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for quantile regression
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Abstract

A nonparametric procedure for quantile regression, or more generally
nonparametric M-estimation, is proposed which is completely data-driven
and adapts locally to the regularity of the regression function. This is
achieved by considering in each point M-estimators over different local
neighbourhoods and by a local model selection procedure based on se-
quential testing. Non-asymptotic risk bounds are obtained, which yield
rate-optimality for large sample asymptotics under weak conditions. Sim-
ulations for different univariate median regression models show good fi-
nite sample properties, also in comparison to traditional methods. The
approach is the basis for denoising CT scans in cancer research.

AMS Classification. Primary 62G08; secondary 62G20, 62G35, 62F05, 62P10.
JEL Classification. C14, C31.

Keywords and Phrases. M-estimation, median regression, robust estimation,
local model selection, unsupervised learning, local bandwidth selection, median
filter, Lepski procedure, minimax rate, image denoising.

∗Institut für Mathematik, Humboldt-Universität, Unter den Linden 6, D-10099 Berlin, Ger-
many, mreiss@mathematik.hu-berlin.de (corresponding author) Financial support from the
Deutsche Forschungsgemeinschaft via SFB 649 ”Ökonomisches Risiko”, Humboldt-Universität
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1 Introduction

1.1 Motivation and background

We consider a generalized regression model

Yi = g(xi) + εi, i = 1, . . . , n,

with (εi) i.i.d., x1, . . . , xn in the design space X and g : X → R. We shall
work conditionally on the design x1, . . . , xn such that it can be deterministic
or random. The problems we have in view are those of nonparametric quan-
tile estimation and of nonparametric estimation of g using estimators dealing
with heavy-tailed noise (εi). Both is highly relevant in applications, our main
application here will be median regression for image denoising. In the spirit of
classical M-estimation (Huber 1964) we therefore consider g(xi) as the location
parameter in the observation Yi, assuming

argminm∈R E[ρ(εi −m)] = 0 (1.1)

for some convex function ρ : R → R+ with ρ(0) = 0. We shall assume that
g(xi) is uniquely defined by argminm∈R E[ρ(Yi −m)], which is true in all cases
of interest. If the Yi have Lebesgue densities, then often an equivalent de-
scription is given by the first order condition E[ρ′(εi)] = 0 where ρ′ denotes
the (weak) derivative. Standard examples are ρ(x) = x2/2 for the classical
mean regression model (E[εi] = 0), ρ(x) = |x| for the median regression model
(P(εi 6 0) = P(εi > 0) = 1/2) and the intermediate case ρ(x) = x2/2 for
|x| 6 k and ρ(x) = k|x| − k2/2 for |x| > k with some k > 0 for the Huber
estimator (E[min(max(εi,−k), k)] = 0). The quantile regression model is ob-
tained for ρ(x) = |x| + (2α − 1)x (P(εi 6 0) = α with quantile α ∈ (0, 1)), see
e.g. Koenker (2005). Let us mention that the framework also contains local-
likelihood location estimation when ρ is taken as the negative log-likelihood
with the well-known special cases of mean regression for Gaussian noise and
median regression for Laplace noise. Note that the convexity of ρ is in this case
equivalent to a log-concave error distribution.
The function g is not supposed to satisfy a global smoothness criterion, but we
aim at estimating it locally in each point x ∈X as efficiently as possible. The
risk will then depend on local regularity properties, which we do not assume
to be known. For spatially inhomogeneous functions, in the presence of jumps
or for image denoising pointwise adaptive methods are much more appropriate
than global smoothing methods. In classical mean regression local adaptiv-
ity can be achieved using wavelet thresholding or kernels with locally varying
bandwidths, see Lepski et al. (1997) for a discussion. In this ideal situation a
data-driven choice among linear empirical quantities is performed. M-estimators
are typically nonlinear and the standard approaches do not necessarily transfer
directly. Brown et al. (2008), for example, use an intermediate data binning
and then apply wavelet thresholding to the binned data for median regression.
On the other hand, Hall and Jones (1990), Portnoy (1997) and van de Geer
(2003) consider kernels, smoothing splines and more general M -estimation for
quantile regression, but they all use global methods for choosing the tuning
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parameters like cross-validation or penalisation. Their drawback is that they
do not perform well for spatially inhomogeneous signals like images with edges.
In Yu and Jones (1998) local linear quantile regression is proposed with local
bandwidth choices based on heuristic Gaussian approximations, yet lacking a
theoretical foundation. Here, we develop a generic algorithm to select optimally
among local M-estimators. In contrast to classical model selection, we do not
only rely on the estimator values themselves to define a data-driven selection
criterion. This has significant advantages in the present case of nonlinear base
estimators.

1.2 Main results

Subsequently, we assume that ρ is fixed according to the problem at hand and
we use the corresponding sample versions to construct base estimators for the
(generalized) regression function g. Since we shall care about robustness, we
measure the error in pointwise Lr-moment loss for any r > 0.
In the spirit of classical nonparametrics, we implicitly assume that g can be
approximated by a constant locally around a given point x ∈X . The statistical
challenge is to select adaptively the right neighbourhood U of x where a local
M -estimator is applied. Let us write

m(Yi, xi ∈ U) := arginfµ∈R

{ ∑
i:xi∈U

ρ(Yi − µ)
}

(1.2)

for the location estimator on the set U ⊆X . If the minimizer is not unique, we
just select one of them (e.g., a version of the sample median for |U | even). Note
that an extension to general local polynomial or more general local-likelihood
estimation is straightforward, but this is not the focus of the present work.
For each point x let a family of nested neighbourhoods U0 ⊆ U1 ⊆ · · · ⊆ UK be
given and set

ϑ̃k := m(Yi, xi ∈ Uk). (1.3)

Then the family (ϑ̃k)06k6K forms the class of base estimators and we aim at
selecting the best estimator of ϑ := g(x) in this family. Note that in general we
shall use the design (xi) and the point x in order to define the (Uk), ensuring
that U0 and all Uk+1 \ Uk contain at least one point xi. The leading example
throughout this paper will be the classical windowed median filter as follows.

1.1 Example. Let the design space be X = [0, 1] with equidistant design
points xi = i/n and take ρ(x) = |x|. Consider the symmetric windows Uk =
[x−hk, x+hk] generated by some bandwidths 0 6 h0 < h1 < · · · < hK . Then ϑ̃k
is the median filter, e.g. studied by Truong (1989) or Arias-Castro and Donoho
(2009).

