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Abstract

We establish optimal rates for online regression for arbitrary classes of regression functions in terms of the

sequential entropy introduced in [14]. The optimal rates are shown to exhibit a phase transition analogous to the

i.i.d./statistical learning case, studied in [16]. In the frequently encountered situation when sequential entropy

and i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statistical

learning with squared loss and online nonparametric regression are the same.

In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the es-

tablished optimal rates. We also provide a recipe for designing online regression algorithms that can be computa-

tionally efficient. We illustrate the techniques by deriving existing and new forecasters for the case of finite experts

and for online linear regression.

1 Introduction

Within the online regression framework, data (x1, y1), . . . , (xn , yn ), . . . arrive in a stream, and we are tasked with

sequentially predicting each next response yt given the current xt and the data {(xi , yi )}t−1
i=1

observed thus far. Let

ŷt denote our prediction, and let the quality of this forecast be evaluated via square loss (ŷt − yt )2. Within the

field of time series analysis, it is assumed that data are generated according to some model. The parameters of

the model can then be estimated from data, leveraging the laws of probability. Alternatively, in the competitive

approach, studied within the field of online learning, the aim is to develop a prediction method that does not

assume a generative process of the data [7]. The problem is then formulated as that of minimizing regret

n∑

t=1

(ŷt − yt )2 − inf
f ∈F

n∑

t=1

( f (xt )− yt )2 (1)

with respect to some benchmark class of functions F . This class encodes our prior belief about the family of

regression functions that we expect to perform well on the sequence. Notably, an upper bound on regret is required

to hold for all sequences.

In the past twenty years, progress in online regression for arbitrary sequences, starting with the paper of Foster

[8], has been almost exclusively on finite-dimensional linear regression (an incomplete list includes [19, 11, 20,

4, 2, 3, 9]). This is to be contrasted with Statistics, where regression has been studied for rich (nonparametric)

classes of functions. Important exceptions to this limitation in the online regression framework – and works that

partly motivated the present findings – are the papers of Vovk [23, 21, 22]. Vovk considers regression with large

classes, such as subsets of a Besov or Sobolev space, and remarks that there appears to be two distinct approaches

to obtaining the upper bounds in online competitive regression. The first approach, which Vovk terms Defensive

Forecasting, exploits uniform convexity of the space, while the second – an aggregating technique (such as the

Exponential Weights Algorithm) – is based on the metric entropy of the space. Interestingly, the two seemingly

different approaches yield distinct upper bounds, based on the respective properties of the space. In particular,

Vovk asks whether there is a unified view of these techniques. The present paper addresses these questions and

establishes optimal performance for online regression.

Since most work in online learning is algorithmic, the boundaries of what can be proved are defined by the

regret minimization algorithms one can find. One of the main algorithmic workhorses is the aggregating procedure
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mentioned above. However, the difficulty in using an aggregating procedure beyond simple parametric classes

(e.g. subsets of Rd ) lies in the need for a “pointwise” cover of the set of functions – that is, a cover in the supremum

norm on the underlying space of covariates (see Remark 3). The same difficulty arises when one uses PAC-Bayesian

bounds [1] that, at the end of the day, require a volumetric argument. Notably, this difficulty has been overcome

in statistical learning, where it has long been recognized (since the work of Vapnik and Chervonenkis) that it is

sufficient to consider an empirical cover of the class – a potentially much smaller quantity. Such an empirical

entropy is necessarily finite, and its growth with n is one of the key complexity measures for i.i.d. learning. In

particular, the recent work of [16] shows that the behavior of empirical entropy characterizes the optimal rates

for i.i.d. learning with square loss. To mimic this development, it appears that we need to understand empirical

covering numbers in the sequential prediction framework.

Sequential analogues of covering numbers, combinatorial parameters, and the Rademacher complexity have

been recently introduced in [15]. These complexity measures were shown to both upper and lower bound minimax

regret of online learning with absolute loss for arbitrary classes of functions. These rates, however, are not correct

for the square loss case. Consider, for instance, finite-dimensional regression, where the behavior of minimax

regret is known to be logarithmic in n; the Rademacher rate, however, cannot yield rates faster than
p

n. A hint as

to how to modify the analysis for “curved” losses appears in the paper of [6] where the authors derived rates for

log-loss via a two-level procedure: the set of densities is first partitioned into small balls of a critical radius γ; a

minimax algorithm is employed on each of these small balls; and an overarching aggregating procedure combines

these algorithms. Regret within each small ball is upper bounded by classical Dudley entropy integral (with respect

to a pointwise metric) defined up to the γ radius. The main technical difficulty in this paper is to prove a similar

statement using “empirical” sequential covering numbers.1

Interestingly, our results imply the same phase transition as the one exhibited in [15] for i.i.d. learning with

square loss. More precisely, under the assumption of the O(β−p ) behavior of sequential entropy, the minimax

regret normalized by time horizon n decays as n
− 2

2+p if p ∈ (0,2], and as n−1/p for p ≥ 2. We prove lower bounds

that match up to a logarithmic factor, establishing that the phase transition is real. Even more surprisingly, it

follows that, under a mild assumption that sequential Rademacher complexity of F behaves similarly to its i.i.d.

cousin, the rates of minimax regret in online regression with arbitrary sequences match, up to a logarithmic factor,

those in the i.i.d. setting of Statistical Learning. This phenomenon has been noticed for some parametric classes

by various authors (e.g. [5]). The phenomenon is even more striking given the simple fact that one may convert

the regret statement, that holds for all sequences, into an i.i.d. guarantee. Thus, in particular, we recover the

result of [16] through completely different techniques. Since in many situations, one obtains optimal rates for

i.i.d. learning from a regret statement, the relaxation framework of [13] provides a toolkit for developing improper

learning algorithms in the i.i.d. scenario.

After characterizing minimax rates for online regression, we turn to the question of developing algorithms.

We first show that an algorithm based on the Rademacher relaxation is admissible (see [13]) and yields the rates

derived in a non-constructive manner in the first part of the paper. This algorithm is not generally computationally

feasible, but, in particular, does achieve optimal rates, improving on those exhibited by Vovk [21] for Besov spaces.

We show that further relaxations in finite dimensional space lead to the famous Vovk-Azoury-Warmuth forecaster.

For illustration purposes, we also derive a prediction method for finite class F .

2 Background

Let X be some set of covariates, and let F be a class of functions X → [−1,1] =Y . We study the online regression

scenario where on round t ∈ {1, . . . ,n}, xt ∈ X is revealed to the learner who subsequently makes a prediction

ŷt ∈R; Nature then reveals2 yt ∈ [−B,B]. Instead of (1), we consider a slightly modified notion of regret

(1−α)
n∑

t=1

(ŷt − yt )2 − inf
f ∈F

n∑

t=1

( f (xt )− yt )2 (2)

1While we develop our results for square loss, similar statements hold for much more general losses, as will be shown in the full version of

this paper.
2The assumption of bounded responses can be removed by standard truncation arguments (see e.g. [10]).
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for some α ∈ [0,1). It is well-known that an upper bound on such a regret notion leads to the so-called optimistic

rates which scale favorably with the cumulative loss L∗ = inf f ∈F

∑n
t=1( f (xt )− yt )2 [2, 18]. More precisely, suppose

we show an upper bound of U1/α+U2 on regret in (2). Then regret in (1) is upper bounded by

4
√

L∗U1 +12U1 +4U2 (3)

by considering the case L∗ ≥ 4U1 and its converse.

Unlike most previous approaches to the study of online regression, we do not start from an algorithm, but

instead directly work with minimax regret. We will be able to extract a (not necessarily efficient) algorithm after

getting a handle on the minimax value. Let us introduce the notation that makes the minimax regret definition

more concise. We use ⟪· · ·⟫n
t=1 to denote an interleaved application of the operators inside repeated over t = 1. . . n

rounds. With this notation, the minimax regret of the online regression problem described earlier can be written

as

V α
n =⟪sup

xt

inf
ŷt

sup
yt

⟫n

t=1

{

(1−α)
n∑

t=1

(ŷt − yt )2 − inf
f ∈F

n∑

t=1

( f (xt )− yt )2

}

(4)

where each xt ranges over X and ŷt , yt range over [−B,B]. The usual minimax regret notion is simply given when

α= 0 as V 0
n .

As mentioned above, in the i.i.d. scenario it is possible to employ a notion of a cover based on a sample, thanks

to the symmetrization technique. In the online prediction scenario, symmetrization is more subtle, and involves

the notion of a binary tree, the smallest entity that captures the sequential nature of the problem. To this end,

let us state a few definitions. A Z -valued tree z of depth n is a complete rooted binary tree with nodes labeled

by elements of Z . Equivalently, we think of z as n labeling functions, where z1 is a constant label for the root,

z2(−1),z2(+1) ∈Z are the labels for the left and right children of the root, and so forth. Hence, for ǫ= (ǫ1, . . . ,ǫn) ∈
{±1}n , zt (ǫ) = zt (ǫ1, . . . ,ǫt−1) ∈Z is the label of the node on the t-th level of the tree obtained by following the path

ǫ. For a function g : Z → R, g (z) is an R-valued tree with labeling functions g ◦ zt for level t (or, in plain words,

evaluation of g on z).

Next, let us define sequential covering numbers – one of the key complexity measures of F .

Definition 1 ([15]). A set V of R-valued trees of depth n forms a β-cover (with respect to the ℓq norm) of a function

class F ⊆R
X on a given X -valued tree x of depth n if

∀ f ∈F ,∀ǫ ∈ {±1}n ,∃v ∈V s.t.
1

n

n∑

t=1

| f (xt (ǫ))−vt (ǫ)|q ≤βq .

Aβ-cover in the ℓ∞ sense requires that | f (xt (ǫ))−vt (ǫ)| ≤β for all t ∈ [n]. The size of the smallest β-cover is denoted

by Nq (β,F ,x), and Nq (β,F ,n) = supx logNq (β,F ,x).

