, n ¼ 0, 1, …, N � 1: (12)

Step 2.While Pi, the locations of R-wave for each QRS waveform, have been identified, compute

each Ti by deducing Ti ¼ Piþ1 � Pi, and estimate the central position of the adjacent twin-R
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waves, where mi ¼ (Piþ1 þ Pi)/2. This step speeds up higher recognition rate and operation time,

and bears negative effects such as noise interference or baseline shift.

Step 3. Perform the correlation prediction for z(n) similar to Eq. (2):

dðnÞ ¼ zðnÞ �
Xp�1

k¼0

αj,kzðn� i� Ti�1Þ, mi � l ≤mi þ l, l ¼ min mi�1 �mi�2, mi �mi�1ð Þ=2, i ¼ 1,…, Nj:

(13)

where d(n) denotes the signal of prediction error, p and Nj stand for the order of predictor and

the R-wave counts of the jth ECG data sequence, respectively. Without loss of generality, we

adopt p ¼ 4. The kth prediction coefficient αj,k of each compressed 16-bit ECG sequence was

obtained via the splitting process in Step 1. Due to the slow drift for the QRS waveform, an

interval of 30 seconds was used to partition this data stream. Note that we implemented the

same predictors for continuous QRS waveforms of the same ECG data in order to reduce

computational cost and enhance the efficiency for ECG data compression.

Step 4. Update the (4, 2) LWT on the signal d(n) via Eq. (12), where the length of w(n) is

preserved as N. For the subband signal w(n) containing {oi(n) ¼ 1,2,3,4} and the approximated

signal e4(n), their length are constructed as N/2, N/4, N/8, N/16, and N/16, respectively.

Step 5. Perform scalar quantization, run-length coding, and arithmetic coding for w(n). While a

few zero-coefficients appear after quantization toward w(n), these successive zeros can be

removed via run-length searching so as to shorten the ECG data sequence. Variable quantiza-

tion coefficients are selected in this procedure; after run-length coding each ECG data sequence

is merged by three parts: the constructed bit streams, vector Pi for R-wave localization, and the

twin-R predictor coefficients Aj ¼ {αj,0, αj,1,…, αj,p-1}.

The flowchart of this scheme as described above is depicted in the block diagram of Figure 3,

where the prediction step is associated with the compressed ECG data stream.

Since the proposed scheme is invertible for decompression, we need to observe the correlativity

and fluctuation tendency between two sequential ECG data; hence, a Lemma is presented for the

derivation of ECG data prediction via the single-variable gray model [8].

Figure 3. The block diagram of unified twin-R predictive method for ECG sequential data compression.
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Lemma 1 [8]: Consider a stationary sequence T0 ¼ {T0(k)| k ¼ 1,…, n} ¼ {T0(1),…, T0(n)},

where k represents the time point. Let us observe a number of m sequences as reference where

Ti ¼ {Ti(k) | k ¼ 1, 2,…, n} ¼ {Ti(1), Ti(2),…, Ti(n)}, i ¼ 1, 2,…, n. Define ξk as the correlation

coefficient of the kth reference sequence with respect to the starting sequence T0 at time k,

ξk ¼
mini mink jT0ðkÞ � TiðkÞj þ ρmaxi maxk jT0ðkÞ � TiðkÞj

jT0ðkÞ � TiðkÞj þ ρmaxi maxk jT0ðkÞ � TiðkÞj
(14)

where ρ ∈ [0,1) denotes the resolution coefficient (and without loss of generality it is often

taking expectation of ρ¼ 0.5), mini minkjT0ðkÞ � TiðkÞj and maxi maxi jTiðkÞ � T0ðkÞj represents

the minimum and maximum difference value between two-levels, respectively. In the gray

system theory, ri ¼
1
n

Pn

k¼1 ξk denotes the relevance of sequence Ti to T0. Geometric similarity

on two sequences reflects the degree of correlativity.

Consider the ith sequence Ti¼ {Ti(1), Ti(2),…, Ti(n)}, the initialized sequence of original Ti is

written as T ¼ ð1, Tð2Þ=Tð1Þ,…TðnÞ=Tð1ÞÞ, and the correlation factor σi can be computed via

σi ¼
X

N

k¼1

kTiðkÞ �
X

N

k¼1

TiðkÞ
X

N

k¼1

k

n
, which has the possibility of being either positive or negative.