Specified to this example with a geometric grid of bandwidths (hk), our main
non-asymptotic risk bound in Theorem 3.8 yields for our data-driven choice k̂
the following deviation bound from an oracle-type choice k∗, cf. Example 3.10:

Eg[|ϑ̃k̂ − ϑ̃k∗ |
r] 6 C(α+ zrk∗) E0[|ϑ̃k∗ − 0|r],
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where C > 0 is some (explicitly computable) constant, α > 0 a parameter of
the method and zk∗ a (known) critical value. This bound reflects the philosophy
of the method: In the excess risk bound for the data-driven choice k̂ we pay at
most a multiple of the oracle stochastic error, i.e. the risk when g = 0.
While the non-asymptotic result is very general, it does not concisely convey
the size of the error. Therefore, we quantify the asymptotic risk in the setting
of equidistant design xi = i/n, a locally s-Hölder continuous function g and
some mild assumptions on the possible bandwidths as

Eg[|ϑ̃k̂ − g(x)|r]1/r 6 C ′(log(n)/n)s/(2s+1)

with a constant C ′ > 0, see Theorem 4.7. This is the minimax adaptive rate even
for Gaussian errors, but holds true for any zero median noise (εi) with finite
moments of order r > 0. In particular, the so-called payment for pointwise
adaptation is logarithmic in n, which is necessary even in the Gaussian setup,
and does not increase for heavy-tailed noise. This new and surprising result is
due to the robustness of the median and relies technically on moderate deviation
bounds. The general approach presented here permits to extend these adaptive
minimax results to general nonparametric M-estimation. This is Corollary 4.4
where mainly the moderate deviation bound in Assumption 4.1(c) needs to be
checked, see also Section 4.2 for a discussion.

1.3 Outline

We present our procedure to select optimally among local M-estimators in Sec-
tion 2. In Sections 3 and 4 we derive exact and asymptotic error bounds and
the latter give optimal minimax rates for adaptive pointwise risk over Hölder
classes. Specified to median regression, Theorem 4.7 gives optimal locally adap-
tive risk bounds under almost no conditions on the noise distribution. The
simulations in Section 5 show that our procedure has convincing finite sample
properties. Moreover, they confirm that Lepski’s classical method applied to lo-
cal median estimators suffers from oversmoothing because changes in the signal
are not detected early enough due to the robustness of the median. Finally, the
procedure has been implemented to denoise dynamical CT image sequences in
Section 6, which is of key interest when assessing tumor therapies. The funda-
mental idea of our approach is developed from a toy model of testing in the
Appendix, Section 7, where also a technical proof has been moved.

2 The procedure

2.1 Main ideas

Let us start by considering the Lepski (1990) method for selecting among
(ϑ̃k)06k6K , given the mean regression model with E[εi] = 0 and E[ε2

i ] <∞. Note
that the base estimators are then ordered according to decreasing variances:
Var(ϑ̃k) 6 Var(ϑ̃k−1). On the other hand, the bias is usually increasing with
increasing neighbourhoods Uk. This is not always the case (for example, think
of local means for a linear g), but true in particular for the worst case bias over
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smoothness classes like Hölder balls of functions. Lepski’s method can be un-
derstood as a multiple testing procedure where the hypothesis H0(k) : g|Uk ≡ ϑ
that g is constant on Uk is tested against the alternative of significant deviations.
Always assuming that H0(0) is true, we test sequentially whether H0(k + 1)
is acceptable provided that the hypotheses H0(`) have been accepted for all
` 6 k. Once the test of an H0(k+ 1) is rejected, we select the base estimator ϑ̃k
corresponding to the last accepted hypothesis. The main point is thus to prop-
erly define the single significance tests for H0(k + 1). Lepski’s method accepts
H0(k+ 1) if |ϑ̃k+1− ϑ̃`| 6 z

(k+1)
` holds for all ` 6 k with suitable critical values

z
(k+1)
` > 0.

In practice, Lepski’s method often leads to oversmoothing, which is even more
conspicuous for robust M -estimators where the change in the signal is noticed
far too late, cf. Section 5. A very intuitive idea is therefore to replace the test for
H0(k + 1) : g|Uk+1

≡ ϑ at stage k > 1 by a test for H0(k + 1) : g|Uk+1\Uk ≡ ϑ.
Provided H0(`), ` 6 k, have been accepted, both test descriptions amount to the
same assertion. The new description, however, leads in the case of M -estimators
to more powerful constructions of the decision procedure, based on an estimator
for g on the difference Uk+1 \ Uk between consecutive neighbourhoods: we ask
whether the observations Yi in the new points xi ∈ Uk+1 \Uk are homogeneous
with those in U` for ` 6 k. This means that our tests reject if the empirical
location in the additional data

ϑ̃(k+1)\k := m(Yi, xi ∈ Uk+1 \ Uk) (2.1)

satisfies with certain critical values z(k+1)
` > 0:

∃` 6 k : |ϑ̃(k+1)\k − ϑ̃`| > z
(k+1)
` . (2.2)

It is necessary to perform the testing for all ` 6 k and not only with ` = k to
avoid that the signal slowly drifts away as the neighbourhoods grow. In most
cases, though, H0(k + 1) will be rejected because the new piece ϑ̃(k+1)\k is not
in line with ϑ̃k: due to the smaller variance of ϑ̃k compared to ϑ̃`, ` < k, this
last test is the most powerful. It is then interesting to observe that for linear
m the test statistic ϑ̃(k+1)\k − ϑ̃k is just a multiple of ϑ̃k+1 − ϑ̃k. Consequently,
for mean regression with linear base estimators our method will not differ much
from Lepski’s method, whereas the generally nonlinear M-estimators are treated
in a significantly different way. More insight why our tests for H0(k + 1) are
often more powerful and natural is provided by a two-sample toy model which
is discussed in Appendix 7.

2.2 The selection algorithm

We aim at selecting the best estimator among the family {ϑ̃k | k = 0, . . . ,K}.
Considering the law P0 generated by the pure noise setting g ≡ 0, we introduce
the stochastic error levels

sj := E0[|ϑ̃j |r]1/r, skj := E0[|ϑ̃(k+1)\k − ϑ̃j |r]1/r. (2.3)
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We apply the following sequential procedure for prescribed critical values
(zj)j=0,...,K−1 and set zK := 1:

• initialize k := 0;

• repeat
if for all j = 0, . . . , k

|ϑ̃(k+1)\k − ϑ̃j | 6 zjskj + zk+1sk+1

then increase k
else stop

until k = K;

• put k̂ := k and ϑ̂ := ϑ̃k̂.