We will refer to supx logNq (β,F ,x) as sequential entropy of F . In particular, we will study the behavior of

V α
n (F ) when sequential entropy grows polynomially3 as the scale β decreases:

logN2(β,F ,n) =β−p , p > 0. (5)

We also consider the parametric “p = 0” case when sequential covering itself behaves as

N2(β,F ,n) =β−d (6)

(e.g. linear regression in a bounded set in R
d ). We remark that the ℓ∞ cover is necessarily n-dependent, so the

form we assume there is

N∞(β,F ,n) = (n/β)−d . (7)

3It is straightforward to allow constants in this definition, and we leave these details out for the sake of simplicity.
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3 Main Results

We now state the main results of this paper. They follow from the more general technical statements of Lemmas 4,

5, 6 and 7. We normalize V α
n by n in order to make the rates comparable to those in statistical learning. Further,

throughout the paper C ,c refer to constants that may depend on B, p. Their values can be found in the proofs.

Theorem 1. For a class F with sequential entropy growth logN2(β,F ,n) ≤β−p ,

• For p > 2, the minimax regret4 is bounded as 1
n

V 0
n ≤Cn−1/p

• For p ∈ (0,2), the minimax regret is bounded as 1
n

V 0
n ≤Cn−2/(2+p)

• For the parametric case (6), 1
n

V 0
n ≤Cdn−1 log(n)

• For finite set F , 1
n

V 0
n ≤Cn−1 log |F |

Theorem 2. The upper bounds of Theorem 1 are tight5:

• For p ≥ 2, for any class F of uniformly bounded functions with a lower bound of β−p on sequential entropy

growth, 1
n

V 0
n ≥ Ω̃(n−1/p )

• For p ∈ (0,2], for any class F of uniformly bounded functions, there exists a slightly modified class F
′ with the

same sequential entropy growth such that 1
n V 0

n ≥ Ω̃(n−2/(2+p))

• There exists a class F with the covering number as in (6), such that 1
n

V 0
n ≥Ω(dn−1 log(n))

For the following theorem, we assume that L∗ is known a priori. Adaptivity to L∗ can be obtained through a

doubling-type argument [17].

Theorem 3. Additionally, the following optimistic rates hold for regret (1):

• For p > 2, regret is upper bounded by C
√

L∗n1−1/(p−1) log(n)+Cn1−1/(p−1) log(n)

• For p ∈ (0,2), regret is upper bounded by C
√

L∗ log(n)+C log(n). The bound gains an extra log(n) factor for

p = 2

• For the parametric case (7), regret is upper bounded by C
√

L∗d log(n)+Cd log(n)

where L∗ = inf f ∈F

∑n
t=1( f (xt )− yt )2.

Remark 1. The optimistic rate for p > 2 appears to be slower than the hypothesized
p

L∗n1−2/p +n1−2/p rate, and

we leave the question of obtaining this rate as future work.

Remark 2. If we assume that yt ’s are drawn from distributions with bounded mean and subgaussian tails, the same

upper bounds can be shown with an extra log(n) factor.

Next, we prove the three theorems stated above. The proofs are of the “plug-and-play style”: the overarching

idea is that the optimal rates can be derived simply by assuming an appropriate control of sequential entropy, be

it a parametric or a nonparametric class.

Proof of Theorem 1. We appeal to Eq. (13) in Lemma 4 below. Fix x,µ and let z denote the X ×R-valued tree

(x,µ). Define the class G = {g f : g f (z) = f (x)−µ, f ∈ F }. Observe that the values of g f outside of range of z are

4For p = 2, 1
n V 0

n ≤C log(n)n−1/2.
5The Ω̃(·) notation suppresses logarithmic factors
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immaterial. Also note that the covering number of G on z coincides with the covering number of F on x. Now,

Lemma 5 applied to this class G , together with η≡ B , yields

V 0
n ≤ 32B2 logN2(γ,F ,n)+B inf

ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN2(δ,F ,n)dδ

}
(8)

We now evaluate the above upper bound for the β−p growth of sequential entropy at scale β. In particular, for the

case p > 2, we may choose γ= 1 (maximum of the function) and ρ = n−1/p . Then N2(B,F ,n) = 1 and the first term

disappears. We are left with

B−1V 0
n ≤ 4n1−p +12

p
n

[(
2

2−p

)
δ(2−p)/2

]B

n−1/p

≤ 4n
1− 1

p +
24

p −2
n
− 2−p

2p + 1
2 =

(
4+

24

p −2

)
n1−1/p

For the case p ∈ (0,2), Eq. (8) gives an upper bound

32B2γ−p +B inf
ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ
δ−p/2dδ

}
(9)

We choose γ= n−1/(p+2) and ρ = n−1:

32B2n
p

p+2 +4B +12
p

n

[(
2

2−p

)
δ

2−p
2

]n
− 1

p+2

n−1
≤ 4B +

(
32B2 +12B

(
2

2−p

))
n

p
p+2

For the case p = 2, we gain an extra factor of log(n) since the integral of δ−1 is the logarithm. For the parametric

case (6), we choose γ= n−1/2 and ρ = n−1. Then Eq. (8) yields (for n > 8),

V 0
n ≤ 16B2d log n+4B +12

p
n

∫n−1/2

n−1

√
d log(1/δ)dδ≤ 16B2d log n+4B +12

√
d log(n) .

In the finite case, logN2(γ,F ,n) ≤ log |F | for any γ. We then have take γ= 0 (one can see that this value is allowed

for the particular case of a finite class; or, use a small enough value). Then,

V 0
n ≤ 32B2 log |F | .

Normalizing by n yields the desired rates in the statement of the theorem.

Proof of Theorem 2. The first two lower bounds are proved in Lemma 9 and 10. The lower bound for the paramet-

ric case follows from the i.i.d. lower bound in [16].

Proof of Theorem 3. For optimistic rates, we start with the upper bound in (12) and define G as above. We then

appeal to Lemma 6 and obtain

V α
n ≤α−116logN∞(γ,F ,z)+α−1 inf

ρ∈(0,γ)

{
4ρn+16log(γ/ρ)

∫γ

ρ
δ logN∞(δ,F ,z)dδ

}
. (10)

For logN∞(β,F ,n) ≤β−p decay of entropy for p < 2, we take ρ = (nB)−1, γ= 1. The first term in (10) can be taken

to be zero, as we may take one function at scale γ= 1. The infimum in (10) evaluates to

4+16log(nB)

∫1

1/(nB )
δ1−p dδ≤ 4+16log(nB)

[
1

2−p
δ2−p

]1

1/(nB )

≤ 4+16log(nB)
1

2−p
.

For p = 2, we gain an extra log(n) factor: 4+16(log(nB))2.

For p > 2, we take ρ = n
− 1

p−1 and γ= 1. Then infimum in (10) evaluates to

4n ·n− 1
p−1 +16p−1 log(n)

[
1

2−p
δ2−p

]1

n
− 1

p−1

≤ 4n
p−2
p−1 +16p−1 log(n)

1

2−p
n

p−2
p−1 .

For the parametric case (7), we take γ= 1 and ρ = (nB)−1. Then (10) is upper bounded by

4+16log(nB)

∫1

1/(nB )
dδ log(1/δ)dδ≤ 4+4d log(nB) .

The final optimistic rates are obtained by following the bound in (3).

5



3.1 Offset Rademacher Complexity and the Chaining Technique

Let us recall the definition of sequential Rademacher complexity of a class F

sup
x

E sup
f ∈F

[ n∑

t=1

ǫt f (xt (ǫ))

]
(11)

introduced in [14], where the expectation is over a sequence of independent Rademacher random variables ǫ =
(ǫ1, . . . ,ǫn ) and the supremum is over all X -valued trees of depth n. While this complexity both upper- and lower-

bounds minimax regret for absolute loss, it fails to capture the possibly faster rates one can obtain for regression.

We show below that modified, or offset, versions of this complexity do in fact give optimal rates. These complex-

ities have an extra quadratic term being subtracted off. Intuitively, this variance term “extinguishes” the
p

n-type

fluctuations above a certain scale. Below this scale, complexity is given by the Dudley-type integral. The optimal

balance of the scale gives the correct rates. As can be seen from the proof of Theorem 1, the critical scale γ is trivial

(zero) for a finite case, then n−1/2 for a parametric class, n−1/(p+2) for p ∈ (0,2], and then becomes irrelevant (e.g.

constant) at p > 2. Indeed, for p > 2, the rate is given purely by sequential Rademacher complexity, as curvature

of the loss does not help. In particular, can achieve these rates for p > 2 by simply linearizing the square loss. The

same phenomenon occurs in statistical learning with i.i.d. data [16].

We remark that [12] studies bounds for estimation with squared loss for the empirical risk minimization pro-

cedure and observes that it is enough to only consider one-sided estimates rather than concentration statements.

The offset sequential Rademacher complexities are of this one-sided nature.

In Lemma 4 below, we provide a bound on minimax regret via offset sequential Rademacher complexities.

Lemma 4. The minimax value V α
n of online regression with responses yt in a bounded interval [−B,B] is upper

bounded by

V α
n ≤ sup

x,µ,η
Eǫ sup

f ∈F

[ n∑

t=1

4ǫtηt (ǫ)( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2 −αηt (ǫ)2

]
(12)

and

V 0
n ≤ sup

x,µ
Eǫ sup

f ∈F

[ n∑

t=1

4Bǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]
(13)

where x ranges over all X -valued trees, µ and η over all [−B,B]-valued trees of depth n. Furthermore,

V 0
n ≥ sup

x,µ
E sup

f ∈F

[ n∑

t=1

Bǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]
(14)

where µ ranges over [−B/2,B/2]-valued trees.

We now show that offset Rademacher complexities can be upper bounded by sequential entropies via the

chaining technique. Lemma 5 below is an analogue of the Dudley-type integral bound

sup
x

Esup
g∈G

[ n∑

t=1

ǫt g (xt (ǫ))

]
≤ inf

ρ∈(0,1]

{
4ρn+12

p
n

∫1

ρ

√
logN2(δ,G ,z)dδ

}
(15)

for sequential Rademacher proved in [15]. Crucially, the upper bound of Lemma 5 allows us to choose a critical

scale γ.

Lemma 5. Let η be a [−B,B]-valued tree of depth n. For any Z -valued tree z and a class G of functions Z → [−A, A]

and any γ ∈ (0, A],

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2

]
≤ 32B2 logN2(γ,G ,z)+B inf

ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN2(δ,G ,z)dδ

}
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For optimistic rates, we can take advantage of an additional offset. This offset arises from the quadratic term

due to the α multiple of the loss of the algorithm.

