42,163 research outputs found

    Towards an ASM thesis for reflective sequential algorithms

    Full text link
    Starting from Gurevich's thesis for sequential algorithms (the so-called "sequential ASM thesis"), we propose a characterization of the behaviour of sequential algorithms enriched with reflection. That is, we present a set of postulates which we conjecture capture the fundamental properties of reflective sequential algorithms (RSAs). Then we look at the plausibility of an ASM thesis for the class of RSAs, defining a model of abstract state machine (which we call reflective ASM) that we conjecture captures the class of RSAs as defined by our postulates

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Interactive Small-Step Algorithms I: Axiomatization

    Full text link
    In earlier work, the Abstract State Machine Thesis -- that arbitrary algorithms are behaviorally equivalent to abstract state machines -- was established for several classes of algorithms, including ordinary, interactive, small-step algorithms. This was accomplished on the basis of axiomatizations of these classes of algorithms. Here we extend the axiomatization and, in a companion paper, the proof, to cover interactive small-step algorithms that are not necessarily ordinary. This means that the algorithms (1) can complete a step without necessarily waiting for replies to all queries from that step and (2) can use not only the environment's replies but also the order in which the replies were received

    Concurrent Computing with Shared Replicated Memory

    Get PDF
    The behavioural theory of concurrent systems states that any concurrent system can be captured by a behaviourally equivalent concurrent Abstract State Machine (cASM). While the theory in general assumes shared locations, it remains valid, if different agents can only interact via messages, i.e. sharing is restricted to mailboxes. There may even be a strict separation between memory managing agents and other agents that can only access the shared memory by sending query and update requests to the memory agents. This article is dedicated to an investigation of replicated data that is maintained by a memory management subsystem, whereas the replication neither appears in the requests nor in the corresponding answers. We show how the behaviour of a concurrent system with such a memory management can be specified using concurrent communicating ASMs. We provide several refinements of a high-level ground model addressing different replication policies and internal messaging between data centres. For all these refinements we analyse their effects on the runs such that decisions concerning the degree of consistency can be consciously made.Comment: 23 page

    Cellular Automata are Generic

    Full text link
    Any algorithm (in the sense of Gurevich's abstract-state-machine axiomatization of classical algorithms) operating over any arbitrary unordered domain can be simulated by a dynamic cellular automaton, that is, by a pattern-directed cellular automaton with unconstrained topology and with the power to create new cells. The advantage is that the latter is closer to physical reality. The overhead of our simulation is quadratic.Comment: In Proceedings DCM 2014, arXiv:1504.0192

    Evolving MultiAlgebras unify all usual sequential computation models

    Get PDF
    It is well-known that Abstract State Machines (ASMs) can simulate "step-by-step" any type of machines (Turing machines, RAMs, etc.). We aim to overcome two facts: 1) simulation is not identification, 2) the ASMs simulating machines of some type do not constitute a natural class among all ASMs. We modify Gurevich's notion of ASM to that of EMA ("Evolving MultiAlgebra") by replacing the program (which is a syntactic object) by a semantic object: a functional which has to be very simply definable over the static part of the ASM. We prove that very natural classes of EMAs correspond via "literal identifications" to slight extensions of the usual machine models and also to grammar models. Though we modify these models, we keep their computation approach: only some contingencies are modified. Thus, EMAs appear as the mathematical model unifying all kinds of sequential computation paradigms.Comment: 12 pages, Symposium on Theoretical Aspects of Computer Scienc

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in
    • …
    corecore