This algorithm to determine k̂ can be cast in one formula:

k̂ := inf
{
k > 0

∣∣∣ ∃j 6 k : |ϑ̃(k+1)\k − ϑ̃j | > zjskj + zk+1sk+1

}
∧K, ϑ̂ := ϑ̃k̂.

(2.4)

3 Error analysis

We analyse the excess risk between our data-driven estimator ϑ̂ and an optimal
oracle-type estimator ϑ̃k∗ . In our sequential procedure the two errors of stopping
too early or late are estimated separately and then put together. While stopping
late is controlled by the construction of the stopping rule, the error of stopping
early is bounded using a prescription of the critical values in the pure noise
situation. The asymptotic analysis in the next section will then provide the
order of the quantities when n→∞.

3.1 Propagation and stopping late

We need a very natural monotonicity property of the M -estimator.

3.1 Assumption. The location estimator in (1.2) satisfies for any set S and
any partition S =

⋃
j Sj with pairwise disjoint sets Sj:

minjm(Yi, xi ∈ Sj) 6 m(Yi, xi ∈ S) 6 maxjm(Yi, xi ∈ Sj).

Moreover, we have for any c, ci > 0:

m(Yi + ci, xi ∈ S) > m(Yi, xi ∈ S), m(Yi + c, xi ∈ S) = m(Yi, xi ∈ S) + c.

For any reasonable specific choice Assumption 3.1 should be satisfied. In par-
ticular, this is true for the sample quantile where we take for N data points Yi
the mean (Y(bαNc) + Y(bαNc+1))/2 of the order statistics (a malevolent choice
would be for example to choose the first order statistic among the two that is
irrational). If ρ is strictly convex, then the M-estimator is uniquely defined and
the properties always hold:
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3.2 Lemma. If the function ρ is strictly convex, then Assumption 3.1 is satis-
fied.

Proof. Starting with the first inequality, let us write mT as short-hand for
m(Yi, xi ∈ T ), T ⊆ X . Denoting by ρ′+, ρ

′
− the right- and left-handed deriva-

tives of the convex function ρ, the functions ρ′+, ρ′− are strictly increasing with
ρ′+(x) < ρ′−(y) 6 ρ′+(y) for all x < y and∑

xi∈T
ρ′−(Yi −mT ) 6 0,

∑
xi∈T

ρ′+(Yi −mT ) > 0.

If mS < mSj were true for all j, then∑
xi∈S

ρ′−(Yi −mS) >
∑
j

∑
xi∈Sj

ρ′+(Yi −mSj ) > 0,

which contradicts the minimizing property of mS . Hence, mS > minjmSj holds
and a symmetric argument shows ms 6 maxjmSj .
For the inequality in the second display we have by definition and by strict
monotonicity of ρ′+∑

xi∈S
ρ′+(Yi + ci −mS) >

∑
xi∈S

ρ′+(Yi −mS) > 0.

This implies m(Yi + ci, xi ∈ S) > mS . The shift identity in this display follows
by uniqueness immediately from the definition.

3.3 Proposition. Grant Assumption 3.1 and consider ϑ̂ from (2.4). Then we
have for any k = 0, . . . ,K − 1

|ϑ̂− ϑ̃k|1(k̂ > k) 6 max
j=k+1,...,K−1

(
zksjk + zj+1sj+1

)
.

3.4 Remark. This result is true ’ω-wise’, that is, it does not depend on the
noise realisation. It is built into the construction of the selection procedure, see
also Lepski (1990). It is intuitive because when we stop later than at k∗, then
only because the local M-estimators have not differed significantly from ϑ̃k∗ ;
the propagation of the error remains under control.

Proof. From Assumption 3.1 we infer for ` > k

|ϑ̃` − ϑ̃k| 6 max
k+16j6`

|ϑ̃j\(j−1) − ϑ̃k|.

We therefore obtain on the event {k̂ > k} by construction

|ϑ̂− ϑ̃k| 6 max
j=k+1,...,k̂

|ϑ̃j\(j−1) − ϑ̃k| 6 max
j=k+1,...,K−1

(
zksjk + zj+1sj+1

)
.
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3.5 Example. For geometrically decreasing stochastic error levels sk in (2.3),
in particular for the median filter from Example 1.1 with bandwidths hk = h0q

k,
we have sjk . sk for j > k, where A(p) . B(p) means A(p) 6 cB(p) with a
constant c > 0 independent of the parameters p involved. The late stopping
error is of order zrks

r
k, provided the critical values (zk) are non-increasing. This

will imply that the error due to stopping later than some optimal k∗ is increased
by at most the order of zrk∗ :

Eg[|ϑ̂− ϑ|r1(k̂ > k∗)] . Eg[|ϑ̃k∗ − ϑ|r] + zrk∗s
r
k∗ 6 (1 + zrk∗) Eg[|ϑ̃k∗ − ϑ|r].

The inequality E0[|ϑ̃k∗ |r] 6 Eg[|ϑ̃k∗ − ϑ|r] used here means that the stochastic
error (g = 0) is less than the overall error. Its lengthy proof is based on the
explicit median distribution for (g(xi) + εi)xi∈Uk∗ , but is omitted.

3.2 Critical values and stopping early

As the preceding analysis shows, small critical values (zk) lead to small errors
caused by stopping late. On the other hand, the (zk) should not be too small
in order to control the error of stopping early. To this end, we shall require a
condition on the critical values (zk) in the pure noise situation under P0, that
is for constant g ≡ 0. In fact, we face a multiple testing problem, but with an
estimation-type loss function. For some confidence parameter α > 0 we select
zk > 0, k = 0, . . . ,K − 1, such that the condition

K−1∑
j=0

E0

[
|ϑ̃j |r1

(
∃` 6 j : |ϑ̃(j+1)\j − ϑ̃`| > z`sj`

)]
6 αsrK (3.1)

is satisfied. In order to obtain a unique prescription for each zk that equilibrates
the errors for different stopping times of the algorithm, we can select the (zk)
sequentially. We choose z0 such that

K−1∑
j=0

E0

[
|ϑ̃j |r1

(
|ϑ̃(j+1)\j − ϑ̃0| > z0sj0

)]
6 α

K s
r
K

and then each zk for given z0, . . . , zk−1 such that

K−1∑
j=k

E0

[
|ϑ̃j |r1

(
|ϑ̃(j+1)\j − ϑ̃k| > zksjk, ∀` < k : |ϑ̃(j+1)\j − ϑ̃`| 6 z`sj`

)]
6 α

K s
r
K . (3.2)

Summing the left-hand sides over k = 0, . . . ,K − 1, we obtain exactly (3.1). To
determine the (zk) in practice, we simulate in Monte Carlo iterations the pure
noise case g ≡ 0 and calculate for each k the error when the algorithm stops
before the (theoretically optimal) index K due to a rejected test involving zk.
The critical values are determined such that this error equals (at most) α

K s
r
K .