Lemma 6. Let η be a [−B,B]-valued tree of depth n. For any Z -valued tree z and a class G of functions Z → [−A, A],

for any γ ∈ (0, A],

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2 −αηt (ǫ)2

]
≤α−116A2 logN∞(γ,G ,z) (16)

+α−1 inf
ρ∈(0,γ)

{
4ρn+16log(γ/ρ)

∫γ

ρ
δ logN∞(δ,G ,z)dδ

}

The chaining arguments of Lemmas 5 and 6 are based on the following key finite-class lemma:

Lemma 7. Let η be a [−B,B]-valued tree of depth n. For a finite set W of [−A, A]-valued trees of depth n, it holds

that

Emax
w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)−C wt (ǫ)2 −αηt (ǫ)2

]
≤ min

{
B2(2C )−1, A2(2α)−1

}
log |W | (17)

for any C ≥ 0, α≥ 0. It also holds that

Emax
w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)

]
≤ B

√

2log |W | · max
w∈W ,ǫ1:n

n∑

t=1

wn(ǫ)2 . (18)

Remark 3. Let us compare the upper bound of Lemma 5 to the bound we may obtain via a metric entropy approach,

as in the work of Vovk [21]. Assume that F is a compact subset of C (X ) equipped with supremum norm. The metric

entropy, denoted by H (ǫ,F ), is the logarithm of the smallest ǫ-net with respect to the sup norm on X . An aggregating

procedure over the elements of the net gives an upper bound (omitting constants and logarithmic factors)

nǫ+H (ǫ,F ) (19)

on regret (1). Here, nǫ is the amount we lose from restricting the attention to the ǫ-net, and the second term appears

from aggregation over a finite set. While the balance (19) can yield correct rates for small classes, it fails to capture the

optimal behavior for large nonparametric sets of functions. Indeed, for an O(ǫ−p ) behavior of metric entropy, Vovk

concludes the rate of O
(
n

p
p+1

)
. For p ≤ 2, this is slower than the O

(
n

p
p+2

)
rate one obtains from Lemma 5 by trivially

upper bounding the sequential entropy by metric entropy. The gain is due to the chaining technique, a phenomenon

well-known in statistical learning theory. Our contribution is to introduce the same concepts to the domain of online

learning. Let us also mention that sequential covering number of F is an “empirical” quantity and is finite even if

we cannot upper bound metric entropy.

4 Further Examples

For the sake of illustration we show bounds on minimax rates for a couple of examples.

Example 1 (Sparse linear predictors). Let G = {g1, . . . , gM } be a set of M functions such that each gi : X 7→ [−1,1].

Define F to be the convex combination of at most s out of these M functions. That is

F =
{

s∑

j=1

α j gσ j
:σ1:s ⊂ [M],∀ j ,α j ≥ 0,

s∑

j=1

α j = 1

}

For this example note that the sequential covering number can be easily upper bounded: we can choose s out of M

functions in
(M

s

)
ways and further the ℓ∞ metric entropy for convex combination of s bounded functions at scale β

is bounded as β−s . We conclude that

N2(β,F ,n) ≤
(

eM

s

)s

β−s

7



From the main theorem, the upper bound is

1
n

V 0
n ≤O

(
s log(M/s)

n

)

Example 2 (Besov Spaces). Let X be a compact subset of Rd . Let F be a ball in Besov space B s
p,q (X ). When s > d/p,

pointwise metric entropy bounds at scale β scale as Ω(β−d/s) [21, p. 20]. On the other hand, when s ∈ (d/p,∞), one

can show that the space is a Banach space that is p-uniformly convex. From [15], it can be shown that sequential

Rademacher can be upper bounded by O(n1−1/p ), yielding an bound on sequential entropy at scale β as O(β−p ).

These two controls together give the bound on the minimax rate. The generic forecaster with Rademacher complexity

as relaxation (see Section 6), enjoys the best of both of these rates. More specifically, we may identify the following

regimes:

• If s ≥ d/2, the minimax rate is O
(
n

2s
2s+d

)
.

• If s < d/2, the minimax rate depends on the interaction of p and d , s:

– if p > 1+ d
2s , the minimax rate is O

(
n

2s
2s+d

)
, as above.

– otherwise, the minimax rate is O
(
n

1− 1
p

)

5 Lower Bounds

The lower bounds will involve a notion of a “dimension” of F called the sequential fat-shattering dimension. Let

us introduce this notion.

Definition 2. An X -valued tree of depth d is said to be β-shattered by F if there exists an R-valued tree s of depth

d such that

∀ǫ ∈ {±1}d , ∃ f ǫ ∈F s.t. ǫt ( f ǫ(xt (ǫ))−st (ǫ)) ≥β/2

for all t ∈ {1, . . . ,d}. The tree s is called a witness. The largest d for which there exists a β-shattered X -valued tree is

called the (sequential) fat-shattering dimension, denoted by fatβ(F ).

The sequential fat-shattering dimension is related to sequential covering numbers as follows:

Theorem 8 ([15]). Let F be a class of functions X → [−1,1]. For any β> 0,

N2(β,F ,n) ≤N∞(β,F ,n) ≤
(

2en

β

)fatβ(F )

.

Therefore, if logN2(β,F ,n) ≥ (c/β)p , then

fatβ(F )≥ (c/β)p /(log(2en/β)) .

The lower bounds will now be obtained assuming fatβ(F ) ≥ C/βp behavior of the fat-shattering dimension, and

the resulting statement of Theorem 2 in terms of the sequential entropy growth will involve extra logarithmic fac-

tors, hidden in the Ω̃(·) notation.

Lemma 9. Consider the problem of online regression with responses bounded by B = 4. For any class F of functions

X → [−1,1] and any β> 0 and n = fatβ(F ),
1

n
V 0

n ≥β

In particular, if fatβ(F ) ≥C/βp for p > 0, we have

1

n
V 0

n ≥Cn−1/p .

8



Lemma 10. For any class F
′ and β > 0, there exists a modified class F such that fatβ(F ) ≤ 2fatβ(F ′)+4 and for

n > fatβ(F ),

1

n
V 0

n ≥C



2
p

2β

√
fatβ(F )

n
−β2



 .

In particular, when p ∈ (0,2] and fatβ(F )=C/βp ,

1

n
V 0

n ≥Cn
− 2

p+2 .

6 Relaxations and Algorithms

To design generic forecasters for the problem of online non-parametric regression we follow the recipe provided in

[13]. It was shown in that paper that if one can find a relaxation Reln (a sequence of mappings from observed data

to reals) that satisfies initial and admissibility conditions then one can build estimators based on such relaxations.

Specifically, we look for relaxations that satisfy the following initial condition

Reln

(
x1:n , y1:n

)
≥− inf

f ∈F

n∑

t=1

( f (xt )− yt )2

and the recursive admissibility condition that for any t ∈ [n] and any xt ∈X

inf
ŷt∈[−B ,B ]

sup
yt∈[−B ,B ]

{
(ŷt − yt )2 +Reln

(
x1:t , y1:t

)}
≤ Reln

(
x1:t−1, y1:t−1

)
(20)

If a relaxation Reln satisfies these two conditions then one can define an algorithm via

ŷt = argmin
ŷ∈[−B ,B ]

sup
yt∈[−B ,B ]

{
(ŷ − yt )2 +Reln

(
x1:t , y1:t

)}

and for this forecast the associated bound on regret is automatically bounded as (see [13] for details) :

Regn ≤ Reln (·)

Now further note that if (ŷ − yt )2 +Reln

(
x1:t , (y1:t−1, yt )

)
is a convex function of yt then the prediction takes a very

simple form, as the supremum over yt is attained either at B or −B . The prediction can be written as

ŷt = argmin
ŷ∈[−B ,B ]

max
{
(ŷ −B)2 +Reln

(
x1:t , (y1:t−1,B)

)
, (ŷ +B)2 +Reln

(
x1:t , (y1:t−1,−B)

)}

Observe that the first term decreases as ŷ increases to B and likewise the second term monotonically decreases

as ŷ decreases to −B . Hence the solution to the above is given when both terms are equal (if this doesn’t happen

within the range [−B,B] then we clip). In other words,

ŷt = Clip

(
Reln

(
x1:t , (y1:t−1,B)

)
−Reln

(
x1:t , (y1:t−1,−B)

)

4B

)

Hence, for any admissible relaxation such that (ŷ−yt )2+Reln

(
x1:t , (y1:t−1, yt )

)
is a convex function of yt , the above

prediction based on the relaxation enjoys the bound on regret 1
n

Reln .

We now claim that the following conditional version of Equation (13) gives an admissible relaxation and leads

to a method that enjoys the regret bounds shown in the first part of this paper.

Lemma 11. The following relaxation is admissible :

Rn(x1:t , y1:t ) = sup
x,µ

Eǫ sup
f ∈F

[
n∑

j=t+1

4Bǫ j ( f (x j (ǫ))−µj (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2 −
t∑

j=1

( f (x j )− y j )2

]

9



The forecast corresponding to this relaxation is given by

ŷt =
Rn(x1:t , (y1:t−1,B))−Rn (x1:t , (y1:t−1,−B))

4B

The above algorithm enjoys the regret bound of an offset Rademacher complexity:

Regn ≤ sup
x,µ

Eǫ sup
f ∈F

[ n∑

t=1

4Bǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]

Notice that since the regret bound for the above prediction based on the sequential Rademacher relaxation is

exactly the one given in Equation (13), the upper bounds provided for V 0
n in Theorem 1 also hold for the above

algorithm.

6.1 Recipe for designing online regression algorithms

We now provide a schema for deriving forecasters for general online non-parametric regression problems:

1. Find relaxation Reln such that

Rn

(
x1:t , y1:t

)
≤ Reln

(
x1:t , y1:t

)

and s.t. (ŷ − yt )2 +Rn

(
x1:t , (y1:t−1, yt )

)
is a convex function of yt

2. Check the condition

sup
xt∈X ,pt ∈∆([−B ,B ])

{
Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
]
+Eyt∼pt

[
Reln

(
x1:t , y1:t

)]}
≤ Reln

(
x1:t−1, y1:t−1

)

3. Given xt on round t , the prediction ŷt is given by

ŷt = Clip

(
Reln

(
x1:t , (y1:t−1,B)

)
−Reln

(
x1:t , (y1:t−1,−B)

)

4B

)

Proposition 12. Any algorithm derived from the above schema using relaxation Reln enjoys a bound

Regn ≤ 1
n Reln (·)

on regret.

