1,866 research outputs found

    Universal Lossless Compression with Unknown Alphabets - The Average Case

    Full text link
    Universal compression of patterns of sequences generated by independently identically distributed (i.i.d.) sources with unknown, possibly large, alphabets is investigated. A pattern is a sequence of indices that contains all consecutive indices in increasing order of first occurrence. If the alphabet of a source that generated a sequence is unknown, the inevitable cost of coding the unknown alphabet symbols can be exploited to create the pattern of the sequence. This pattern can in turn be compressed by itself. It is shown that if the alphabet size kk is essentially small, then the average minimax and maximin redundancies as well as the redundancy of every code for almost every source, when compressing a pattern, consist of at least 0.5 log(n/k^3) bits per each unknown probability parameter, and if all alphabet letters are likely to occur, there exist codes whose redundancy is at most 0.5 log(n/k^2) bits per each unknown probability parameter, where n is the length of the data sequences. Otherwise, if the alphabet is large, these redundancies are essentially at least O(n^{-2/3}) bits per symbol, and there exist codes that achieve redundancy of essentially O(n^{-1/2}) bits per symbol. Two sub-optimal low-complexity sequential algorithms for compression of patterns are presented and their description lengths analyzed, also pointing out that the pattern average universal description length can decrease below the underlying i.i.d.\ entropy for large enough alphabets.Comment: Revised for IEEE Transactions on Information Theor

    Estimating the Algorithmic Complexity of Stock Markets

    Full text link
    Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    Image Characterization and Classification by Physical Complexity

    Full text link
    We present a method for estimating the complexity of an image based on Bennett's concept of logical depth. Bennett identified logical depth as the appropriate measure of organized complexity, and hence as being better suited to the evaluation of the complexity of objects in the physical world. Its use results in a different, and in some sense a finer characterization than is obtained through the application of the concept of Kolmogorov complexity alone. We use this measure to classify images by their information content. The method provides a means for classifying and evaluating the complexity of objects by way of their visual representations. To the authors' knowledge, the method and application inspired by the concept of logical depth presented herein are being proposed and implemented for the first time.Comment: 30 pages, 21 figure

    Training-free Measures Based on Algorithmic Probability Identify High Nucleosome Occupancy in DNA Sequences

    Full text link
    We introduce and study a set of training-free methods of information-theoretic and algorithmic complexity nature applied to DNA sequences to identify their potential capabilities to determine nucleosomal binding sites. We test our measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint (high) nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that complexity indices are informative of nucleosome occupancy. We compare against the gold standard (Kaplan model) and find similar and complementary results with the main difference that our sequence complexity approach. For example, for high occupancy, complexity-based scores outperform the Kaplan model for predicting binding representing a significant advancement in predicting the highest nucleosome occupancy following a training-free approach.Comment: 8 pages main text (4 figures), 12 total with Supplementary (1 figure

    Locally adaptive vector quantization: Data compression with feature preservation

    Get PDF
    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process
    corecore