For this calibration step the original algorithm of Section 2.2 is taken, only
modified by using zjskj instead of zjskj + zk+1sk+1 in the testing parts.
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The selection rule for the critical values in Lepski’s procedure is the focus in
the work by Spokoiny and Vial (2009). The idea is to transfer properties from
the pure noise situation to the general nonparametric specification by bounding
the likelihood between the two observation models. This approach, the so-called
small modeling bias condition, could be applied here as well and will give similar
results. On a practical level, the difference is that there the moment order is
enlarged from r to 2r in the calibration step, while here the term zk+1sk+1

is added to the testing values zjskj from the calibration. In the asymptotic
analysis we do not lose powers in the logarithmic factor, as is the case for the
small modeling bias ansatz, and we attain optimal rates over Hölder balls, cf.
Section 4. Moreover, for robustness reasons, we do not want to require higher
moment bounds for the error variables and the likelihood.
Let us also mention that in the case of a misspecified noise distribution (which
is at the origin of robust statistics) Condition (3.1) holds with some other pa-
rameter α. The non-asymptotic risk bounds will show a linear dependence in α
so that the error can still be controlled. The asymptotic analysis in Proposition
4.3 will provide admissible critical values zk ∼

√
log n under moment and mod-

erate deviation bounds on the M-estimator over (εi)16i6N for large N which for
bounded influence functions is a very weak requirement, see Section 4.2 below.

3.6 Definition. Given the regression function g, introduce its variation on Uk

Vk(g) := sup
y1,y2∈Uk

|g(y1)− g(y2)|

and consider the oracle-type index

k∗ := min{k = 0, . . . ,K − 1 | Vk+1(g) > zk+1sk+1} ∧K.

This definition implies that for all k 6 k∗ the maximal bias Vk(g) of ϑ̃k is less
than its stochastic error level sk from (2.3) times the critical value zk. The
next result, when specialised to k = k∗, means intuitively that the error due
to stopping before k∗ can be bounded in terms of the stochastic error of ϑ̃k∗ ,
involving the critical value zk∗ as a factor. Let us also mention here that the
rationale for the choice zK = 1 in the algorithm of Section 2.2 is to equilibrate
maximal bias and stochastic error at step k = K − 1.

3.7 Proposition. Grant Assumption 3.1 and use the definition in (2.4) and
the condition in (3.1) for some α > 0. Then we have for any k = 0, . . . , k∗ and
r > 0 such that all error levels in (2.3) are finite:

E
[
|ϑ̂− ϑ̃k|r1(k̂ < k)

]
6 (3r−1 ∨ 1)(zrk + 1 + α)srk.

Proof. We shall write k̂(g), ϑ̃k(g) etc. to indicate that k̂, ϑ̃k etc. depend on the
underlying regression function g. We shall need the inequality

|ϑ̃j(g)− ϑ̃k(g)| 6 |ϑ̃j(0)− ϑ̃k(0)|+ Vk(g) for j < k (3.3)
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which follows by Assumption 3.1 from

ϑ̃j(g)− ϑ̃k(g) = m(g(xi) + εi, xi ∈ Uj)−m(g(xi) + εi, xi ∈ Uk)

6 m
(
εi + sup

x∈Uj
g(x), xi ∈ Uj

)
−m

(
εi + inf

x∈Uk
g(x), xi ∈ Uk

)
6 m(εi, xi ∈ Uj) + sup

x∈Uj
g(x)−m(εi, xi ∈ Uk)− inf

x∈Uk
g(x)

6 ϑ̃j(0)− ϑ̃k(0) + Vk(g)

and by a symmetric argument for ϑ̃k(g)− ϑ̃j(g).
By definition of k∗ and using the condition on the (zk) as well as (3.3) for ϑ̃j
and ϑ̃(j+1)\j , we obtain for all k 6 k∗

E
[
|ϑ̂(g)− ϑ̃k(g)|r1(k̂(g) < k)

]
=

k−1∑
j=0

E
[
|ϑ̃j(g)− ϑ̃k(g)|r1(k̂(g) = j)

]
6

k−1∑
j=0

E
[
(Vk(g) + |ϑ̃j(0)|+ |ϑ̃k(0)|)r1(k̂(g) = j)

]
6 (3r−1 ∨ 1)

(
Vk(g)r + E[|ϑ̃k(0)|r]+

k−1∑
j=0

E
[
|ϑ̃j(0)|r1

(
∃` 6 j : |ϑ̃(j+1)\j(g)− ϑ̃`(g)| > z`sj` + zj+1sj+1

)])
6 (3r−1 ∨ 1)

(
zrks

r
k + srk+

k−1∑
j=0

E
[
|ϑ̃j(0)|r1

(
∃` 6 j : |ϑ̃(j+1)\j(0)− ϑ̃`(0)|+ Vj+1(g) > z`sj` + zj+1sj+1

)])
6 (3r−1 ∨ 1)

(
zrks

r
k + srk + αsrK

)
.

The result follows from the isotonic decay of (sk).

3.3 Total risk bound

3.8 Theorem. Consider ϑ̂ from (2.4) and critical values (zk) such that Condi-
tion (3.1) is satisfied and (zksk) is non-increasing in k. Then under Assumption
3.1 the following excess risk estimate holds for all k 6 k∗ and r > 0 such that
all error levels in (2.3) are finite:

Eg[|ϑ̂− ϑ̃k|r] 6 (3r−1 ∨ 1)
(

(2zrk + 1 + α)srk + zrk max
j=k+1,...,K−1

srjk

)
.

Proof. For the late-stopping error Proposition 3.3 and the decay of (zksk) give

|ϑ̂− ϑ̃k|r1(k̂ > k) 6 (2r−1 ∨ 1) max
j>k

(zrks
r
jk + zrj+1s

r
j+1)

6 (2r−1 ∨ 1)zrk
(
srk + max

j>k
srjk
)
.

Add the early-stopping error from Proposition 3.7.
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3.9 Remarks.

(a) The decay of (zksk) is imposed to facilitate the result. Moreover, it is
quite natural since sk is of the order |Uk|−1/2 (|Uk|: number of observa-
tions in Uk) while the critical values zk usually decrease as well, compare
Proposition 4.3 and the discussion thereafter.