For instance, in the simplest case of i ¼ 1, 2, the sequential expression of Ti is formulated as [8]

Ti ¼ 1,
Tið1Þ

Tið2Þ
,
Tið1Þ

Tið3Þ
,…,

Tið1Þ

TiðkÞ

� �

, i ¼ 1, 2; k ¼ N (15)

According to Lemma 1, the degree of correlativity is measured by solving Eq. (14). Note that if

signðσ1=σnÞsignðσ2=σnÞ ¼ 1, a positive relevance is justified between T1 and T2; conversely, a

negative relevance is justified when signðσ1=σnÞsignðσ2=σnÞ ¼ �1. In more general cases such

as ECG data sequence, the correlation factor σn can be approximately estimated via [8]

σn ¼
X

n

k¼1

k
2 �

X

n

k¼1

k
2

 !,

n (16)

In the gray system theory, the single variable GM(1, 1) model is often applied to predict the

upcoming sequence number and estimate the missed numerical values between time intervals,

for the processing of ECG data, we just equalize the corresponding parameters in the time

domain, and deduce the gray predictor in the scenario as follows:

The least square (LS) update consists of a whitening procedure through constructing a differ-

ential equation in the whitening process with its estimate, and a discretization process for the

residuals, which is formulated as [8]:

dT
ð1Þ
i

dt
þ aT

ð1Þ
i

¼ u, â ¼ ða,uÞT (17)

â ¼ ðBT
i BiÞ

�1
B
T
i Y1 (18)
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Bi ¼

�
1

2
ðT

ð1Þ
i ð1Þ þ T

ð1Þ
i ð2ÞÞ 1

�
1

2
ðT

ð1Þ
i ð2Þ þ T

ð1Þ
i ð3ÞÞ 1

⋮ ⋮

�
1

2
ðT

ð1Þ
i ðn� 1Þ þ T

ð1Þ
i ðnÞÞ 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,Yi ¼

T
ð1Þ
i
ð2Þ

T
ð1Þ
i
ð3Þ

⋮

T
ð1Þ
i
ðnÞ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(19)

where Bi and Yi denote the data matrix and data vector of GM(1, 1) model, respectively.

A general solution to the matrix equations above is given by [8]

T
ð1Þ
i
ðkþ 1Þ ¼ T

ð0Þ
i
ð1Þ �

u

a

� �

eak þ
u

a
(20)

Determining the model parameters (a, u) yields the past or upcoming numerical values from

this predictive GM(1, 1) model. Note that the constructed gray model indicates coincidence

with the time-variant extrapolate prediction. In harsh conditions, due to the scarcity of prior

information and ambiguity of system on ECG data processing, this predictive GM model is

useful since only four adjacent continuous data points are needed from the least data sample.

Because the quality of FECG reflects crucial information on fetal heart rate (FHR) and its beat-to-

beat variability [9], the cascaded system design for noninvasive FECG extraction may often

involve apost-processing stage such as adaptive noise cancellation orwavelet denoising [12, 22, 34].

FHR is usually estimated via the ratio of 60 to the average time period (s) on a sequence of

adjacent intervals from R waves, while estimating FHR technically requires shaping fetal QRS

complexes by capturing data via multichannel maternal abdominal ECG recordings [2, 15, 19–

21, 23, 26, 30, 32], and by adopting a few other sensing technologies through the Doppler

ultrasound devices [37], fetal phonocardiography [1], as well as superconducting magneto-cardi-

ography [33]. Wearable devices on ECG rhythm recording via potential mapping on the wrist/

arm surface skin [42] also urge collaborative concerns from industry field toward our theoretically

proposed algorithmic study.

3. Performance metrics

The diagnostic tests in biomedical engineering often employ a set of performancemetrics in order

to evaluate the validity of tests in the subjects on study. In ECG detection, the parameters of true

positive (TP), false negative (FN), and false positive (FP) are called from the counts of detected

R-peaks. We denote TP as the number of correctly detected R peaks, FN stands for the number of

missed R peaks, and FP represents the number of noise spikes detected as R peaks. Hence, the

measures of sensitivity (SE) and positive predictive values (PPV) are formulated as [19, 30]:

SE ¼
TP

TPþ FN
� 100% (21)
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PPV ¼
TP

TPþ FP
� 100% (22)

The F-score, known as the harmonic mean of SE and PPV, is expressed as [2, 21]:

F–score ¼ 2 �
SE� PPV

SEþ PPV
¼

2� TP

2� TPþ FPþ FN
(23)

Since the total number of R-wave peaks is the sum of TP, FN, and FP, the detection error rate

(DER) is now denoted as [30]:

DER ¼
FPþ FN

TPþ FPþ FN
� 100% (24)

For each DER, the metric of accuracy ¼ 1 – DER yields the same expression as defined in

Ref. [19].