Example : Finite class of experts

As an example of estimator derived from the schema we first consider the simple case |F | <∞.

Corollary 13. The following is an admissible relaxation :

Reln

(
x1:t , y1:t

)
= B2 log

(
∑

f ∈F

exp

(

−B−2
t∑

j=1

( f (x j )− y j )2

))

It leads to the following algorithm

ŷt = Clip



B

4
log




∑

f ∈F exp
(
−B−2 ∑t−1

j=1
( f (x j )− y j )2 −B−2( f (xt )−B)2

)

∑
f ∈F exp

(
−B−2

∑t−1
j=1

( f (x j )− y j )2 −B−2( f (xt )+B)2
)









and enjoys a regret bound Regn ≤ B2 log |F | .

10



Example : Linear regression

Next, consider the problem of online linear regression in R
d . Here F is the class of linear functions. For this

problem we consider a slightly modified notion of regret :

n∑

t=1

(ŷt − yt )2 − inf
f ∈F

{ n∑

t=1

( f ⊤xt − yt )2 +λ
∥∥ f

∥∥2
2

}

This regret can be seen alternatively as regret if we assume that on rounds −d + 1 to 0 Nature plays (λe1,0),. . . ,

(λed ,0), where {ei } are the standard basis vectors, and that on these rounds the learner (knowing this) predicts

0, thus incurring zero loss over these initial rounds. Hence we can readily apply the schema for designing an

algorithm for this problem.

Corollary 14. For any λ> 0, the following is an admissible relaxation

Reln

(
x1:t , y1:t

)
=

∥∥∥∥∥

t∑

j=1

y j z j

∥∥∥∥∥

2

(∑t
j=1

z j z⊤
j
+λI

)−1
+4B2 log




(

n
d

)d

∆

(∑t
j=1

z j z⊤
j
+λI

)



−
t∑

j=1

y2
j .

It leads to the Vovk-Azoury-Warmuth forecaster [19, 3]:

ŷt = Clip

(

x⊤
t

(
t∑

j=1

x j x⊤
j +λI

)−1 (
t−1∑

j=1

y j x j

))

and enjoys the following upper bound on regret:

1

n

n∑

t=1

(ŷt − yt )2 ≤
1

n

n∑

t=1

( f ⊤xt − yt )2 +
λ

2n

∥∥ f
∥∥2

2 +
4dB2 log

(
n
λd

)

n
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A Proofs

Proof of Lemma 4. Let us now study the value (4). We will do so “from inside out” by considering the last step

t = n, then working our way back to t = 1. Given a value xn , by the minimax theorem,

inf
qn

sup
pn

Eŷn∼qn ,yn∼pn

{

(1−α)(ŷn − yn)2 + sup
f ∈F

n∑

t=1

−( f (xt )− yt )2

}

(21)

= sup
pn

{

(1−α) inf
ŷn

Eyn (ŷn − yn )2 +Eyn sup
f ∈F

n∑

t=1

−( f (xt )− yt )2

}

= sup
pn

Eyn

{

(1−α)(µn − yn )2 + sup
f ∈F

n∑

t=1

−( f (xt )− yt )2

}

(22)

where µn = E[yn] under the distribution pn with support on [−B,B]. Observe that

(µn − yn)2 − ( f (xn)− yn )2 = 2(yn −µn)( f (xn)−µn)− ( f (xn )−µn)2 (23)

and hence the expression in (21) can be written as

sup
pn

Eyn sup
f ∈F

[
n−1∑

t=1

−( f (xt )− yt )2 +
{
2(yn −µn )( f (xn )−µn)− ( f (xn)−µn)2 −α(µn − yn )2

}
]

Continuing in this fashion back to t = 1, the minimax value is equal to

V α
n =⟪sup

xt

sup
pt

Eyt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2(yt −µt )( f (xt )−µt )− ( f (xt )−µt )2 −α(µt − yt )2

]}

. (24)

The supremum over pt can now be upper bounded by the supremum over the mean µt ∈ [−B,B] and a zero-mean

distribution p ′
t with support on [−B,B]. Denoting by ηt a random variable with this distribution p ′

t , the variable

µt +ηt is then in [−2B,2B]. We upper bound (24) by

V α
n ≤⟪sup

xt

sup
p′

t ,µt

Eηt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2ηt ( f (xt )−µt )− ( f (xt )−µt )2 −αη2
t

]}

. (25)

Since the −αη2 term does not depend on f , we use linearity of expectation to write

V α
n =⟪sup

xt

sup
p′

t ,µt

Eηt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2ηt ( f (xt )−µt )− ( f (xt )−µt )2 −D(p ′
1, . . . , p ′

n)

]}

(26)

where

D(p ′
1, . . . , p ′

n ) =
1

n

n∑

t=1

αEη2
t .

We now symmetrize the linear term. Let (η′t ) be a sequence tangent to (ηt ) (that is, ηt and η′t are i.i.d. conditionally

on η1:t−1). We write µt = E[η′t ] and use convexity of the supremum to arrive at an upper bound

V α
n ≤⟪sup

xt

sup
p′

t ,µt

Eηt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2(ηt −η′t )( f (xt )−µt )− ( f (xt )−µt )2 −D(p ′
1, . . . , p ′

n )

]}

(27)

=⟪sup
xt

sup
p′

t ,µt

Eηt ,η′t
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

2ǫt (ηt −η′t )( f (xt )−µt )− ( f (xt )−µt )2 −D(p ′
1, . . . , p ′

n )

]}

(28)
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where in the second equality holds because η′t and ηt are i.i.d. from p ′
t , conditionally on the past observations. We

now split the above supremum over f into two parts, thus passing to the upper bound

⟪sup
xt

sup
pt ,µt

Eηt ,η′t
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

2ǫtηt ( f (xt )−µt )−
1

2
( f (xt )−µt )2 −

1

2
D(p ′

1, . . . , p ′
n )

]}

+⟪sup
xt

sup
pt ,µt

Eηt ,η′t
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

−2ǫtη
′
t ( f (xt )−µt )−

1

2
( f (xt )−µt )2 −

1

2
D(p ′

1, . . . , p ′
n )

]}

=⟪sup
xt

sup
p′

t ,µt

Eηt∼pt
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫtηt ( f (xt )−µt )− ( f (xt )−µt )2 −D(p ′
1, . . . , p ′

n )

]}

=⟪sup
xt

sup
p′

t ,µt

Eηt∼pt
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫtηt ( f (xt )−µt )− ( f (xt )−µt )2 −αη2
t

]}

≤⟪sup
xt

sup
µt ,ηt

Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫtηt ( f (xt )−µt )− ( f (xt )−µt )2 −αη2
t

]}

= sup
x,µ,η

Eǫ sup
f ∈F

[ n∑

t=1

4ǫtηt (ǫ)( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2 −αηt (ǫ)2

]

This proves the first statement. For the case α= 0, we have

V 0
n ≤ sup

x,µ,η
Eǫ sup

f ∈F

[ n∑

t=1

4ǫtηt (ǫ)( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]

=⟪ sup
xt ,µt ,ηt

Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫtηt ( f (xt )−µt )− ( f (xt )−µt (ǫ))2

]}

Since each ηt range over [−B,B], we can represent it as B times the expectation of a random variable ut ∈ {−1,1}.

Denoting this distribution by qt , by Jensen’s inequality

V 0
n ≤⟪ sup

xt ,µt ,qt

Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫtE(ut )B( f (xt )−µt )− ( f (xt )−µt (ǫ))2

]}

≤⟪ sup
xt ,µt ,qt

Eut
Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫt ut B( f (xt )−µt )− ( f (xt )−µt (ǫ))2

]}

=⟪ sup
xt ,µt ,ut

Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫt ut B( f (xt )−µt )− ( f (xt )−µt (ǫ))2

]}

=⟪sup
xt ,µt

Eǫt
⟫n

t=1

{

sup
f ∈F

[ n∑

t=1

4ǫt B( f (xt )−µt )− ( f (xt )−µt (ǫ))2

]}

which is the same as the desired upper bound in (13), in the tree notation.

As for the lower bound, Recall from Eq. (24) that the value with α= 0 is equal to

V 0
n =⟪sup

xt

sup
pt

Eyt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2(yt −µt )( f (xt )−µt )− ( f (xt )−µt )2

]}

. (29)

For the purposes of a lower bound, let us pick particular distributions pt as follows. Let ǫ1, . . . ,ǫn be independent

Rademacher random variables. Fix a [−B/2,B/2]-valued tree µ. Let yt =µt (ǫ1:t−1)+(B/2)ǫt . Hence, yt ∈ [−B,B] as

14



required. We can then lower bound the above expression as

V 0
n ≥ sup

µ

⟪sup
xt

Eǫt⟫
n

t=1

{

sup
f ∈F

[ n∑

t=1

2ǫt ( f (xt )−µt (ǫ))− ( f (xt )−µt (ǫ))2

]}

= sup
x,µ

E sup
f ∈F

[ n∑

t=1

Bǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]

Proof of Lemma 7. For any λ> 0,

Emax
w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)−C wt (ǫ)2 −αηt (ǫ)2

]
≤

1

λ
logE

∑

w∈W

exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)−λC wt (ǫ)2 −λαηt (ǫ)2

}

Conditioning on ǫ1:n−1, we analyze

E

[
∑

w∈W

exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)−λC wt (ǫ)2 −λαηt (ǫ)2

} ∣∣∣∣∣ ǫ1:n−1

]

=
∑

w∈W

exp

{
n−1∑

t=1

λǫtηt (ǫ)wt (ǫ))−
n∑

t=1

λC wt (ǫ)2 −
n∑

t=1

λαηt (ǫ)2

}

E
[
exp

{
λǫnηn(ǫ)wn(ǫ)

} ∣∣ ǫ1:n−1

]

≤
∑

w∈W

exp

{
n−1∑

t=1

λǫtηt wt (ǫ)−
n−1∑

t=1

λC wt (ǫ)2 −
n−1∑

t=1

λαηt (ǫ)2

}

exp
{
λ2

ηn(ǫ)2wn(ǫ)2/2−λC wn (ǫ)2 −λαηn(ǫ)2
}

(30)

The choice λ= 2C/B2 ensures

λ2
ηn(ǫ)2wn(ǫ)2/2−λC wn (ǫ)2 ≤ 0

Alternatively, the choice λ= 2α/A2 ensures

λ2
ηn (ǫ)2wn (ǫ)2/2−λαηn (ǫ)2 ≤ 0

In both cases, the exponential factor peeled off in (30) is no greater than 1. We proceed all the way to t = 1 to arrive

at an upper bound of
1

λ
log

∑

w∈W

exp{0} = min
{
B2(2C )−1, A2(2α)−1

}
log |W | .