(b) Concerning the moment r > 0 required, we remark that r is in general
much larger than the maximal finite moment of the noise (εi). In the
proof of Proposition 4.6 for example we derive that the median has finite
moments three times larger than (εi) for sample size at least five, which
for the Cauchy distribution would already give r ≈ 3!

3.10 Example (continued). For geometrically increasing bandwidths (hk) we
obtain sjk . sk for j > k and thus

E[|ϑ̂− ϑ̃k∗ |r] . (α+ zrk∗)s
r
k∗ .

The factor α+ zrk∗ is the term we pay for adaptation.

4 Asymptotic risk

4.1 General result

We shall derive convergence rates for n → ∞ of the critical values (zk). All
quantities in the procedure may depend on n, but we still write Uk, K and zk
instead of Uk(n), K(n), zk(n). The notation A . B will always mean A(n) 6
cB(n) with some c > 0 independent of n and A ∼ B is short for A . B and
B . A. We work under the following assumption whose validity under mild
conditions will be derived in the next subsection.

4.1 Assumption.

(a) The cardinalities Nk of the neighbourhoods Uk grow with geometric order:

q1Nk 6 Nk+1 6 q2Nk for all k = 0, . . .K − 1

for some fixed q2 > q1 > 1 and with N1/ log(NK) → ∞, NK ∼ n as
n→∞.

(b) For all sufficiently large N we have

E[|m(εi, i = 1, . . . , N)|r]1/r ∼ E[|m(εi, i = 1, . . . , N)|2r]1/2r ∼ N−1/2.

(c) For all τN →∞ with τNN−1/2 → 0 a moderate deviations bound applies:
there is some c > 0 such that

lim sup
N→∞

ecτ
2
N P

(
N1/2|m(εi, i = 1, . . . , N)| > τN

)
<∞.

The following asymptotic bounds follow directly from the definitions:
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4.2 Lemma. Assumption 4.1(b) implies sj ∼ N
−1/2
j and N

−1/2
j ∧ (Nk+1 −

Nk)−1/2 . skj . N
−1/2
j ∨ (Nk+1 −Nk)−1/2. Assumption 4.1(a) then yields for

k > j

sj ∼ skj ∼ N
−1/2
j .

Under Assumption 4.1 critical values of the same order as in the Gaussian case
suffice:

4.3 Proposition. Grant Assumption 4.1 and suppose α ∈ (0, 1). We can
choose

z2
k = ζ

(
2r log(sk/sK) + log(α−1) + log(K)

)
, k = 0, . . . ,K − 1,

with ζ > 0 a sufficiently large constant in order to satisfy Condition (3.2). For
K ∼ log n this yields asymptotically zk ∼

√
log n.

Proof. Let j > k. For n sufficiently large Assumption 4.1(c) together with the
asymptotics zksjk . (log(NK)N−1

k )1/2 → 0 (using Assumption 4.1(a,b) and
Lemma 4.2) yields

P0(|ϑ̃(j+1)\j − ϑ̃k| > zksjk)

6 P0(|ϑ̃(j+1)\j | > zksjk/2) + P0(|ϑ̃k| > zksjk/2)

. exp(−cz2
ks

2
jk(Nj+1 −Nj)/4) + exp(−cz2

ks
2
jkNk/4).

By Lemma 4.2 there is another constant c′ > 0 such that for large zk

P0(|ϑ̃(j+1)\j − ϑ̃k| > zksjk) . exp(−c′z2
k).

Our choice of zk with ζ sufficiently large guarantees exp(−c′z2
k/2) =

o(α(sK/sk)rK−2) for large K. We therefore more than satisfy (3.1) and the
construction in (3.2) provided n is sufficiently large:

K−1∑
j=k

E0

[
|ϑ̃j |r1(|ϑ̃(j+1)\j − ϑ̃k| > zksjk)

]
6

K−1∑
j=k

E0

[
|ϑ̃j |2r]1/2 P0(|ϑ̃(j+1)\j − ϑ̃k| > zksjk)1/2

.
K−1∑
j=k

srj exp(−c′z2
k/2)

= o
(
(K − k)srkα(sK/sk)rK−2

)
= o
(αsrK
K

)
.

For K ∼ logN we obtain log(NK/Nk) 6 (K − k) log q2 . logN and thus
z2
k ∼ log n.
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Note that the chosen critical values zk are decreasing in k, which has the de-
sirable effect that we do not permit stopping at an early stage with the same
probability as stopping at higher indices k. Moreover, this guarantees that zksk
is non-increasing in k, the hypothesis in Theorem 3.8. From Theorem 3.8 we
therefore obtain the following asymptotic risk bound.

4.4 Corollary. Grant Assumptions 3.1 and 4.1 and let K ∼ log n. Choosing
the critical values as in Proposition 4.3 gives

Eg[|ϑ̂− g(x)|r] . (log n)r/2 Eg[|ϑ̃k∗ − ϑ|r].

4.5 Example (continued). Let us specify to s-Hölder continuous g : [0, 1]→ R,
equidistant design and kernel estimators with geometrically increasing band-
widths hk = h0q

k, K ∼ log(n). Then we can choose zk ∼
√

log(n) and the index
k∗ satisfies Vk∗(f)2 ∼ h2s

k∗ ∼ (nhk∗)−1 log(n), that is hk∗ ∼ (log(n)/n)1/(2s+1)

and zk∗sk∗ ∼ (log(n)/n)s/(2s+1).

4.2 Specific models

The preceding asymptotic analysis was based on Assumption 4.1 where part (a)
can be ensured by construction whereas parts (b) and (c) depend on the noise
model and the choice of M-estimator. The most severe restriction will usually
be the moderate deviation property of Assumption 4.1(c). In the case where
the law of the error variable εi is absolutely continuous, this property holds by
Corollary 2.1 in Arcones (2002) under the following conditions:

(a) E[ρ(εi + h)− ρ(εi)] = V h2 + o(h2) for some V > 0 and |h| → 0;

(b) ρ is Lebesgue-almost everywhere differentiable with derivative ρ′;

(c) there are λ, δ > 0 such that E[exp(λ|ρ′(εi)|)] and E[exp(λ sup|h|6δ|ρ(εi +
h)− ρ(εi)− hρ′(εi)|/h)] are finite.