The percent root mean-square difference (PRD) represents a fidelity measure for some data

compression scheme on the reconstructed/predicted signal in contrast to the original ECG,

where the PRD value is numerically calculated as follows [13]:

PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

p

n¼1

½xðnÞ � yðnÞ�2

s

X

p

n¼1

x2ðnÞ

� 100 (25)

where x(n) and y(n) correspondingly represent samples of the original and the reconstructed/

predicted ECG data sequences and the length of sequence is p.

Regarding the compression ratio (CR) defined as the proportion of uncompressed size to

compressed size for a finite data sequence, or the ratio of uncompressed data rate to com-

pressed data rate for streaming media signals of infinite size such as video or audio [38], for

each compression scheme, there is a PRD value corresponding to a required CR.

For synthetic ECG data, consider the abdominal ECG w(n) in case of a single-channel dynamic

model, which is nonlinearly synthesized via the MECG m(n), FECG f(n), and the additive

white noise η(n), and hence, the composite signal is modeled as [19]:

wðnÞ ¼ m̂ðnÞ þ f̂ ðnÞ ¼ m̂ðnÞ þ f ðnÞ þ ηðnÞ (26)

where m̂ðnÞ and f̂ ðnÞ denote the nonlinear expressions of MECG and FECG, respectively. Since

the noise power in η(n) can be adjusted to test the performance of each noninvasive FECG

detection scheme [19, 30], for some ECG data sequence with a length of p periodical R peaks,

the fetal to maternal signal-to-noise ratio (fmSNR) can be calculated via [19]:
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f mSNR ¼ 10 log10

X

p

n¼1

½f̂ ðnÞ�2

X

p

n¼1

½m̂ðnÞ�2

0

B

B

B

B

@

1

C

C

C

C

A

(27)

Up till now, we have presented a concise study for the keynote noninvasive techniques and

quantitative metrics on FECG detection, with an emphasis on single-channel FECG extraction

via nonlinear dynamic models. We proposed a flowchart of processing ECG data sequence by

means of LWT and the unified twin-R correlation predictor by implementing GM(1,1) model

for ECG data compression.

In the next section, we will present three sets of experiments for the qualitative and quantita-

tive evaluation on several noninvasive FECG detection schemes [2, 19, 21], the proposed twin-

R correlative ECG compression scheme via a widely used ECG database [8], and automatic

FHR estimation over a sample sequence of synthetic ECG data [40].

4. Experimental results

We employ sample ECG data from several databases to perform our experimental study: the

CinC Challenging Data as referenced in Ref. [2] (also known as the Physionet challenge dataset

in Ref. [21]), a noninvasive fetal ECG database in Ref. [19], sample ECG sequences from MIT-

BIS Arrhythmia Dataset [8], and some synthetic ECG data from Dr. Igal A. Sebag’s exam-

ple [39]. The main set of experiments with demographic data on sample patients with clinical/

synthetic information were summarized in Table 1.

The first set of experiments mainly recorded the quantitative evaluations on several represen-

tative noninvasive FECG detection schemes based on single-channel abdominal ECG record-

ings. We studied the test by Panigrahy and Sahu [19] where the QRS complex of FECG

displays the most visible features after the preprocessing step of eliminating baseline wander

and power line interference from MECG, then each scheme using noninvasive FECG database

was implemented to test the detection performance within 60 s of measuring R waves.

The numerical results for SE, PPV, F-score, and DER on nine methods for FECG detection are

illustrated in Table 2, where the first column chronologically enumerated the tested FECG

detection schemes which correspond to the average score on each measure for the recorded R

waves, and the last column specified the range of accuracy over a certain length of time

duration [2, 19, 21].

From Table 2, we justify that the SE metric on eight FECG detection schemes achieved over

90% except the TA scheme; the metrics of PPVand F-score on seven schemes reached over 90%

except for SVD and TA; regarding DER, SVD shows the worst performance while it is still as

low as 18.7%. Among all the five parameters on the referred quantitative analysis, EKS þ

ANFIS displays the best overall scores for each metric, while EKF þ ANFIS indicates the

second best results on F-score, DER, and other range of accuracy.
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The second set of experiments was conducted by using the standard database on MIT-BIS

Arrhythmia [8] with some original sample data of mixed MECG and FECG. We first investi-

gate the predicted output of errors in comparison to real data from a mixed ECG sequence.