The second statement (which already appears in [14]) is proved similarly, except the tuning value λ is chosen at

the end, and we need to account for the worst-case ℓ2 norm along any paths. For any tree w ∈W ,

E

[
exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)

} ∣∣∣∣ ǫ1:n−1

]
≤ exp

{
n−1∑

t=1

λǫtηt (ǫ)wt (ǫ)

}

exp
{
B2λ2wn (ǫ)2/2

}

≤ exp

{
n−1∑

t=1

λǫtηt (ǫ)wt (ǫ)

}

max
ǫn

exp
{

B2λ2wn(ǫ)2/2
}

Continuing in this fashion backwards to t = 1, for any w ∈W

E

[
exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)

}]
≤ max

ǫ1,...,ǫn
exp

{
B2(λ2/2)

n∑

t=1

wn (ǫ)2

}

and thus

E

[
∑

w∈W

exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)

}]

≤ |W | max
ǫ1 ,...,ǫn

max
w∈W

exp

{
B2(λ2/2)

n∑

t=1

wn(ǫ)2

}
.

15



Choosing

λ=
√

2log |W |
B2 maxǫ1:n ,w∈W

∑n
t=1 wn (ǫ)2

we obtain

Emax
w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)

]
≤

1

λ
logE

[
∑

w∈W

exp

{ n∑

t=1

λǫtηt (ǫ)wt (ǫ)

}]

≤ B

√

2log |W | · max
w∈W ,ǫ1:n

n∑

t=1

wn (ǫ)2

Proof of Lemma 5. Let V ′ be a sequential γ-cover of G on z in the ℓ2 sense, i.e.

∀ǫ, ∀g ∈G , ∃v ∈V ′ s.t.
1

n

n∑

t=1

(g (zt (ǫ))−vt (ǫ))2 ≤ γ2

Let us augment V ′ to include the all-zero tree, and denote the resulting set by V = V ′ ∪ {0}. Denote by v[ǫ, g ] a

γ-close tree promised above, but we leave the choice for later. Then for any c ∈ [0,1]

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2

]
(31)

= Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
−

(
g (zt (ǫ))2 −c2v[ǫ, g ]t (ǫ)2

)
(32)

+
(
4ǫtηt (ǫ)v[ǫ, g ]t (ǫ)−c2v[ǫ, g ]t (ǫ)2

)]
(33)

≤ Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
−

n∑

t=1

(
g (zt (ǫ))2 −c2v[ǫ, g ]t (ǫ)2

)]
(34)

+Emax
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)−c2vt (ǫ)2

]
(35)

We now claim that for any ǫ, g there exists an element v[ǫ, g ] ∈V such that

n∑

t=1

g (zt (ǫ))2 ≥ c2
n∑

t=1

v[ǫ, g ]t (ǫ)2 (36)

and so we can drop the corresponding negative term in the supremum over G . To prove this claim, first consider

the easy case 1
n

∑n
t=1 g (zt (ǫ))2 ≤C 2γ2, where C = c

1−c
. Then we may choose 0 ∈V as a tree that provides a sequential

Cγ-cover in the ℓ2 sense. Clearly, (36) is then satisfied with this choice of v[ǫ, g ] = 0. Now, assume 1
n

∑n
t=1 g (zt (ǫ))2 >

C 2γ2. Fix any tree v[ǫ, g ] ∈V that is γ-close in the ℓ2 sense to g on the path ǫ. Denote u = (v[ǫ, g ]1(ǫ), . . . ,v[ǫ, g ]n (ǫ))

and h = (g (z1(ǫ)), . . . , g (zn(ǫ))). Thus, we have that ‖u−h‖ ≤ γ and ‖h‖ ≥Cγ for the norm ‖h‖2 = 1
n

∑n
t=1 h2

t . Then

‖u‖ ≤ ‖u−h‖+‖h‖ ≤ γ+‖h‖ ≤ (C−1 +1)‖h‖

and thus ‖h‖ ≥ c‖u‖ as desired. By choosing c = 1/2, we have C = 1 and thus the zero tree also provides a γ-cover.

We conclude that

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2

]
≤ 4Esup

g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)]
(37)

+Emax
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)− (1/4)vt (ǫ)2

]
(38)

where v[ǫ, g ] is defined to be the all-zero tree if 1
n

∑n
t=1 g (zt (ǫ))2 ≤ γ2 and otherwise as an element of the cover V ′

that is γ-close to g on the path ǫ.
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By Lemma 7, the term (38) is upper bounded as

Eǫ max
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)− (1/4)vt (ǫ)2

]
≤ 32B2 logN2(γ,G ,z)

We now turn to the analysis of the first term on the right-hand side of (37). Let v[ǫ, g ] be denoted by v[ǫ, g ]0 and V

be denoted by V 0. Let V j denote a sequential (2− jγ)-cover of G on the tree z, for j = 1, . . . , N , N ≥ 1 to be specified

later. We can now write

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)]

= Esup
g∈G

[
n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)
+

n∑

t=1

N∑

j=1

ǫtηt (ǫ)
(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)]

≤ Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)]

+
N∑

j=1

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)]

From here, the analysis is very similar to the one in [15], except for the additional random variables ηt (ǫ) multi-

plying the differences, and also for the minor fact that v[ǫ, g ]0 is defined as 0 for some (g ,ǫ) pairs. This latter fact,

however, does not affect the proof since 0 does provide a valid γ-cover when it is used.

First, by Cauchy-Schwartz inequality,

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)]

≤ nEsup
g∈G

[ n∑

t=1

(
ǫtηt (ǫ)
p

n

)(
1
p

n

(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
))]

≤ nE

(
1

n

n∑

t=1

ηt (ǫ)2

)−1/2

βN

≤ BβN n

where β j = 2− jγ. For the second term, fix a particular j and consider all pairs (vs ,vr ) with vs ∈ V j and vr ∈ V j−1.

For each such pair, define a tree w(s,r ) by

w(s,r )
t (ǫ) =

{
vs

t (ǫ)−vr
t (ǫ) if there exists g ∈G s.t. vs = v[g ,ǫ] j ,vr = v[g ,ǫ] j−1

0 otherwise.

for all t ∈ [n] and ǫ ∈ {±1}n . One can check that the tree is well-defined, and we set

W j =
{

w (s,r ) : 1≤ s ≤ |V j |,1 ≤ r ≤ |V j−1|
}

.

Then for any j ∈ [N ] and ǫ,

sup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)]
≤ max

w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)

]

By the argument outlined in [15], for any w ∈W j and any path ǫ,

√
n∑

t=1

wt (ǫ)2 ≤ 3
p

nβ j .

Putting everything together, and using Lemma 7,

Eǫ sup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)]

≤ BβN n+B
p

n
N∑

j=1

3β j

√
2log(|V j ||V j−1|)
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and the last term is upper bounded by

6B
p

n
N∑

j=1

β j

√
log(|V j |) ≤ 12B

p
n

N∑

j=1

(β j −β j+1)

√
log(|V j |) ≤ 12B

p
n

∫β0

βN+1

√
logN2(δG ,z)dδ

Given any ρ ∈ (0,γ), we let N = max{ j :β j > 2ρ}. Then βN < 4ρ and βN+1 > ρ, and thus

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)]

≤ B inf
ρ∈(0,γ)

{
4ρn+12

p
n

∫γ

ρ

√
logN2(δ,G ,z)dδ

}

This concludes the proof.

Proof of Lemma 6. The proof closely follows that of Lemma 5, except for the way we use Lemma 7 to take advan-

tage of the subtracted quadratic term. We also employ an ℓ∞ notion of sequential cover, rather than ℓ2. To this

end, let V ′ be a sequential γ-cover of G on z in the ℓ∞ sense, i.e.

∀ǫ, ∀g ∈G , ∃v ∈V ′ s.t. max
t∈[n]

|g (zt (ǫ))−vt (ǫ)| ≤ γ

As before, let V =V ′∪{0} and denote by v[ǫ, g ] a γ-close tree promised by the definition. As in (31), for any c ∈ [0,1],

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2 −αηt (ǫ)2

]

≤ Esup
g∈G

[ n∑

t=1

{
4ǫtηt (ǫ)

(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
−
α

2
ηt (ǫ)2

}
−

n∑

t=1

(
g (zt (ǫ))2 −c2v[ǫ, g ]t (ǫ)2

)]

+Emax
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)−c2vt (ǫ)2 −
α

2
ηt (ǫ)2

]

Following the proof of Lemma 5, we claim that for any ǫ, g there exists an element v[ǫ, g ] ∈ V such that for any

t ∈ [n],

|g (zt (ǫ))| ≥ c|v[ǫ, g ]t (ǫ)| (39)

First consider the easy case ‖g (zt (ǫ))‖∞ ≤Cγ, where C = c
1−c . Then 0 ∈V provides a sequential Cγ-cover in the ℓ∞

sense. If, on the other hand, ‖g (zt (ǫ))‖∞ >Cγ, we fix any tree v[ǫ, g ] ∈V that is γ-close in the ℓ∞ sense to g on the

path ǫ. With the same argument as in the proof of Lemma 5, we conclude (39).

