34,992 research outputs found

    Application of sequential nonparametric confidence bands in finance

    Full text link
    In a nonparametric setting, the functional form of the relationship between the response variable and the associated predictor variables is assumed to be unknown when data is fitted to the model. Non-parametric regression models can be used for the same types of applications such as estimation, prediction, calibration, and optimization that traditional regression models are used for. The main aim of nonparametric regression is to highlight an important structure in the data without any assumptions about the shape of an underlying regression function. Hence the nonparametric approach allows the data to speak for itself. Applications of sequential procedures to a nonparametric regression model at a given point are considered. The primary goal of sequential analysis is to achieve a given accuracy by using the smallest possible sample sizes. These sequential procedures allow an experimenter to make decisions based on the smallest number of observations without compromising accuracy. In the nonparametric regression model with a random design based on independent and identically distributed pairs of observations (X ,Y ), where the regression function m(x) is given bym(x) = E(Y X = x), estimation of the Nadaraya-Watson kernel estimator (m (x)) NW and local linear kernel estimator (m (x)) LL for the curve m(x) is considered. In order to obtain asymptotic confidence intervals form(x), two stage sequential procedure is used under which some asymptotic properties of Nadaraya-Watson and local linear estimators have been obtained. The proposed methodology is first tested with the help of simulated data from linear and nonlinear functions. Encouraged by the preliminary findings from simulation results, the proposed method is applied to estimate the nonparametric regression curve of CAPM.<br /

    Sequential Model Selection Method for Nonparametric Autoregression

    Full text link
    In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp or- acle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection proce- dure is optimal in the sense of oracle inequalities.Comment: 30 page

    Optimal sequential kernel detection for dependent processes

    Get PDF
    In many applications one is interested to detect certain (known) patterns in the mean of a process with smallest delay. Using an asymptotic framework which allows to capture that feature, we study a class of appropriate sequential nonparametric kernel procedures under local nonparametric alternatives. We prove a new theorem on the convergence of the normed delay of the associated sequential detection procedure which holds for dependent time series under a weak mixing condition. The result suggests a simple procedure to select a kernel from a finite set of candidate kernels, and therefore may also be of interest from a practical point of view. Further, we provide two new theorems about the existence and an explicit representation of optimal kernels minimizing the asymptotic normed delay. The results are illustrated by some examples. --Enzyme kinetics,financial econometrics,nonparametric regression,statistical genetics,quality control

    Online Nonparametric Regression

    Get PDF
    We establish optimal rates for online regression for arbitrary classes of regression functions in terms of the sequential entropy introduced in (Rakhlin, Sridharan, Tewari, 2010). The optimal rates are shown to exhibit a phase transition analogous to the i.i.d./statistical learning case, studied in (Rakhlin, Sridharan, Tsybakov 2013). In the frequently encountered situation when sequential entropy and i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statistical learning with squared loss and online nonparametric regression are the same. In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the established optimal rates. We also provide a recipe for designing online regression algorithms that can be computationally efficient. We illustrate the techniques by deriving existing and new forecasters for the case of finite experts and for online linear regression

    Pointwise adaptive estimation for quantile regression

    Get PDF
    A nonparametric procedure for quantile regression, or more generally nonparametric M-estimation, is proposed which is completely data-driven and adapts locally to the regularity of the regression function. This is achieved by considering in each point M-estimators over different local neighbourhoods and by a local model selection procedure based on sequential testing. Non-asymptotic risk bounds are obtained, which yield rate-optimality for large sample asymptotics under weak conditions. Simulations for different univariate median regression models show good finite sample properties, also in comparison to traditional methods. The approach is the basis for denoising CT scans in cancer research.M-estimation, median regression, robust estimation, local model selection, unsupervised learning, local bandwidth selection, median filter, Lepski procedure, minimax rate, image denoising

    Semiparametric Efficiency Bound for Models of Sequential Moment Restrictions Containing Unknown Functions

    Get PDF
    This paper computes the semiparametric efficiency bound for finite dimensional parameters identified by models of sequential moment restrictions containing unknown functions. Our results extend those of Chamberlain (1992b) and Ai and Chen (2003) for semiparametric conditional moment restriction models with identical information sets to the case of nested information sets, and those of Chamberlain (1992a) and Brown and Newey (1998) for models of sequential moment restrictions without unknown functions to cases with unknown functions of possibly endogenous variables. Our bound results are applicable to semiparametric panel data models and semiparametric two stage plug-in problems. As an example, we compute the efficiency bound for a weighted average derivative of a nonparametric instrumental variables (IV) regression, and find that the simple plug-in estimator is not efficient. Finally, we present an optimally weighted, orthogonalized, sieve minimum distance estimator that achieves the semiparametric efficiency bound.Sequential moment models, Semiparametric efficiency bounds, Optimally weighted orthogonalized sieve minimum distance, Nonparametric IV regression, Weighted average derivatives, Partially linear quantile IV

    Imposing Economic Constraints in Nonparametric Regression: Survey, Implementation and Extension

    Get PDF
    Economic conditions such as convexity, homogeneity, homotheticity, and monotonicity are all important assumptions or consequences of assumptions of economic functionals to be estimated. Recent research has seen a renewed interest in imposing constraints in nonparametric regression. We survey the available methods in the literature, discuss the challenges that present themselves when empirically implementing these methods and extend an existing method to handle general nonlinear constraints. A heuristic discussion on the empirical implementation for methods that use sequential quadratic programming is provided for the reader and simulated and empirical evidence on the distinction between constrained and unconstrained nonparametric regression surfaces is covered.identification, concavity, Hessian, constraint weighted bootstrapping, earnings function
    • …
    corecore