Figure 4 displays four subplots, where (a) depicts an original sequence in time interval [0:1600]

Datasets Techniques Demographic data Comments

Set 1: CinC

Challenging [2];

and Set 2:

Noninvasive FECG

databases [19]

Nine schemes on

noninvasive FECG detection

Set 1: 10 pregnant women, ages

ranging from 21 to 33 years

(27.1 � 4.3 years), gestational

age: 20–28 weeks (25.0 � 2.5

weeks).

Set 2: Uncertain number of

patients, gestational age: 21–40

weeks

Set 1: Comprises of 24 clinically

acquired abdominal recordings

(20-min each), healthy and

pathological patients were both

present while no ectopic beats

detected for either mother or fetus.

Set 2: Includes 55 multichannel

ECG recordings

Set 3: MIT-BIS

Arrhythmia

database

Both linear and twin-R

correlative predictors;

(4, 2) LWT compression;

GM(1, 1) grey prediction

Set 3: Sequential ECG data on

25 men aged 32–89 years and

22 women aged 23–89 years

were included in the subjects, in

which approximately 60% were

inpatients.

Set 3: Contains a sum of 48 half-

hour excerpts of two-channel, 24-

hour ECG recordings selected from

47 subjects (there are two records

from the same subject) studied by

the BIH Arrhythmia Laboratory at

MIT in 1975–1979.

Set 4 and Set 5:

both samples on

synthetic maternal

and fetal ECG

data;

Adaptive least-mean-square

(LMS) or recursive-least-

square (RLS) noise

cancellation; dynamic

thresholding

Set 4: Provides no specific

details on the average

gestational age, typically in the

third trimester (28–40 weeks),

normal pregnancy;

Set 5: Gestational age of fetus

are �40 weeks (right before

delivery), including samples of

physiological and pathological

fetus.

Set 4: Synthetic data simulating

maternal heart rate of 80–90 bpm

with peak voltage 3.5 millivolts and

fetal heart rate distributed from 120

to 160 bpm with peak voltage

�0.2 millivolts.

Set 5: similar synthetic data with

maternal heart rate of 65–85 bpm

and fetal heart rate of 110–150 bpm

and T/QRS range of 0.05–0.1 [43].

Table 1. Summary on the main set of experiments for noninvasive techniques on ECG detection and monitoring.

Detection scheme SE (%) PPV (%) F-score (%) DER (%) Range of accuracy (%)

SVD 90.2 89.2 89.7 18.7 70.6–88.3

EKF 91.5 93.3 92.4 14.2 78.1–97.5

TS 92.0 90.9 91.5 15.7 71.3–91.9

Nonparametric 93.2 92.1 92.7 13.7 79.1–92.3

EKS 92.6 93.6 93.1 13.0 79.1–92.5

TA 86.3 85.5 85.9 16.9 74.8–93.1

EKF þANFIS 92.8 94.9 93.8 11.8 81.1–94.2

EKS þ ANFIS 93.8 96.0 94.9 9.80 83.8–97.6

CS-based ICA 92.5 92.0 92.2 16.5 80.2–96.4

Table 2. Quantitative scores of average SE, PPV, F-score, DER, and range of accuracy on noninvasive FECG detection

schemes using a sample FECG database (duration ¼ 60 s).
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of the extracted FECG, (b) illustrates the first-order linear prediction, (c) presents the fourth-

order linear prediction, and (d) shows the output of twin-R correlative prediction. We justify

that the fourth-order predictor contains more false detections but less average errors compar-

ing to the first-order predictor, while the proposed twin-R correlation predictor shows reduced

average errors in contrast to the former two linear predictors [8].

We applied LWT for sequential ECG compression in time interval [400:1000] with additive

randomwhite noise (fmSNR¼�10 dB). Figure 5 displays the original ECG and its compressed

output. Comparing Figure 5(b) to Figure 5(a), we justify that the compressed ECG preserved

most details of the original data with mild penalty of energy lost in the amplitude which comes

from the quantization error as well as the loss from round-off decomposition in LWT.

Let us employ the compression ratio (CR) and percent root mean-square difference (PRD)

[8, 12] to measure the quantitative compression performance on sequential ECE data: the tests

as described below randomly selected 24 cases out of 48 from MIT-BIS Arrhythmia Database

as testing samples. The proposed scheme recorded PRDs in a range of variable CRs with

different quantization coefficients in comparison to those obtained by the Sabah’s method.