Hence,

Esup
g∈G

[ n∑

t=1

4ǫtηt (ǫ)g (zt (ǫ))− g (zt (ǫ))2 −αηt (ǫ)2

]

≤ 4Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]t (ǫ)

)
−
α

2
ηt (ǫ)2

]
(40)

+Emax
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)− (1/4)vt (ǫ)2 −
α

2
ηt (ǫ)2

]
(41)

By Lemma 7, the term (41) is upper bounded as

Eǫ max
v∈V ′

[ n∑

t=1

4ǫtηt (ǫ)vt (ǫ)− (1/4)vt (ǫ)2 −
α

2
ηt (ǫ)2

]
≤α−116A2 logN∞(γ,G ,z) (42)
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As for the term in (40), we write

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)
−
α

2
ηt (ǫ)2

]

= Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)
−
α

4
ηt (ǫ)2

+
n∑

t=1

N∑

j=1

{
ǫtηt (ǫ)

(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)
−

α

4N
ηt (ǫ)2

}]

≤ Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)
−
α

4
ηt (ǫ)2

]

+
N∑

j=1

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)
−

α

4N
ηt (ǫ)2

]

Using Cauchy-Schwartz inequality along with ab ≤ (1/2)(a2 +b2),

1

n

n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)
≤

n∑

t=1

(p
αǫtηt (ǫ)
p

2n

)(√
2

nα

(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
))

≤
1

4n

n∑

t=1

αηt (ǫ)2 +
n∑

t=1

1

nα

(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)2

and thus

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]N

t (ǫ)
)
−
α

4
ηt (ǫ)2

]
≤α−1βN n

where β j = 2− j γ. For the j -th link in the chain, recall that we can define

w(s,r )
t (ǫ) =

{
vs

t (ǫ)−vr
t (ǫ) if there exists g ∈G s.t. vs = v[g ,ǫ] j ,vr = v[g ,ǫ] j−1

0 otherwise.

for all t ∈ [n] and ǫ ∈ {±1}n . Then for any j ∈ [N ] and ǫ,

sup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
v[ǫ, g ]

j
t (ǫ)−v[ǫ, g ]

j−1
t (ǫ)

)
−

α

4N
ηt (ǫ)2

]
≤ max

w∈W

[ n∑

t=1

ǫtηt (ǫ)wt (ǫ)−
α

4N
ηt (ǫ)2

]

and it must hold by the definition of the cover that

|wt (ǫ)| ≤ 2β j

for any w ∈W j and any path ǫ and any t . Putting everything together, and using Lemma 7,

Eǫ sup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)
−
α

2
ηt (ǫ)2

]
≤

nβN

α
+

N∑

j=1

8Nβ2
j

α
log(|V j ||V j−1|)

Simplifying and using β j =β j−1 −β j , we obtain an upper bound of

nβN

α
+

16N

α

N∑

j=1

β2
j log(|V j |) =

nβN

α
+

16N

α

N∑

j=1

(β j−1 −β j )β j log(|V j |)

≤
nβN

α
+

16N

α

∫β0

βN+1

δ logN∞(δ,G ,z)dδ
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Given any ρ ∈ (0,γ), we let N = max{ j :β j > 2ρ}. Then βN < 4ρ and βN+1 > ρ. Further, N ≤ log(γ/ρ). Thus

Esup
g∈G

[ n∑

t=1

ǫtηt (ǫ)
(
g (zt (ǫ))−v[ǫ, g ]0

t (ǫ)
)
−
α

2
ηt (ǫ)2

]

≤α−1 inf
ρ∈(0,γ)

{
4ρn+16log(γ/ρ)

∫γ

ρ
δ logN∞(δ,G ,z)dδ

}

Together with (42) this concludes the proof.

Proof of Lemma 9. Fix a β> 0, and set n = fatβ(F ). Suppose x is an X -valued tree of depth n that is β-shattered

by F :

∀ǫ,∃ f ǫ ∈F s.t. ǫt ( f ǫ(xt (ǫ))−µt (ǫ)) ≥β/2

where µ is the witness to shattering. Since functions in F take values in [−1,1], it is also the case that µ is [−1,1]-

valued, and thus | f (xt (ǫ))−µt (ǫ)| ≤ 2 for all f ∈F . Then from (14) with the particular choices of x and µ described

above,

V 0
n ≥ E sup

f ∈F

[ n∑

t=1

4ǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]
(43)

≥ E sup
f ∈F

[ n∑

t=1

4ǫt ( f (xt (ǫ))−µt (ǫ))−2| f (xt (ǫ))−µt (ǫ)|
]

(44)

≥ E

[ n∑

t=1

4ǫt ( f ǫ(xt (ǫ))−µt (ǫ))−2| f ǫ(xt (ǫ))−µt (ǫ)|
]

(45)

Using the definition of shattering, we can further lower bound the above quantity by

E

[ n∑

t=1

4| f ǫ(xt (ǫ))−µt (ǫ)|−2| f ǫ(xt (ǫ))−µt (ǫ)|
]
≥ E

[ n∑

t=1

β

]
= nβ

Now, suppose fatβ(F ) =C/βp , p > 0. Then n = fatβ(F ) implies β=Cn−1/p . The result follows.

Proof of Lemma 10. Assume d = fatβ(F ′) ≤ n. Let z be an X -valued tree of depth d that is β-shattered by F
′ with

a witness tree s. Observe that the functions f ǫ that guarantee

∀t ∈ [n], ǫt ( f ǫ(zt (ǫ))−st (ǫ)) ≥β/2 (46)

do not necessarily take on values close to the st (ǫ)±β/2 interval. We augment F
′ with 2d functions g ǫ that take

on the same values as f ǫ, except (46) is satisfied with equality: ǫt (g ǫ(zt (ǫ))− st (ǫ)) = β/2. Let F be the resulting

class of functions, and G =F \F
′. We now argue that fatβ(F ) cannot be more than 2d +4, as we have only added

at most 2d functions to F
′. Suppose for the sake of contradiction that there exists a tree z of depth at least 2d +5

shattered by F . There must exist 22d+5 functions that shatter z and only at most 2d of them can be from G . Let

us label the leaves of z with the functions that shatter the corresponding path from the root; these functions are

clearly distinct. Order the leaves of the tree in any way, and observe that there must exist a pair of functions from

G with indices differing by at least 2d+4. It is easy to see that such two leaves can only have a common parent at

d +3 levels from the leaves, and this yields a complete binary subtree of size d +1 that is shattered by functions in

F
′, a contradiction.

We will now use the function class F to prove a lower bound. Recall that z is an X -valued tree of depth fatβ that

is β-shattered by G ⊆F . Let s be the witness tree for the shattering. We will now show a construction of particular

trees of depth

n′ =
⌈

n

fatβ

⌉
fatβ (47)

20



using the pair z,s. Define k = ⌈ n
fatβ

⌉ = n′

fatβ
≥ 1 and consider the X -valued tree x and the R-valued tree µ of depth n′

constructed as follows. For any path ǫ ∈ {±1}n′
and any t ∈ [n′], set

xt (ǫ) = z⌈ t
k
⌉ (ǫ̃) , µt (ǫ) = s⌈ t

k
⌉ (ǫ̃)

where ǫ̃ ∈ {±1}fatβ is the sequence of signs specified as

ǫ̃=



sign

(
k∑

j=1

ǫ j

)

,sign

(
2k∑

j=k+1

ǫ j

)

, . . . ,sign




k fatβ∑

j=k
(
fatβ−1

)
ǫ j







 .

We now lower bound (14) by choosing the particular x,µ defined above:

V 0
n′ ≥ E sup

f ∈F

[
n′∑

t=1

2ǫt ( f (xt (ǫ))−µt (ǫ))− ( f (xt (ǫ))−µt (ǫ))2

]

= E sup
f ∈F

[
n′∑

t=1

2ǫt ( f (z⌈ t
k
⌉(ǫ̃))−s⌈ t

k
⌉(ǫ̃))− ( f (z⌈ t

k
⌉(ǫ̃))−s⌈ t

k
⌉(ǫ̃))2

]

.

Splitting the sum over t into fatβ blocks, the above expression is equal to

E sup
f ∈F

[
fatβ∑

i=1

i ·k∑

j=(i−1)k+1

2ǫ j ( f (zi (ǫ̃))−si (ǫ̃))− ( f (zi (ǫ̃))−si (ǫ̃))2

]

= E sup
f ∈F

[
fatβ∑

i=1

2( f (zi (ǫ̃))−si (ǫ̃))

(
i ·k∑

j=(i−1)k+1

ǫ j

)

−k( f (zi (ǫ̃))−si (ǫ̃))2

]

= E sup
f ∈F

[
fatβ∑

i=1

2ǫ̃i ( f (zi (ǫ̃))−si (ǫ̃))

∣∣∣∣∣

i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−k( f (zi (ǫ̃))−si (ǫ̃))2

]

where the last step follows by the definition of ǫ̃. Recall that z is shattered by the subset G and that the functions in

G stay close to the witness tree s. We obtain a lower bound

Esup
g∈G

[
fatβ∑

i=1

2ǫ̃i ( f (zi (ǫ̃))−si (ǫ̃))

∣∣∣∣∣

i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−k( f (zi (ǫ̃))−si (ǫ̃))2

]

≥ E

fatβ∑

i=1

(

β

∣∣∣∣∣

i ·k∑

j=(i−1)k+1

ǫ j

∣∣∣∣∣−
kβ2

4

)

≥ fatβ(F )



β

√
k

2
−

kβ2

4





where we used Khinchine’s inequality in the last step. By the definition of k,

fatβ(F )β

√
k

2
= fatβ(F )β

√
n′

2fatβ(F )
=

1
p

2
β
√

n′fatβ(F )

and

fatβ(F )
kβ2

4
=

1

4
n′β2

We conclude that

V 0
n′ ≥

1

4

(
2
p

2β
√

n′fatβ(F )−n′β2
)

(48)
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Now suppose fatβ(F ) = c/βp for some c > 0. First, we need to ensure that fatβ(F ) = c/βp ≤ n′, as required by

our construction. This means that β≥ (cn′)−1/p . Plugging in the rate of fatβ(F ) into (48),

2
p

2β
√

n′fatβ(F )−n′β2 = 2
p

2c1/2β1−p/2
p

n′−n′β2

Observe that the setting of β= (32c)1/(2+p)(n′)−1/(p+2) yields a lower bound of

cp · (n′)
p

p+2

where cp denotes a constant that may depend on p, and whose value may change from line to line.

