6 research outputs found

    Sequential Monte Carlo Instant Radiosity

    Get PDF
    The focus of this thesis is to accelerate the synthesis of physically accurate images using computers. Such images are generated by simulating how light flows in the scene using unbiased Monte Carlo algorithms. To date, the efficiency of these algorithms has been too low for real-time rendering of error-free images. This limits the applicability of physically accurate image synthesis in interactive contexts, such as pre-visualization or video games. We focus on the well-known Instant Radiosity algorithm by Keller [1997], that approximates the indirect light field using virtual point lights (VPLs). This approximation is unbiased and has the characteristic that the error is spread out over large areas in the image. This low-frequency noise manifests as an unwanted 'flickering' effect in image sequences if not kept temporally coherent. Currently, the limited VPL budget imposed by running the algorithm at interactive rates results in images which may noticeably differ from the ground-truth. We introduce two new algorithms that alleviate these issues. The first, clustered hierarchical importance sampling, reduces the overall error by increasing the VPL budget without incurring a significant performance cost. It uses an unbiased Monte Carlo estimator to estimate the sensor response caused by all VPLs. We reduce the variance of this estimator with an efficient hierarchical importance sampling method. The second, sequential Monte Carlo Instant Radiosity, generates the VPLs using heuristic sampling and employs non-parametric density estimation to resolve their probability densities. As a result the algorithm is able to reduce the number of VPLs that move between frames, while also placing them in regions where they bring light to the image. This increases the quality of the individual frames while keeping the noise temporally coherent — and less noticeable — between frames. When combined, the two algorithms form a rendering system that performs favourably against traditional path tracing methods, both in terms of performance and quality. Unlike prior VPL-based methods, our system does not suffer from the objectionable lack of temporal coherence in highly occluded scenes

    Sequential Monte Carlo Instant Radiosity

    Get PDF
    Instant Radiosity and its derivatives are interactive methods for efficiently estimating global (indirect) illumination. They represent the last indirect bounce of illumination before the camera as the composite radiance field emitted by a set of virtual point light sources (VPLs). In complex scenes, current algorithms suffer from a difficult combination of two issues: it remains a challenge to distribute VPLs in a manner that simultaneously gives a high-quality indirect illumination solution for each frame, and does so in a temporally coherent manner. We address both issues by building, and maintaining over time, an adaptive and temporally coherent distribution of VPLs in locations where they bring indirect light to the image. We introduce a novel heuristic sampling method that strives to only move as few of the VPLs between frames as possible. The result is, to the best of our knowledge, the first interactive global illumination algorithm that works in complex, highly-occluded scenes, suffers little from temporal flickering, supports moving cameras and light sources, and is output-sensitive in the sense that it places VPLs in locations that matter most to the final result

    Sequential Monte Carlo Instant Radiosity

    Get PDF
    Instant Radiosity and its derivatives are interactive methods for efficiently estimating global (indirect) illumination. They represent the last indirect bounce of illumination before the camera as the composite radiance field emitted by a set of virtual point light sources (VPLs). In complex scenes, current algorithms suffer from a difficult combination of two issues: it remains a challenge to distribute VPLs in a manner that simultaneously gives a high-quality indirect illumination solution for each frame, and to do so in a temporally coherent manner. We address both issues by building, and maintaining overtime, an adaptive and temporally coherent distribution of VPLs in locations where they bring indirect light to the image. We introduce a novel heuristic sampling method that strives to only move as few of the VPLs between frames as possible. The result is, to the best of our knowledge, the first interactive global illumination algorithm that works in complex, highly-occluded scenes, suffers little from temporal flickering, supports moving cameras and light sources, and is output-sensitive in the sense that it places VPLs in locations that matter most to the final result

    Master of Science

    Get PDF
    thesisVirtual point lights (VPLs) provide an effective solution to global illumination computation by converting the indirect illumination into direct illumination from many virtual light sources. This approach results in a less noisy image compare to Monte Carlo methods. In addition, the number of VPLs to generate can be specified in advance; therefore, it can be adjusted depending on the scene, desired quality, time budget, and the available computational power. In this thesis, we investigate a new technique that carefully places VPLs for providing improved rendering quality for computing global illumination using VPLs. Our method consists of three different passes. In the first pass, we randomly generate a large number of VPLs in the scene starting from the camera to place them in positions that can contribute to the final rendered image. Then, we remove a considerable number of these VPLs using a Poisson disk sample elimination method to get a subset of VPLs that are uniformly distributed over the part of the scene that is indirectly visible to the camera. The second pass is to estimate the radiant intensity of these VPLs by performing light tracing starting from the original light sources in the scene and scatter the radiance of light rays at a hit-point to the VPLs close to that point. The final pass is rendering the scene, which consists of shading all points in the scene visible to the camera using the original light sources and VPLs

    Path manipulation strategies for rendering dynamic environments.

    Get PDF
    The current work introduces path manipulation as a tool that extends bidirectional path tracing to reuse paths in the temporal domain. Defined as an apparatus of sampling and reuse strategies, path manipulation reconstructs the subpaths that compose the light transport paths and addresses the restriction of static geometry commonly associated with Monte Carlo light transport simulations. By reconstructing and reusing subpaths, the path manipulation algorithm obviates the regeneration of the entire path collection, reduces the computational load of the original algorithm and supports scene dynamism. Bidirectional path tracing relies on local path sampling techniques to generate the paths of light in a synthetic environment. By using the information localized at path vertices, like the probability distribution, the sampling techniques construct paths progressively with distinct probability densities. Each probability density corresponds to a particular sampling technique, which accounts for specific illumination effects. Bidirectional path tracing uses multiple importance sampling to combine paths sampled with different techniques in low-variance estimators. The path sampling techniques and multiple importance sampling are the keys to the efficacy of bidirectional path tracing. However, the sampling techniques gained little attention beyond the generation and evaluation of paths. Bidirectional path tracing was designed for static scenes and thus it discards the generated paths immediately after the evaluation of their contributions. Limiting the lifespan of paths to a generation-evaluation cycle imposes a static use of paths and of sampling techniques. The path manipulation algorithm harnesses the potential of the sampling techniques to supplant the static manipulation of paths with a generation-evaluation-reuse cycle. An intra-subpath connectivity strategy was devised to reconnect the segregated chains of the subpaths invalidated by the scene alterations. Successful intra-subpath connections generate subpaths in multiple pieces by reusing subpath chains from prior frames. Subpaths are reconstructed generically, regardless of the subpath or scene dynamism type and without the need for predefined animation paths. The result is the extension of bidirectional path tracing to the temporal domain

    Sequential Monte Carlo Instant Radiosity

    No full text
    corecore