For mean regression ρ(x) = x2 we have V = 1 and ρ′(εi) = 2εi such that a finite
exponential moment for εi is required. For median regression the result applies
with V = fε(0)/2 and ρ′(εi) = sgn(εi) and because of ||εi+h|−|εi|−h sgn(εi)| 6
2h no moment bound is required. The same is true for any robust statistic with
bounded influence function, in particular for the Huber estimator and general
quantile estimators. Arcones (2002) discusses that an exponential tail estimate
for ρ′(εi) is also necessary to obtain a moderate deviation bound, which might
be a serious drawback when using Lepski’s method with linear non-robust base
estimators.
For the median the requirements are not difficult to verify directly. Assumption
4.1(b) is for example established by Chu and Hotelling (1955), who show that
for fε continuously differentiable around zero, fε(0) > 0, r ∈ N and Z ∼ N(0, 1):

lim
N→∞

N r E[med(ε1, . . . , εN )2r] = (2fε(0))−r E[Z2r].

Using a coupling result, we can establish Assumption 4.1(b,c) under even more
general conditions, see Section 7.2 for a proof:
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4.6 Proposition. Assume that the εi have a Lebesgue density fε which is
Lipschitz continuous at zero and satisfies

∫ 0
−∞ fε(x) dx = 1/2, fε(0) > 0,

E[|εi|r] <∞. Noting med(ε) := med(ε1, . . . , εN ), N odd, we have

∀N > 5 : E[|med(ε)|r] ∼ N−r/2 and E[|med(ε)|2r] ∼ N−r

as well as for τN →∞ with τN = o(N1/2)

lim sup
N→∞

P
(
2N1/2fε(0)|med(ε)| > τN

)
exp(τ2

N/8) 6 2.

Specifying to the median regression case, we gather the results obtained in
Corollary 4.4, Example 4.5 and Proposition 4.6 to obtain the following asymp-
totic optimality result.

4.7 Theorem. Suppose that g : [0, 1] → R is Cs-Hölder continuous with s ∈
(0, 1] in a neighbourhood of x ∈ (0, 1), that the design is equidistant xi = i/n
and that the error variables εi have median zero (median regression model).
Choose a geometrical range of bandwidths hk = h0q

k with some h0 > 0, q > 1,
k = 0, . . . ,K and K ∼ log n and consider the adaptive choice ϑ̂n among the
corresponding local median filters ϑ̃k, applied in windows of size hk around x.
Then for any r > 0 such that E[|εi|r] <∞ we have

Eg[|ϑ̂n − g(x)|r]1/r . (log(n)/n)s/(2s+1).

This is the classical minimax rate for pointwise adaptive estimation in the one-
dimensional s-Hölder continuous case, see Lepski et al. (1997) for the Gaussian
case. Here, we have derived the same rate for pointwise adaptive M -estimation
under very weak conditions on the error distribution. It should be stressed that
also for heavy-tailed distributions we only have to pay a logarithmic factor to
achieve local adaptivity. This is due to the fact that the sample median as
robust statistics concentrates well around the true location.

5 Simulation results

We illustrate our procedure by an implementation for median regression on
X = [−1, 1] and the estimation of the regression function at x = 0. We simulate
n = 200 equidistant observations (Yi) with standardized errors (εi) (E[εi] = 0,
Var(εi) = 1) that are (a) Laplace, (b) normal and (c) Student t-distributed
with three degrees of freedom. The location is each time estimated by local
sample means as well as by local sample medians. As neighbourhoods we take
symmetric intervals Uk around zero containing b5k/4k−1c data points. This gives
K = 17 different base estimators.
The calibration of the procedure is performed for Laplace distributed errors
with r = 2 and α = 1. The variances sj , sjk of the sample means are calculated
exactly and those of the sample medians are approximated by their asymptotic
values (which are quite close to Monte Carlo values). The critical values (zk)
are chosen according to the prescription in (3.1). This is achieved in both cases,
mean and median estimators, by using the choice in Proposition 4.3 with values
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Figure 1: Example 1 with Laplace noise: A typical realisation and a box plot of
the sample errors in 1000 Monte Carlo runs.

ζ that are calibrated by 10000 Monte Carlo runs for the pure noise situation.
It turned out that this gives almost equally sized error contributions for the
different values zk, as postulated in (3.2). The same calibration principle was
applied for the original Lepski procedure with mean and median estimators.
As a first example we take a simple change point problem by considering the
regression function g(x) = 0 for |x| 6 0.2 and g(x) = 2 for |x| > 0.2, which can
be considered as a toy model for edge detection in image restauration or for
structural breaks in econometrics. In Figure 1 we show a typical data set in the
Laplace case (a) together with box plots for the absolute error of the different
methods in 1000 Monte Carlo repetitions: local means with Lepski’s and with
our method (RR), local medians with Lepski’s and with our method (RR) and
the oracle method, which is just the sample median over [−0.2, 0.2] = {x :
g(x) = 0}. For exactly the same methods, especially still calibrated to Laplace
errors, Figure 2 presents the results for Gaussian and heavy-tailed Student t(3)
errors.
It is obvious that in all cases Lepski’s method applied to sample medians as
base estimators works quite badly. This is due to the fact that this method
stops far too late: the sample median over the complete intervals Uk does not
really ’notice’ the jump in the data. In fact, in the Laplace simulation study the
oracle k = 10 is selected by this method in less than 1% of the cases while most
often (65%) the selection is k = 12 which yields the 1.5 times larger window
U12 = [−0.29, 0.29]. The methods using the sample mean estimators perform
reasonably well and especially both very similarly. Still, they are clearly beaten
by our median based procedure in cases (a) and (c) where the median is the
more efficient location estimator. It is remarkable here that we nearly achieve
the risk of the oracle median estimator. Even in the Gaussian case (b) the
linear procedures have only minor advantages. Finally, we notice the robustness
property that the calibration with the wrong error distribution in Figure 2 does
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Figure 2: Box plot of the sample errors in 1000 Monte Carlo runs for Gaussian
(left) and Student t(3) noise (right).

not seriously affect the results.
In a second example we consider the smooth regression function
g(x) = 2x(x + 1). Because we are estimating locally around x = 0, this
is a caricature of a C2-function with g′(0) = 2 and g′′(0) = 4. Figure 3 shows
again a typical data set and boxplots for the different methods in 1000 Monte
Carlo runs under Laplace errors. This time the oracle choice is the window
[−0.39, 0.39]. Our median based procedure outperforms the others where the
advantage over the mean-based approaches is again mainly due to the relative
efficiency gain of size 1/

√
2 induced by the base estimators in the Laplace

model. This gain, though, is not at all visible when using Lepski’s method for
selecting among the sample medians. The results for the error distributions (b)
and (c) resemble those of the first example, we confine ourselves to summarizing
the numerical results for all examples in the following table (our method in
capitals), each time stating the Monte Carlo median of the absolute error:

Ex. Mean Lepski Mean Median Lepski Median Median Oracle
1a 0.1446 0.1450 0.2871 0.0897 0.0763
1b 0.1640 0.1630 0.2795 0.1647 0.1325
1c 0.0982 0.0978 0.3012 0.0596 0.0560
2a 0.1846 0.1924 0.3051 0.1246 0.1005
2b 0.1808 0.1886 0.3430 0.1586 0.1241
2c 0.2102 0.2126 0.2455 0.1047 0.0822

Further simulation experiments confirm this picture. Especially for lower values
of the moment r our median-based procedure is very efficient, while sometimes
for r = 2 the mean-based procedures profit from less severe outliers in the
Monte Carlo runs. In all these experiments the location is equally described by
mean and median and we mainly see the efficiency gain of the sample median
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Figure 3: Example 2 with Laplace noise. A typical realisation and a box plot of
the sample errors in 1000 Monte Carlo runs.

for non-Gaussian noise. For general quantile regression, however, linear methods
do not apply and the standard Lepski procedures based on the nonlinear base
estimators will perform badly. Our approach gives significantly better results.
The error reductions by a factor of two and more, achieved in the median
procedures above, confirm this very clearly.

6 Application

The proposed procedure is applied to denoise images used in the surveillance
of cancer therapies. In Dynamic Contrast Enhanced Computer Tomography
(DCE-CT) a contrast agent is injected in the human body and its diffusion over
time is observed which is specific for different kinds of cell tissues and allows
thus the surveillance of cancer therapies. For medical reasons the dose of con-
trast agent is kept small which leads to a poor signal-to-noise ratio. An analysis
of residuals shows that the observational noise is well modeled by the Laplace
distribution. Moreover, sometimes human movements produce significant out-
liers. Therefore local median estimation is employed. Especially for dynamical
image sequences, the denoising is remarkably successful when the same spatial
neighbourhoods are used over the whole observation period. This means that
at each voxel location xi a vector-valued intensity function g : X → RK is
observed under vector-valued noise εi. The vector g(xi) encodes the intensity
at time points (t1, . . . , tK) recorded at spatial location xi. Our previously de-
veloped procedure perfectly applies to this situation, we just need a testing
procedure between vector-valued local M-estimators.
Details of the experimental setup and the estimation procedure are discussed in
Rozenholc et al. (2009) and we merely give a rough description of the setting. A
multiresolution test procedure is applied to compare different vector estimates.
In a first pre-selection step for each voxel xi we disregard voxels that are signif-
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Figure 4: Axial CT image of the abdomen centered on a liver metastasis. This
image is part of a dynamic series, it has been acquired after 25 seconds, during
the arterial phase. Left: original. Right: denoised version.

icantly different from xi and construct then circular neighbourhoods around xi
consisting only of non-rejected voxels. This allows geometrically richer neigh-
borhood structures that in practice adapt well to the structure. Mathematically,
the analysis of the algorithm remains the same when conditioning on the result
of this first pre-selection.
For the present example we dispose of a DCE-CT sequence of K = 53 recordings
of 512× 512-pixel images in the upper abdomen of a cancer patient. In Figure
4 the original image at time step 23 is depicted together with the result of our
denoising procedure. The noise reduction is remarkable while fine structures like
edges are well preserved and not smoothed out. The residuals in Figure 5(left)
show some artefacts due to human body movements and CT radial artefacts,
which our procedure removed as well. In Figure 5(right) a zoom into Figure
4(right) is shown together with the sequence of neighbourhoods constructed
for one voxel inside the cancerogeneous tissue. The effect of the pre-selection
step is clearly visible by the geometrically adaptive form of the neighbourhoods.
Further results, in particular the denoised dynamics in certain voxels and an
application to automatic clustering of cell tissues are reported in Rozenholc
et al. (2009). The generality of our procedure has the potential to provide
statistical solutions in many further applications where spatial inhomogeneity
and robustness are key issues.

7 Appendix

7.1 Analysis of a toy model

To provide some insight why our tests for H0(k + 1) are often more powerful
and natural, let us consider a toy model of two neighbourhoods U1 ⊆ U2 with a
piecewise constant quantile regression function g equal to µ1 on U1 and to µ2 on
U2\U1. The procedure therefore reduces to a test of the hypothesis H0 : µ2 = µ1.
Putting ∆ = µ2 − µ1 we face a two-sample location test on H0 : ∆ = 0
where the first sample Y1, . . . , Yn (from U1) is i.i.d. with density f and the
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1

23

4

Figure 5: Left: residuals as difference between the original and the denoised
version (see Figure 4). Right: zoom into the denoised version showing a vertebra
(1), the aorta (2), the liver (3) and a tumor (4). Around a selected voxel, marked
by the white dot/arrow, the first four data-driven neigbourhoods (in order: red,
yellow, green and blue) are shown.

second independent sample Yn+1, . . . , Y2n (from U2 \ U1) is i.i.d. with density
f(•−∆). We introduce m̃1 := q̂α(Yi, i = 1, . . . , n), m̃2 := q̂α(Yi, i = 1, . . . , 2n)
and m̃2\1 := q̂α(Yi, i = n + 1, . . . , 2n), the sample quantiles over the first,
joint and second sample, respectively. The test in Lepski’s method rejects if
TL := 2|m̃1 − m̃2| is large, while we propose to reject if TW := |m̃1 − m̃2\1| is
large.
The rationale for our approach is that the sample α-quantile is the maximum
likelihood estimator for the location family with f(x) = 2α(1−α)e−|x|+(2α−1)x.
Classical testing theory then reveals our test as the Wald test using the max-
imum likelihood estimator for the location and establishes its asymptotic effi-
ciency (a similarly efficient likelihood ratio test is less explicit here). For general
noise distributions this is only a pseudo-likelihood approach, but we are still
able to derive its superiority.

7.1 Proposition. Let f : R → R+ be a Lipschitz continuous density, F its
distribution function and consider the α-quantile qα, α ∈ (0, 1). Assume that
f(qα) > 0 and f(qα + h) + f(qα − h) − 2f(qα) = o(h) hold for h → 0 (e.g.
f differentiable or just symmetric at qα). If Y1, . . . , Yn ∼ f , Yn+1, . . . , Y2n ∼
f(•−∆) are independently distributed, then we obtain for n→∞
√
n
(
m̃2\1 − m̃1 −∆

)
⇒ N(0, σ2

W ),
√
n
(
2
(
m̃2 − m̃1

)
−∆

)
⇒ N(0, σ2

L)

with variances σ2
W = 2α(1−α)

f2(qα)
and σ2

L = σ2
W + 2α

f(qα) |∆| + o(∆) for ∆ ↓ 0,

σ2
L = σ2

W + 2(1−α)
f(qα) |∆|+ o(∆) for ∆ ↑ 0.