Examining (29), we see that V 0
n is nondecreasing with n. To illustrate this, let n′ > n. For t ∈ {n +1, . . . ,n′}, we

may choose pt in (29) as a delta distribution on f ∗(xt ), for any sequence of xt , where f ∗ is an optimal function

over steps {1, . . . ,n}. Clearly, V 0
n′ ≥V 0

n . In view of (47) and the above discussion, V 0
n′ ≤V 0

2n−1, and thus

V 0
2n ≥V 0

2n−1 ≥V 0
n′ ≥ cp n

p
p+2 .

Proof of Lemma 11. First note that when t = n the initial condition is trivially satisfied as

Rn(x1:n , y1:n ) = sup
f ∈F

{

−
n∑

j=1

( f (x j )− y j )2

}

=− inf
f ∈F

n∑

j=1

( f (x j )− y j )2 .

Let us denote

L̂t ( f ) =
t∑

j=1

( f (x j )− y j )2

and

At+1( f ) =
n∑

j=t+1

Bǫ j ( f (x j (ǫ))−µj (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2

To check admissibility note that we need to check the inequality in Equation (49). To do so note that for any
xt ∈X , pt ∈∆([−B,B]),

Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
]
+Eyt∼pt

[
Rn

(
x1:t , y1:t

)]
= Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
+sup

x,µ
Eǫ sup

f ∈F

{
At+1( f )− L̂t ( f )

}
]

Expanding the square in the first term and then the loss of f at time t , we obtain

Eyt∼pt

[(
Eyt∼pt

[
yt

])2
−2yt Eyt∼pt

[
yt

]
+ y2

t +sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t ( f )

}]

= Eyt∼pt

[(
Eyt∼pt

[
yt

])2
−2yt Eyt∼pt

[
yt

]
+sup

x,µ
Eǫ sup

f ∈F

{
At+1( f )− f 2(xt )+2 f (xt )yt − L̂t−1( f )

}]

Rearranging, the above is equal to

Eyt∼pt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )+2

(
Eyt∼pt

[
yt

])2
− f 2(xt )−

(
Eyt∼pt

[
yt

])2
+2( f (xt )−Eyt∼pt

[
yt

]
)yt

}]

= Eyt∼pt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )+2

(
Eyt∼pt

[
yt

])2
−

(
f (xt )−Eyt∼pt

[
yt

])2
−2 f (xt )Eyt∼pt

[
yt

]
+2

(
f (xt )−Eyt∼pt

[
yt

])
yt

}]

which is

Eyt∼pt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−2

(
Eyt∼pt

[
yt

])2

−
(

f (xt )−Eyt∼pt

[
yt

])2
−2

(
f (xt )−Eyt∼pt

[
yt

])
Eyt∼pt

[
yt

]
+2

(
f (xt )−Eyt∼pt

[
yt

])
yt

}]

≤ Eyt∼pt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−Eyt∼pt

[
yt

])2
+2

(
f (xt )−Eyt∼pt

[
yt

])(
yt −Eyt∼pt

[
yt

])}]
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By Jensen’s inequality, the above can be upper bounded by

Eyt ,y ′
t∼pt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−Eyt∼pt

[
yt

])2
+2

(
f (xt )−Eyt∼pt

[
yt

])(
yt − y ′t

)}]

= Eyt ,y ′
t∼pt ,ǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−Eyt∼pt

[
yt

])2
+2ǫt

(
f (xt )−Eyt∼pt

[
yt

])(
yt − y ′t

)}]

Since the inequalities above hold for any xt ∈X , pt ∈∆([−B ,B]), we have

sup
xt∈X ,pt ∈∆([−B ,B ])

[
Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
]
+Eyt∼pt

[
Rn

(
x1:t , y1:t

)]]

≤ sup
xt∈X ,pt ∈∆([−B ,B ])

Eyt ,y ′
t∼pt ,ǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−Eyt∼pt

[
yt

])2
+2ǫt

(
f (xt )−Eyt∼pt

[
yt

])(
yt − y ′t

)}]

≤ sup
xt∈X

yt ,y ′
t ,µt ∈[−B ,B ]

Eǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−µt

)2 +2ǫt
(

f (xt )−µt
)

(yt − y ′t )
}]

≤ sup
xt∈X

yt ,µt ∈[−B ,B ]

Eǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−µt

)2 +4ǫt
(

f (xt )−µt
)

yt

}]

Since the above is convex in yt , we can replace the supremum over [−B ,B] to supremum over {−B ,B}

sup
xt∈X ,µt ∈[−B ,B ]

yt∈{−B ,B }

Eǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−µt

)2 +4ǫt
(

f (xt )−µt
)

yt

}]

= sup
xt∈X

µt∈[−B ,B ]

Eǫt

[
sup
x,µ

Eǫ sup
f ∈F

{
At+1( f )− L̂t−1( f )−

(
f (xt )−µt

)2 +4Bǫt
(

f (xt )−µt
)}]

= sup
x,µ

Eǫ

[
sup
f ∈F

{ n∑

j=t

Bǫ j ( f (x j (ǫ))−µ j (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2 − L̂t−1( f )

]
=Rn

(
x1:t−1, y1:t−1

)

Thus we have shown that Rn is an admissible relaxation. Further, (ŷ − yt )2 +Rn

(
x1:t , (y1:t−1, yt )

)
is a convex

function of yt and so for the estimator one can use

ŷt =
Rn(x1:t , (y1:t−1,B))−Rn (x1:t , (y1:t−1,−B))

4B

(no clipping is needed above as ŷt is always between −B and B). For the above estimator one enjoys the regret

bound

Regn ≤Rn(·)
Note that this is exactly the bound in Eq. (13).

Proof of Proposition 12. Notice that the above recipe closely follows the notion of relaxation provided in [13]. All

we need to do is check that the relaxation derived satisfies admissibility and initial conditions. By Step 1 of the

recipe, since the offset Rademacher relaxation is admissible to start with, the derived relaxation also satisfies initial

condition. To show admissibility condition notice that the set [−B,B] is compact and convex and (ŷt − yt )2 +
Reln

(
x1:t , y1:t

)
is a convex function of ŷt . Hence applying minimax theorem, we see that,

inf
ŷt∈[−B ,B ]

sup
yt∈[−B ,B ]

{
(ŷt − yt )2 +Reln

(
x1:t , y1:t

)}

= sup
pt∈∆([−B ,B ])

inf
ŷt

{
Eyt∼pt

[
(ŷt − yt )2 +Reln

(
x1:t , y1:t

)]}

= sup
pt∈∆([−B ,B ])

{

inf
ŷt

Eyt∼pt

[
(ŷt − yt )2

]
+Eyt∼pt

[
Reln

(
x1:t , y1:t

)]
}

= sup
pt∈∆([−B ,B ])

{
Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
]
+Eyt∼pt

[
Reln

(
x1:t , y1:t

)]}
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Hence the admissibility condition can be rewritten as :

∀xt ∈X , sup
pt ∈∆([−B ,B ])

{
Eyt∼pt

[(
Eyt∼pt

[
yt

]
− yt

)2
]
+Eyt∼pt

[
Reln

(
x1:t , y1:t

)]}
≤ Reln

(
x1:t−1, y1:t−1

)
(49)

Proof of Corollary 13. As done in [13] for the case of finite class of experts, in the Rademacher relaxation one can
replace the max f ∈F with a limit of soft-max as follows:

Rn(x1:t , y1:t ) = sup
x,µ

Eǫ max
f ∈F

[
n∑

j=t+1

4Bǫ j ( f (x j (ǫ))−µ j (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2 −
t∑

j=1

( f (x j )− y j )2

]

= sup
x,µ

Eǫ inf
λ>0

λ−1 log

(
∑

f ∈F

exp

(

λ
n∑

j=t+1

4Bǫ j ( f (x j (ǫ))−µ j (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2 −λ
t∑

j=1

( f (x j )− y j )2

))

≤ inf
λ>0

{
λ−1 log

(
∑

f ∈F

exp

(

−λ
t∑

j=1

( f (x j )− y j )2

))

+sup
x,µ

λ−1 log

(

Eǫ exp

(

λ
n∑

j=t+1

4Bǫ j ( f (x j (ǫ))−µ j (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2

))}

Not notice that if we set λ= B−2, the proof of Lemma 7 exactly shows that

sup
x,µ

λ−1 log

(

Eǫ exp

(

λ
n∑

j=t+1

4Bǫ j ( f (x j (ǫ))−µ j (ǫ))− ( f (x j (ǫ))−µ j (ǫ))2

))

≤ B2 log |F |

Hence we arrive at our relaxation

Reln

(
x1:t , y1:t

)
= B2 log

(
∑

f ∈F

exp

(

−B−2
t∑

j=1

( f (x j )− y j )2

))

Now to show admissibility, note that

sup
xt ,pt

Eyt∼pt

[
(yt −E

[
yt

]
)2 +Reln

(
x1:t , y1:t

)]

= sup
xt ,pt

Eyt∼pt

[

y2
t − (E

[
yt

]
)2 +B2 log

(
∑

f ∈F

exp

(

−B−2
t∑

j=1

( f (x j )− y j )2

))]

= sup
xt ,pt

Eyt∼pt

[

B2 log
(
exp

(
B−2 y2

t −B−2(E
[

yt
]
)2

))
+B2 log

(
∑

f ∈F

exp

(

−B−2
t∑

j=1

( f (x j )− y j )2

))]

= sup
xt ,pt

Eyt∼pt

[

B2 log

(
∑

f ∈F

exp

(

B−2 y2
t −B−2(E

[
yt

]
)2 −B−2

t∑

j=1

( f (x j )− y j )2

))]

= sup
xt ,pt

Eyt∼pt

[

B2 log

(
∑

f ∈F

exp

(

−B−2(E
[

yt
]
)2 +2B−2 f (xt )yt −B−2 f 2(xt )−B−2

t−1∑

j=1

( f (x j )− y j )2

))]

= sup
xt ,pt

Eyt∼pt

[

B2 log

(
∑

f ∈F

exp

(

−B−2(E
[

yt
]
− f (xt ))2 +2B−2 f (xt )(yt −E

[
yt

]
)−B−2

t−1∑

j=1

( f (x j )− y j )2

))]
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Now by convexity (see [1]) we can take the expectation w.r.t. yt inside and hence we get,

sup
xt ,pt

Eyt∼pt

[
(yt −E

[
yt

]
)2 +Reln

(
x1:t , y1:t

)]