(a)

(b)

(c)

(d)

Figure 4. (a) Originally detected FECG; sequential data output by: (b) single linear prediction; (c) fourth-order linear

prediction; (d) twin-R correlative prediction. Peak voltage denotes the location of R waves.

Figure 5. Proposed scheme: (a) original samples (SNR ¼ 10 dB); (b) compressed output via (4, 2) LWT.
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We averaged each numerical value of PRD that corresponds to different CR, and enumerated

the numbers on both the two schemes in Table 3. From the column comparison, we justify that

by gaining the same CR ranging from 2.0 to 19.0, our scheme achieved much smaller PRDs

than those of Sabah’s, which suggests availability of achieving lower distortion rate by the

proposed correlative prediction.

While the CR is under determination for both schemes on compression, let us consider CR as

time points and PRD as the sequential output, a GM(1, 1) for the “time-sequence” T1, T2 is now

constructed in order to obtain the predictive value of PRDs. From Eqs. (14) to (16), we are able

to justify the positive correlativity between T1 and T2. From Eqs. (17) to (20), the solution to

predictive GM(1, 1) model after LS updates and iterations is formulated as [8]:

T1 : T1
ð1Þðkþ 1Þ ¼ ð2:10� 328:91Þe�0:0026784k þ 328:91 (28)

T2 : T2
ð1Þðkþ 1Þ ¼ ð1:49� 150:95Þe�0:0049531k þ 150:95 (29)

Table 4 illustrates each value of the predicted PRDs obtained by our scheme versus Sabah’s in

condition of “extrapolated” and “interpolated” CRs. From column comparison, we justify that

the GM(1, 1) prediction model performs well for the “extrapolated” CRs and presents closer

predicted results in contrast with those of real PRD values in Table 3; most notably, if CRs

become large enough, higher order polynomial fittings can be less reliable than predicting the

“interpolated” time points while the functional fittings make less sense for extrapolated points,

that is an auxiliary reason for using the gray system model on prediction.

CR 2.0 3.0 5.0 7.0 9.0

PRD Sabah 2.10 3.22 4.71 6.09 7.68

Proposed 1.49 1.81 2.75 3.78 5.01

CR 11.0 13.0 15.0 17.0 19.0

PRD Sabah 9.33 11.1 12.3 14.0 16.8

Proposed 6.32 7.67 9.20 11.3 13.6

Table 3. PRD comparison: the proposed scheme versus Sabah’s.

CR 4.0 8.0 12.0 16.0 20.0

PRD Sabah 3.85 7.31 10.7 14.1 17.5

Proposed 2.96 5.87 8.24 11.5 14.2

CR 21.0 23.0 25.0 27.0 29.0

PRD Sabah 18.3 20.0 21.6 23.3 24.9

Proposed 14.9 16.3 17.6 18.9 20.2

Table 4. Predicted PRD (by GM(1,1)) of the proposed scheme versus Sabah’s.
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The third set of experiments illustrates the simulations of extracting FECG from MECG with

additive noise with an adaptive least mean square (LMS) noise canceller to perform this task,

which are depicted in Figure 6 as modified from Dr. Igal A. Sebag’s example [39] on both

maternal and fetal heartbeat detections using sample synthetic ECG data. The six subplots

permuted in the top row and in the middle row of Figure 6 show the measuring procedure till

the recovery of fetal heartbeat, where the convergence of adaptive noise cancellation takes up

to 5–6 s on average. With the assumptions on a sampling rate of 4000 Hz and time duration of

40 s, the maternal heart rate is 89 beats per minute (bpm), and the fmSNR is adjusted as

approximately �11.5 dB so as to simulate a test example on the third trimester of pregnancy.

The fetal heart rate (FHR) is apparently faster than that of the mother’s, normally ranging from

120 to 160 bpm and descending with the progress of gestational weeks. Since the measured

FECG via abdominal recordings is often dominated by the maternal heartbeat signal propa-

gating from the chest cavity to maternal abdomen, such path of propagation is constructed as a

finite impulse response (FIR) filter with 10 randomized coefficients, with uncorrelated additive

random noise which is 0.02 time of the original signal. While the reference signal of MECG is

still surrounded with noise, an adaptive LMS filter with 15 coefficients and a step size of

0.00007 can be applied for simplicity of use. Note that the remainder of the error signal after

the convergence of the system indicates an estimate of the fetal heartbeat signal associated

with the measurement noise.