Proof. The asymptotic normality of the sample quantile
√
n(q̂α(Y1, . . . , Yn) −

qα)⇒ N(0, α(1−α)/f2(qα)) is well known (van der Vaart 1998, Corollary 21.5)
and implies by independence the first asymptotic result.
Since the sample quantiles in the second case are not independent, we consider
their joint distribution using empirical processes. Let us write F∆ for the cu-
mulative distribution function of f∆ = f(• − ∆) and denote by B1, B2 two
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independent standard Brownian bridges. Then empirical process theory yields
by independence

√
n
( 1
n

n∑
i=1

1([Yi,∞))− F, 1
n

2n∑
i=n+1

1([Yi,∞))− F∆

)
⇒ (B1 ◦ F,B2 ◦ F∆).

The joint sample quantile q̂α(Yi, i = 1, . . . , 2n) satisfies in terms of the empirical
distribution functions Fn and Fn∆ of the two samples

Fn + Fn∆
2

(
q̂α(Yi, i = 1, . . . , 2n)

)
= α.

Hence, it can be expressed as the functional (Fn + Fn∆)−1(2α) of (Fn, Fn∆),
assuming that the inverse is defined properly (e.g. giving the mean of all admis-
sible values). Combining two-dimensional versions of Theorem 20.8 and Lemma
21.4 of van der Vaart (1998), we infer

√
n
(
q̂α(Yi, i = 1, . . . , n)− qα, q̂α(Yi, i = 1, . . . , 2n)− qα −∆/2

)
⇒(

− (B1 ◦ F/f) ◦ F−1(α),−(B1 ◦ F +B2 ◦ F∆)/(f + f∆) ◦ (F + F∆)−1(2α)
)
.

Consequently,
√
n(2(q̂α(Yi, i = 1, . . . , 2n)− q̂α(Yi, i = 1, . . . , n))−∆) is asymp-

totically normal with mean zero and variance (put q∆
α := (F + F∆)−1(2α))

σ2
L = 4 E

[(
− B1(F (q∆

α )) +B2(F (q∆
α −∆))

f(q∆
α ) + f(q∆

α −∆)
+
B1(α)
f(qα)

)2]
=

4α(1− α)
f2(qα)

+
4F (q∆

α )(1− F (q∆
α )) + 4F (q∆

α −∆)(1− F (q∆
α −∆))

(f(q∆
α ) + f(q∆

α −∆))2

− 8(α ∧ F (q∆
α )− αF (q∆

α ))
(f(q∆

α ) + f(q∆
α −∆))f(qα)

While σ2
L = σ2

W for ∆ = 0 is straight-forward, the behaviour as ∆ → 0 is
analysed using q∆

α = qα + ∆/2 +O(∆2), obtained from the Lipschitz continuity
of f , and a fortiori

f(q∆
α ) + f(q∆

α −∆) = 2f(qα) + o(∆),

obtained from the second difference bound on f . This gives

σ2
L = σ2

W −
8((∆/2)f(qα)1(∆ < 0)− α(∆/2)f(qα))

2f(qα)2
+ o(∆)

and hence the assertion.

This result shows that under H0 : ∆ = 0, the test statistics TL and TW are
asymptotically identically distributed, whereas TL has a larger asymptotic vari-
ance under the alternative than TW . The relative deterioration σ2

L−σ
2
W

σ2
W

is of
order f(qα)|∆| which can be interpreted as a signal-to-noise ratio. The deteri-
oration is thus only negligible if the signal-to-noise ratio is small. Especially in
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image denoising we face significant signal differences ∆ at edges while we do
not dispose of a very large number n of observed pixels such that this deteri-
oration is clearly visible, see also Example 1 in Section 5. In addition to this
improvement of results, the new tests are also easier to analyse and calibrate
by using the independence of the noise on disjoint domains.

7.2 Proof of Proposition 4.6

We shall only consider the case of odd N = 2m + 1. Under the conditions of
the proposition Brown et al. (2008) show the following result.

7.2 Theorem. For all m > 0 the sample ε1, . . . , ε2m+1 can be realised on
the same probability space as a standard normal random variable Z such that
med(ε) := med(εi, i = 1, . . . , 2m+ 1) satisfies∣∣∣med(ε)− Z√

4(2m+ 1)fε(0)

∣∣∣ 6 C

2m+ 1

(
1 + Z2

)
if |Z| 6 δ

√
2m+ 1,

where δ, C > 0 are constants depending on fε, but independent of m.

The construction and the inequality of the theorem yield with some constant
C ′ > 0

E[|med(ε)|2r1(|Z| 6 δ
√

2m+ 1)]

6 (2r−1 ∨ 1) E
[(

4(2m+ 1)fε(0)2
)−r|Z|2r + C2r

(2m+1)2r

(
1 + Z2

)2r]
6 C ′(2m+ 1)−r.

On the other hand, because of εi ∈ Lr we have for z →∞ that the cdf satisfies
Fε(−z) . |z|−r and 1 − Fε(z) . |z|−r. From the formula for the density of
med(ε)

fm(z) =
(

2m+ 1
m+ 1

)
(m+ 1)fε(z)Fε(z)m(1− Fε(z))m

we therefore infer that ‖med(ε)‖L3r for m > 2 is finite and uniformly bounded.
Hence, the Hölder inequality gives

E[|med(ε)|2r1(|Z| > δ
√

2m+ 1)] 6 E[|med(ε)|3r]2/3 P(|Z| > δ
√

2m+ 1)1/3,

which by Gaussian tail estimates is of order exp(−δ2(2m + 1)/6) and thus for
m → ∞ asymptotically negligible. This gives the upper moment bound for
med(ε), the lower bound follows symmetrically. The r-th moment is bounded
by even simpler arguments.
The second assertion follows via quantile coupling from

P
(√

4(2m+ 1)fε(0)|med(ε)| > τm
)

6 P
(
|Z|+ C√

2m+1
(1 + Z2) > τm

)
+ P

(
|Z| > δ

√
2m+ 1

)
6 P(2|Z| > τm) + P(|Z| > δ

√
2m+ 1)

6 2 exp(−τ2
m/8).
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