≤ sup
xt ,pt

{

B2 log

(
∑

f ∈F

exp

(

−B−2(E
[

yt

]
− f (xt ))2 −B−2

t−1∑

j=1

( f (x j )− y j )2

))}

≤ B2 log

(
∑

f ∈F

exp

(

−B−2
t−1∑

j=1

( f (x j )− y j )2

))

= Reln

(
x1:t−1, y1:t−1

)

Again as we used above (see [1]) we have that the relaxation is such that (ŷ−yt )2+Reln

(
x1:t , (y1:t−1, yt )

)
is a convex

function of yt and so the estimator is given by

ŷt = Clip

(
Reln

(
x1:t , (y1:t−1,B)

)
−Reln

(
x1:t , (y1:t−1,−B)

)

4B

)

= Clip



B

4
log




∑

f ∈F exp
(
−B−2 ∑t−1

j=1
( f (x j )− y j )2 −B−2( f (xt )−B)2

)

∑
f ∈F exp

(
−B−2

∑t−1
j=1( f (x j )− y j )2 −B−2( f (xt )+B)2

)









Now the final regret bound we obtain is given by Regn ≤ Reln (·) and so we conclude that

Regn ≤ B2 log |F |

Proof of Corollary 14. For simplicity, each input instance xt ∈R
d we define vector in R

d+1 as zt = (0, xt ), the vector

obtained by concatenating 0 before xt . Further given trees x and µ, we write the z as the [−B,B]×X valued tree

corresponding to x and µ obtained by concatenating µ’s before x’s on every node. Also for every linear predictor

f ∈F define corresponding w = (−1, f ). The unnormalized regret over the rounds −d to n can be written as

n∑

t=1

(ŷt − yt )2 − inf
w

{ n∑

t=1

(〈w, zt 〉− yt )2 +λ‖w‖2
2

}

Hence, we have,

Rn(x1:t , y1:t ) = sup
z

Eǫ sup
f ∈F

[
n−1∑

j=t+1

4Bǫ j 〈w,z j (ǫ)〉− (〈w,z j (ǫ)〉)2 −
t∑

j=1

(〈w, z j 〉− y j )2 −λ‖w‖2
2

]

= 2sup
z

Eǫ sup
w

[〈

w,
n∑

j=t+1

2Bǫ j z j (ǫ)+
t∑

j=1

y j z j

〉

−
1

2
w⊤

(
n∑

j=t+1

z j (ǫ)z j (ǫ)⊤+
t∑

j=1

z j z⊤j +λI

)

w⊤
]

−
t∑

j=1

y2
j

Let us denote At+1:n (z)=
∑n

j=t+1
z j (ǫ)z j (ǫ)⊤ and Bt =

∑t
j=1

z j z⊤
j

. Using Fenchel-Young inequality for

1

2
w⊤ (At+1:n (z)+Bt +λI ) w⊤

and its conjugate we get,

Rn(x1:t , y1:t ) ≤ sup
z

Eǫ

∥∥∥∥∥

n∑

j=t+1

2Bǫ j z j (ǫ)+
t∑

j=1

y j z j

∥∥∥∥∥

2

(At+1:n (z)+Bt+λI )−1

−
t∑

j=1

y2
j
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The idea now is to obtain a further upper bound by removing the dependence on the tree z. Opening the square with only the

n-th term, the above expression is equal to

sup
z

Eǫ

[∥∥∥∥∥

n−1∑

j=t+1

2Bǫ j z j (ǫ)+
t∑

j=1

y j z j

∥∥∥∥∥

2

(At+1:n (z)+Bt+λI )−1

−
t∑

j=1

y2
j +4B2zn (ǫ)⊤ (At+1:n (z)+Bt +λI )−1 zn(ǫ)

]

By the standard argument we may upper bound the quadratic terms by a ratio of determinants ∆:

zn(ǫ)⊤ (At+1:n(z)+Bt +λI )−1 zn(ǫ) ≤
(

1−
∆(At+1:n−1(z)+Bt +λI )

∆(At+1:n (z)+Bt +λI )

)

Using the inequality 1−x ≤− log(x) for x > 0, we obtain an upper bound

sup
z

{
Eǫ




∥∥∥∥∥

n−1∑

j=t+1

2Bǫ j z j (ǫ)+
t∑

j=1

y j z j

∥∥∥∥∥

2

(At+1:n−1(z)+Bt+λI )−1



−
t∑

j=1

y2
j +4B2

Eǫ

[
log

(
∆(At+1:n (z)+Bt +λI )

∆(At+1:n−1(z)+Bt +λI )

)]}

Proceeding in similar fashion by peeling off terms from the norm, we arrive at,

Rn (x1:t , y1:t )≤

∥∥∥∥∥

t∑

j=1

y j z j

∥∥∥∥∥

2

(Bt+λI )−1

−
t∑

j=1

y2
j +4B2 sup

z
Eǫ

[
log

(
∆(At+1:n(z)+Bt +λI )

∆(Bt +λI )

)]

≤

∥∥∥∥∥

t∑

j=1

y j z j

∥∥∥∥∥

2

(Bt+λI )−1

+4B2 log

(
(n/d)d

∆(Bt +λI )

)

−
t∑

j=1

y2
j

and we take this last expression as our relaxation Reln

(
x1:t , y1:t

)
. Now notice that since zt ’s are 0 on the first

coordinate, the relaxation can be rewritten as

Reln

(
x1:t , y1:t

)
=

∥∥∥∥∥

t∑

j=1

y j x j

∥∥∥∥∥

2

(B̃t+λI)−1

−
t∑

j=1

y2
j +4B2 log

(
(n/d)d

∆(Bt +λI )

)

where B̃t =
∑t

j=1
x j x⊤

j
. By conjugacy, the relaxation is equal to

sup
f ∈F

{

2
t∑

j=1

y j 〈 f , x j 〉− f ⊤ (
B̃t +λI

)
f

}

−
t∑

j=1

y2
j +4B2 log

(
(n/d)d

∆(Bt +λI )

)

=− inf
f ∈F

{
t∑

j=1

( f (x j )− y j )2 +λ
∥∥ f

∥∥2
2

}

+4B2 log

(
(n/d)d

∆(Bt +λI )

)

We now prove admissibility of relaxation as follows:

sup
pt

Eyt∼pt

[
(yt −E

[
yt

]
)2 +Reln

(
x1:t , y1:t

)]

= sup
pt

Eyt∼pt

[

(yt −E
[

yt
]
)2 − inf

f ∈F

{
t∑

j=1

(
〈f , x j 〉− y j

)2
+λ

∥∥ f
∥∥2

}]

+4B2 log

(
(n/d)d

∆(Bt +λI )

)

The first term, in view of (23), is equal to

sup
pt

Eyt∼pt

[

sup
f ∈F

{

−
t−1∑

j=1

(
〈f , x j 〉− y j

)2
− (〈 f , xt 〉−E

[
yt

]
)2 +2(yt −E

[
yt

]
)
(
〈f , xt 〉−E

[
yt

])
+λ

∥∥ f
∥∥2

}]

≤ sup
µt

Eǫt

[

sup
f ∈F

{

−
t−1∑

j=1

(
〈 f , x j 〉− y j

)2
− (〈 f , xt 〉−µt )2 +4Bǫt

(
〈 f , xt 〉−µt

)
+λ

∥∥ f
∥∥2

}]
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and the inequality arises from symmetrization exactly as in the proof of of Lemma 4. Once again, rewriting the above using

conjugacy and converting to the zt notation by appending a coordinate, the relaxation is upper bounded by

sup
zt

Eǫt




∥∥∥∥∥

t−1∑

j=1

y j z j +2Bǫt zt

∥∥∥∥∥

2

(
Bt−1+zt z⊤t +λI

)−1



+4B2 log

(
(n/d)d

∆(Bt +λI )

)

−
t−1∑

j=1

y2
j

= sup
zt

∥∥∥∥∥

t−1∑

j=1

y j z j

∥∥∥∥∥

2

(
Bt−1+zt z⊤t +λI

)−1

+4B2 z⊤t
(
Bt−1 +zt z⊤t +λI

)−1
zt +4B2 log

(
(n/d)d

∆(Bt +λI )

)

−
t−1∑

j=1

y2
j

which is further upper bounded by

sup
zt

∥∥∥∥∥

t−1∑

j=1

y j z j

∥∥∥∥∥

2

(Bt−1+λI )−1

+4B2 log

(
∆(Bt +λI )

∆(Bt−1 +λI )

)
+4B2 log

(
(n/d)d

∆(Bt +λI )

)

−
t−1∑

j=1

y2
j

=

∥∥∥∥∥

t−1∑

j=1

y j z j

∥∥∥∥∥

2

(Bt−1+λI )−1

+4B2 log

(
(n/d)d

∆(Bt−1 +λI )

)

−
t−1∑

j=1

y2
j

= Reln
(
x1:t−1 , y1:t−1

)

Thus we have shown admissibility and further this relaxation is such that (ŷ − yt )2 + Reln

(
x1:t , (y1:t−1, yt )

)
is a

convex function of yt and so the forecast associated with this relaxation is simply

ŷt = Clip





∥∥∥
∑t−1

j=1
y j x j +B xt

∥∥∥
2

(Bt+λI )−1
−

∥∥∥
∑t−1

j=1
y j x j −B xt

∥∥∥
2

(Bt+λI )−1

4B





Expanding out the two norm square terms we conclude that

ŷt = Clip

(

x⊤
t (Bt +λI )−1

(
t−1∑

j=1

y j x j

))

Notice that this is exactly the clipped version of the Vovk-Azoury-Warmuth forecaster. The final regret bound we

obtain is given by Reg ≤ Reln (·) and so we conclude that for any f ∈ F , regret against this linear predictor is

bounded as :

1

n

n∑

t=1

(ŷt − yt )2 ≤
1

n

n∑

t=1

( f ⊤xt − yt )2 +
λ

2n

∥∥ f
∥∥2

2 +
4dB2 log

(
n
λd

)

n
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