The bottom row of Figure 6 comprises three subplots, where the left one shows the filtered

FECG in contrast to its reference, the middle one indicates peak detection by applying dynamic

thresholds to the filtered FECG and using vertical lines to mark each peak on any FECG signal

Figure 6. Automatic fetal heart rate detection on the reconstructed FECG from the original heartbeat signals of both

mother and fetus.
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crossing the threshold, and the right one depicts the reconstructed FECG data with variations

and the automatically calculated FHR equals 135 bpm during the time interval of 36–40 s,

which coincides with those normal diagnostic examples in FHR monitoring before delivery.

The experiments were conducted and retested via the software platform of MATLAB R2011a

and higher versions in a Dell laptop with Core i7-4500U 1.80G CPU and 8GB RAM. We plan to

include some specific analysis on the single-channel recordings for both healthy and patholog-

ical patients during the second and third trimester of pregnancy, and how the theoretical

noninvasive FECG extraction algorithms influence the reconstruction accuracy of ECG signals

from clinical experiments in later investigations.

Simulations on a real-life monitoring case were included in the two diagrams of Figure 7,

where the occurrence of a typical scene on fetal hypoxia was illustrated in types of two

parameters such as FHR (ranging from 70 to 150 bpm) and T/QRS (30 samples) in a 10-min

Figure 7. Simulations of sample data on FHR and T/QRS [43] in a 10-min time sequence for cases of: (a) physiological

recordings (top); and (b) pathological recordings (bottom).
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recording [43]. The top diagram and the bottom diagram depict recordings of a physiological

sample and a pathological sample, respectively. Relatively steady FHR in Figure 7(a) indicates

fetus in good condition, while the large valley in the waveform of FHR (especially at around

the time of minute 06:00) in Figure 7(b) exhibits the abnormal oscillations of fetal heartbeats

resulting from intrauterine hypoxia. For the physiological sample, the parameters are compar-

atively stable in which FHR displays fluctuations around 140 bpm at most of the time and T/

QRS indicates minor numerical vibrations around 0.1; for the pathological sample, FHR

exhibits larger amplitude of oscillations ranging from 70 to 140 bpm, while the numerical value

of balance point on T/QRS fluctuations is around 0.2. In this trial, it is concluded that the value

of fmSNR represents the most crucial factor affecting the quality of filtration, while both the

parameter settings on the adaptive filtering system and the locations of electrodes contribute to

the signal outputs on abdominal recordings [43].

5. Conclusions

A concise study of recent noninvasive FECG detection schemes has been established in this

chapter. We have investigated a variety of algorithms for both single-channel and multichannel

noninvasive FECG separation from MECG in abdominal recordings. The extended Kalman-

based approach with algorithm variations modeled nonlinearity in single-channel cases,

achieved considerably good performance on both synthetic and real-life ECG data. The

extended Kalman smoother with ANFIS displays the best overall results on the set of perfor-

mance metrics among nine noninvasive methods for FECG detection.

We have proposed a scheme of twin-R correlative prediction by applying (4, 2) LWT that effec-

tively exploits correlation characteristics of time-domain ECG for sequential data processing. We

have feasibly realized the parameter evaluation of ECG compression by building up a predictive

GM(1, 1) model in order to give solutions to PRDs with both extrapolated and interpolated CRs,

and achieved lower distortion rates in contrast to those of Sabah’s. The correlation predictor with

the multivariable gray model displays validity and efficiency for compression, suggesting a

prospective technique for ECG data prediction and parameter evaluation. The modified simula-

tion trials on fetal heartbeat detection by reconstructing FECG from maternal abdominal record-

ings via adaptive noise cancellation, provide an example on automatic FHR estimation on

synthetic ECG data [39]; sample trials for either physiological case or pathological case on FHR

recordings with modeling of hypoxia on mature fetus were included and reported in adaptive

control systems for noninvasive monitoring [43].

As future work, we plan to improve one of the recent noninvasive FECG detection schemes

by collaborating high-order dimensional data mining (i.e., inducing robust tensor decomposi-

tions to the dynamic filter-based models) to the ICA-based JADE scheme for FECG extraction

from multichannel abdominal recordings, and updating the prediction system via statistical

machine learning other than ANFIS, where the cocktail party-based solutions suggest a feasi-

ble tool for technical improvements [40]. We also plan to design an analytical software plat-

form using the wavelet toolbox, which is oriented for detecting fetal cardiac arrhythmias with

more practical trials on real data toward the multilead system for abdominal ECG recordings.
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