5,558 research outputs found

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201

    Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network

    Full text link
    Device-free localization (DFL) based on the received signal strength (RSS) measurements of radio frequency (RF)links is the method using RSS variation due to the presence of the target to localize the target without attaching any device. The majority of DFL methods utilize the fact the link will experience great attenuation when obstructed. Thus that localization accuracy depends on the model which describes the relationship between RSS loss caused by obstruction and the position of the target. The existing models is too rough to explain some phenomenon observed in the experiment measurements. In this paper, we propose a new model based on diffraction theory in which the target is modeled as a cylinder instead of a point mass. The proposed model can will greatly fits the experiment measurements and well explain the cases like link crossing and walking along the link line. Because the measurement model is nonlinear, particle filtering tracing is used to recursively give the approximate Bayesian estimation of the position. The posterior Cramer-Rao lower bound (PCRLB) of proposed tracking method is also derived. The results of field experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that the tracking error of proposed model is improved by at least 36 percent in the single target case and 25 percent in the two targets case compared to other models.Comment: This paper has been withdrawn by the author due to some mistake

    Distributed Estimation with Information-Seeking Control in Agent Network

    Get PDF
    We introduce a distributed, cooperative framework and method for Bayesian estimation and control in decentralized agent networks. Our framework combines joint estimation of time-varying global and local states with information-seeking control optimizing the behavior of the agents. It is suited to nonlinear and non-Gaussian problems and, in particular, to location-aware networks. For cooperative estimation, a combination of belief propagation message passing and consensus is used. For cooperative control, the negative posterior joint entropy of all states is maximized via a gradient ascent. The estimation layer provides the control layer with probabilistic information in the form of sample representations of probability distributions. Simulation results demonstrate intelligent behavior of the agents and excellent estimation performance for a simultaneous self-localization and target tracking problem. In a cooperative localization scenario with only one anchor, mobile agents can localize themselves after a short time with an accuracy that is higher than the accuracy of the performed distance measurements.Comment: 17 pages, 10 figure
    • …
    corecore